Introduction

Transverse-momentum, threshold and joint resummation for slepton-pair production at hadron colliders

Benjamin Fuks (LPSC Grenoble)

in collaboration with Giuseppe Bozzi and Michael Klasen

SUSY 07 Karlsruhe (Germany), July 27, 2007

- Introduction and motivations
- Resummation formalisms
 - Main features of the resummation
 - The resummed component
 - Matching procedure
- **Applications**
 - q_T-distribution
 - Invariant-mass distribution
 - Total cross sections
- Summary and outlook

Introduction

- Introduction and motivations
- - Main features of the resummation
 - The resummed component
 - Matching procedure
- - Invariant-mass distribution
 - Total cross sections

Slepton-pair production at hadron colliders

Drell-Yan like process

Introduction

•00

- Sleptons are often light \Rightarrow decays into LSP + SM lepton \Rightarrow clean signal.
- Cross sections given by

$$\sigma = \sum_{a,b} \int_{\tau}^{1} \mathrm{d}x_{a} \int_{\tau/x_{a}}^{1} \mathrm{d}x_{b} f_{a/h_{1}}(x_{a},\mu_{F}) f_{b/h_{2}}(x_{b},\mu_{F}) \hat{\sigma}_{ab}(\mathbf{z},\mathbf{M};\alpha_{s}(\mu_{R}),\frac{\mathbf{M}}{\mu_{F}},\frac{\mathbf{M}}{\mu_{R}})$$

where $\hat{\sigma}_{ab}$ is computed perturbatively

$$\hat{\sigma}_{ab}(z,M;\alpha_s(\mu_R),\tfrac{M}{\mu_F},\tfrac{M}{\mu_R}) = \sum_{n=0}^{\infty} \left(\tfrac{\alpha_s(\mu_R)}{\pi}\right)^n \hat{\sigma}_{ab}^{(n)}(z,M;\tfrac{M}{\mu_F},\tfrac{M}{\mu_R}) \ .$$

Next-to-leading order calculations

Feynman diagrams:

Introduction

- Squark mixing included in the SUSY-loops.
- Partonic invariant-mass and transverse-momentum distributions at $\mathcal{O}(\alpha_s)$:

