Transverse-momentum, threshold and joint resummation for slepton-pair production at hadron colliders

Benjamin Fuks (LPSC Grenoble)

in collaboration with Giuseppe Bozzi and Michael Klasen

SUSY 07

Karlsruhe (Germany), July 27, 2007

Outline

1) Introduction and motivations
(2) Resummation formalisms

- Main features of the resummation
- The resummed component
- Matching procedure
(3) Applications
- q_{T}-distribution
- Invariant-mass distribution
- Total cross sections

4 Summary and outlook

Outline

(1) Introduction and motivations

Resummation formalisms

- Main features of the resummation
- The resummed component
- Matching procedure
(3) Applications
- q_{T}-distribution
- Invariant-mass distribution
- Total cross sections

4 Summary and outlook

Slepton-pair production at hadron colliders

- Drell-Yan like process

$$
q \bar{q} \rightarrow \gamma, Z^{0} \rightarrow \tilde{I}_{i} \tilde{I}_{j}^{*} \quad \text { and } \quad q \bar{q}^{\prime} \rightarrow W^{\mp} \rightarrow \tilde{I}_{i} \tilde{\nu}_{l}^{*}+c . c .
$$

- Sleptons are often light \Rightarrow decays into LSP + SM lepton \Rightarrow clean signal.
- Cross sections given by

$$
\sigma=\sum_{a, b} \int_{\tau}^{1} \mathrm{~d} x_{a} \int_{\tau / x_{a}}^{1} \mathrm{~d} x_{b} f_{a / h_{1}}\left(x_{a}, \mu_{F}\right) f_{b / h_{2}}\left(x_{b}, \mu_{F}\right) \hat{\sigma}_{a b}\left(z, M ; \alpha_{s}\left(\mu_{R}\right), \frac{M}{\mu_{F}}, \frac{M}{\mu_{R}}\right)
$$

where $\hat{\sigma}_{a b}$ is computed perturbatively

$$
\hat{\sigma}_{a b}\left(z, M ; \alpha_{s}\left(\mu_{R}\right), \frac{M}{\mu_{F}}, \frac{M}{\mu_{R}}\right)=\sum_{n=0}^{\infty}\left(\frac{\alpha_{s}\left(\mu_{R}\right)}{\pi}\right)^{n} \hat{\sigma}_{a b}^{(n)}\left(z, M ; \frac{M}{\mu_{F}}, \frac{M}{\mu_{R}}\right) .
$$

Next-to-leading order calculations

- Feynman diagrams:

- Squark mixing included in the SUSY-loops.
- Partonic invariant-mass and transverse-momentum distributions at $\mathcal{O}\left(\alpha_{s}\right)$:

$$
\begin{aligned}
\frac{\mathrm{d} \hat{\sigma}_{a b}}{\mathrm{~d} M^{2}} & =\hat{\sigma}_{a b}^{(0)}(M) \delta(1-z)+\frac{\alpha_{s}}{\pi