$$\begin{array}{rcl} \frac{\mathrm{d} \hat{\sigma}_{ab}}{\mathrm{d} M^2} & = & \hat{\sigma}_{ab}^{(0)}(M) \, \delta(1-z) + \frac{\alpha_s}{\pi} \, \hat{\sigma}_{ab}^{(1)}(M,z) + \mathcal{O}(\alpha_s^2), \\ \frac{\mathrm{d}^2 \hat{\sigma}_{ab}}{\mathrm{d} M^2 \, \mathrm{d} q_T^2} & = & \hat{\sigma}_{ab}^{(0)}(M) \, \delta(q_T^2) \delta(1-z) + \frac{\alpha_s}{\pi} \, \hat{\sigma}_{ab}^{(1)}(M,z,q_T) + \mathcal{O}(\alpha_s^2), \\ \frac{\mathrm{d}^2 \hat{\sigma}_{ab}}{\mathrm{d} M^2 \, \mathrm{d} q_T^2} & = & \hat{\sigma}_{ab}^{(0)}(M) \, \delta(q_T^2) \delta(1-z) + \frac{\alpha_s}{\pi} \, \hat{\sigma}_{ab}^{(1)}(M,z,q_T) + \mathcal{O}(\alpha_s^2), \\ \frac{\mathrm{d}^2 \hat{\sigma}_{ab}}{\mathrm{d} M^2 \, \mathrm{d} q_T^2} & = & \hat{\sigma}_{ab}^{(0)}(M) \, \delta(q_T^2) \delta(1-z) + \frac{\alpha_s}{\pi} \, \hat{\sigma}_{ab}^{(1)}(M,z,q_T) + \mathcal{O}(\alpha_s^2), \\ \frac{\mathrm{d}^2 \hat{\sigma}_{ab}}{\mathrm{d} M^2 \, \mathrm{d} q_T^2} & = & \hat{\sigma}_{ab}^{(0)}(M) \, \delta(q_T^2) \delta(1-z) + \frac{\alpha_s}{\pi} \, \hat{\sigma}_{ab}^{(1)}(M,z,q_T) + \mathcal{O}(\alpha_s^2), \\ \frac{\mathrm{d}^2 \hat{\sigma}_{ab}}{\mathrm{d} M^2 \, \mathrm{d} q_T^2} & = & \hat{\sigma}_{ab}^{(0)}(M) \, \delta(q_T^2) \delta(1-z) + \frac{\alpha_s}{\pi} \, \hat{\sigma}_{ab}^{(1)}(M,z,q_T) + \mathcal{O}(\alpha_s^2), \\ \frac{\mathrm{d}^2 \hat{\sigma}_{ab}}{\mathrm{d} M^2 \, \mathrm{d} q_T^2} & = & \hat{\sigma}_{ab}^{(0)}(M) \, \delta(q_T^2) \delta(1-z) + \frac{\alpha_s}{\pi} \, \hat{\sigma}_{ab}^{(1)}(M,z,q_T) + \mathcal{O}(\alpha_s^2), \\ \frac{\mathrm{d}^2 \hat{\sigma}_{ab}}{\mathrm{d} M^2 \, \mathrm{d} q_T^2} & = & \hat{\sigma}_{ab}^{(0)}(M) \, \delta(q_T^2) \delta(1-z) + \frac{\alpha_s}{\pi} \, \hat{\sigma}_{ab}^{(1)}(M,z,q_T) + \mathcal{O}(\alpha_s^2), \\ \frac{\mathrm{d}^2 \hat{\sigma}_{ab}}{\mathrm{d} M^2 \, \mathrm{d} q_T^2} & = & \hat{\sigma}_{ab}^{(0)}(M) \, \delta(q_T^2) \delta(1-z) + \frac{\alpha_s}{\pi} \, \hat{\sigma}_{ab}^{(1)}(M,z,q_T) + \mathcal{O}(\alpha_s^2), \\ \frac{\mathrm{d}^2 \hat{\sigma}_{ab}}{\mathrm{d} M^2 \, \mathrm{d} q_T^2} & = & \hat{\sigma}_{ab}^{(0)}(M) \, \delta(q_T^2) \delta(1-z) + \frac{\alpha_s}{\pi} \, \hat{\sigma}_{ab}^{(1)}(M,z,q_T) + \mathcal{O}(\alpha_s^2), \\ \frac{\mathrm{d}^2 \hat{\sigma}_{ab}}{\mathrm{d} M^2 \, \mathrm{d} q_T^2} & = & \hat{\sigma}_{ab}^{(0)}(M) \, \delta(q_T^2) \delta(1-z) + \frac{\alpha_s}{\pi} \, \hat{\sigma}_{ab}^{(1)}(M,z,q_T) + \mathcal{O}(\alpha_s^2), \\ \frac{\mathrm{d}^2 \hat{\sigma}_{ab}}{\mathrm{d} M^2 \, \mathrm{d} q_T^2} & = & \hat{\sigma}_{ab}^{(0)}(M) \, \delta(q_T^2) \, \delta(1-z) + \frac{\alpha_s}{\pi} \, \hat{\sigma}_{ab}^{(1)}(M,z,q_T) + \mathcal{O}(\alpha_s^2), \\ \frac{\mathrm{d}^2 \hat{\sigma}_{ab}}{\mathrm{d} M^2 \, \mathrm{d} q_T^2} & = & \hat{\sigma}_{ab}^{(0)}(M) \, \delta(q_T^2) \, \delta(1-z) + \frac{\alpha_s}{\pi} \, \hat{\sigma}_{ab}^{(1)}(M) \, \delta(q_T^2) + \frac{\alpha_s$$

where $z = M^2/s$.

Soft and collinear radiations:

Introduction

- * $\frac{\alpha_s^n}{a_-^2} \ln^m \frac{M^2}{a_-^2}$ or $\alpha_s^n \left(\frac{\ln^m (1-z)}{1-z} \right)_+$ terms in the distributions $(m \le 2 n 1)$.
- * Large at small q_T or $z \leq 1$.
- * Fixed-order theory unreliable in these kinematical regions.
- * Resummation to all orders needed
 - $\Rightarrow q_T$ -resummation.
 - ⇒ Threshold resummation.
 - ⇒ loint resummation

Advantages of resummation:

- Reliable perturbative results.
- * Correct quantification of these radiations (even far from critical regions).
- * Accurate invariant-mass and q_T spectra.

 q_T -distribution \Rightarrow stransverse mass \Rightarrow spin and mass determination.

[Lester, Summers (1999); Barr (2006)]

M-distribution and total cross section \Rightarrow accurate mass determination.

[Bozzi, BF, Klasen (2007)]

- Resummation formalisms
 - Main features of the resummation
 - The resummed component
 - Matching procedure
- - Invariant-mass distribution
 - Total cross sections

iain reacures of the resummation

Reorganization of the cross section

$$d\sigma = d\sigma^{(res)} + d\sigma^{(fin)}$$
.

- $d\sigma^{(res)}$
 - * Contains all the logarithmic terms.
 - * Resummed to all orders in α_s .
 - * Exponentiation (Sudakov form factor).
- $d\sigma^{(fin)}$
 - * Remaining contributions.

The resummed component: conjugate spaces

- Conjugate spaces: Mellin, impact-parameter \Rightarrow kinematics naturally factorizes.
- Factorization of the hadronic cross sections:

$$\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}M^{2}}(\tau, M) = \sum_{a,b} \int_{\tau}^{1} \mathrm{d}x_{a} \int_{\tau/\chi_{a}}^{1} \mathrm{d}x_{b} f_{a/h_{1}}(x_{a}, \mu_{F}) f_{b/h_{2}}(x_{b}, \mu_{F}) \hat{\sigma}_{ab}^{(\mathrm{res})}(z; \alpha_{s}(\mu_{R}), \frac{M}{\mu_{F}}, \frac{M}{\mu_{R}})
\downarrow
\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}M^{2}}(N, M) = \sum_{a,b} f_{a/h_{1}}(N+1, \mu_{F}) f_{b/h_{2}}(N+1, \mu_{F}) \hat{\sigma}_{ab}^{(\mathrm{res})}(N; \alpha_{s}, \frac{M}{\mu_{R}}, \frac{M}{\mu_{F}}),$$

and

Introduction

$$\frac{\mathrm{d}^{2}\sigma^{(\mathrm{res})}}{\mathrm{d}M^{2}\mathrm{d}q_{T}^{2}}(\tau,M,q_{T}) = \sum_{a,b} \int_{\tau}^{1} \mathrm{d}x_{a} \int_{\tau/X_{a}}^{1} \mathrm{d}x_{b} f_{a/h_{1}}(x_{a},\mu_{F}) f_{b/h_{2}}(x_{b},\mu_{F}) \hat{\sigma}_{ab}^{(\mathrm{res})}(z,q_{T};\alpha_{s}(\mu_{R}),\frac{M}{\mu_{F}},\frac{M}{\mu_{R}})$$

$$\frac{\mathrm{d}^{2}\sigma^{(\mathrm{res})}}{\mathrm{d}M^{2}\mathrm{d}q_{T}^{2}}(N,M,q_{T}) = \sum_{a,b} f_{a/h_{1}}(N+1,\mu_{F}) f_{b/h_{2}}(N+1,\mu_{F}) \int_{z}^{b} \mathrm{d}b J_{0}(b\,q_{T}) \mathcal{W}_{ab}^{F}(N,b;\alpha_{s},\frac{M}{\mu_{R}},\frac{M}{\mu_{F}}).$$

ullet The logarithms are included in the functions $\hat{\sigma}^{(\mathrm{res})}$ and \mathcal{W}^{F} :

$$\left(\frac{\ln(1-z)}{1-z}\right)_{+} \to \ln^{2} \overline{N} \quad \text{with} \quad \overline{N} = N \, \exp[\gamma_{E}] \qquad \qquad \frac{1}{q_{T}^{2}} \, \ln \frac{M^{2}}{q_{T}^{2}} \to \ln \overline{b}^{2} \quad \text{with} \quad \overline{b} = \frac{b \, M}{2} \, \exp[\gamma_{E}]$$

• The process-dependence is factorized outside the exponent:

$$\mathcal{W}_{ab}^{F}(N,b) = \mathcal{H}_{ab}^{F}(N) \exp \left\{ \mathcal{G}(N,b) \right\},$$

$$\hat{\sigma}_{ab}^{(\text{res})}(N) = \sigma^{(LO)} \tilde{C}_{ab}(N;\alpha_s) \exp \left\{ \mathcal{G}(N,L) \right\}.$$

- \mathcal{H}^F and \tilde{C} -functions:
 - * Can be computed perturbatively and are process-dependent.
 - * Contain real and virtual collinear radiation, and hard contributions.
- The Sudakov form factor contains the soft-collinear radiation:
 - Can be computed perturbatively and is process-independent.
- Used formalisms:
 - * Universal q_T-resummation. [Catani, de Florian, Grazzini (2001); Bozzi, Catani, de Florian, Grazzini (2006)]
 - * Threshold resummation including collinear radiation. [Sterman (1987); Catani, Trentadue (1989, 1991); Krämer, Laenen, Spira (1998); Catani, de Florian, Grazzini (2001)]
 - * Universal joint resummation. [Laenen, Sterman, Vogelsang (2001); Kulesza, Sterman,
 Vogelsang (2002, 2004); Bozzi, BF, Klasen (in prep.)]

The finite component: matching procedure

- Fixed-order theory
 - * Reliable far from the critical kinematical regions ($z \ll 1$, $q_T \gg 0$).
 - * Spoiled in the critical regions ($z \sim 1$, $q_T \sim 0$).
- Resummation

Introduction

- * Needed in the critical regions.
- * Not justified far from the critical regions.
- Both contributions important in the intermediate kinematical regions.
- Information from both fixed-order and resummation needed.
- Need to avoid double-counting.
- Consistent matching procedure required:

$$d\sigma^{(fin)} = d\sigma^{(f.o.)} - d\sigma^{(exp)}$$

Invariant-mass spectrum

$$\begin{array}{lll} \frac{\mathrm{d}\sigma}{\mathrm{d}M^{2}}(\tau,M) & = & \frac{\mathrm{d}\sigma^{(\mathrm{F.O.})}}{\mathrm{d}M^{2}}(\tau,M) \\ & + & \oint_{C_{N}} \frac{\mathrm{d}N}{2\pi i} \, \tau^{-N} \Big[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}M^{2}}(N,M) - \frac{\mathrm{d}\sigma^{(\mathrm{exp})}}{\mathrm{d}M^{2}}(N,M) \Big]. \end{array}$$

Transverse-momentum spectrum

$$\begin{array}{lcl} \frac{\mathrm{d}^2\sigma}{\mathrm{d}M^2\,\mathrm{d}q_T^2}(\tau,M,q_T) & = & \frac{\mathrm{d}^2\sigma^{(\mathrm{F.O.})}}{\mathrm{d}M^2\,\mathrm{d}q_T^2}(\tau,M,q_T) \\ & + & \oint_{\mathcal{C}_N} \frac{\mathrm{d}N}{2\pi i}\,\tau^{-N}\int \frac{b\mathrm{d}b}{2}J_0(q_T\,b) \left[\frac{\mathrm{d}^2\sigma^{(\mathrm{res})}}{\mathrm{d}M^2\,\mathrm{d}q_T^2}(N,b) - \frac{\mathrm{d}^2\sigma^{(\mathrm{exp})}}{\mathrm{d}M^2\,\mathrm{d}q_T^2}(N,b) \right]. \end{array}$$

- * Far from the critical regions, $d\sigma^{(res)} \approx d\sigma^{(exp)} \Rightarrow \text{Perturbative theory.}$
- * In the critical regions, $d\sigma^{(F.O.)} \approx d\sigma^{(\exp)} \Rightarrow \text{Pure resummation}$.
- * In the intermediate regions ⇒ Consistent matching.

- - Main features of the resummation.
 - The resummed component
 - Matching procedure
- **Applications**
 - q_T-distribution
 - Invariant-mass distribution
 - Total cross sections

q_T -distribution at the LHC

- * SPS1a and BFHK-B SUSY scenarios (slepton masses \approx 100-200 GeV).
- * Finite results at small q_T ; enhancement at intermediate q_T ; finite total σ .
- * Improvement of scale dependences: (NLL+F.O. ≤ 5%; F.O. 10%).
- * Effects of the threshold-enhanced contributions in the intermediate- q_T region.

Invariant-mass distribution at the LHC

[Bozzi, BF, Klasen (2007; in prep.)]

- * SPS1a and BFHK-B SUSY scenarios (slepton masses \approx 100-200 GeV).
- * Normalization to LO cross section.
- * Small $M: d\sigma^{(res)} \approx d\sigma^{(exp)}$; Large $M: d\sigma^{(F.O.)} \approx d\sigma^{(exp)}$.
- Reduced SUSY-loop effects.
- Joint-exponent reproduces q_T-exponent.
 ⇒ some differences with threshold-resummation (however under control).

- * SPS7 slope.
- * NLO and threshold-resummation effects important.
- * Resummation more important for heavier sleptons.
- * Shift in $m_{\tilde{e}_t}$ if deduced from total σ measurement.

Outlook

- - Main features of the resummation
 - The resummed component
 - Matching procedure
- - Invariant-mass distribution
 - Total cross sections
- Summary and outlook

Conclusion and outlook

- Full NLO SUSY-QCD calculations, including squark mixing.
- Threshold, q_T and joint resummations.
- Comparison with the Monte Carlo approach.
- Study of other SUSY particle production processes.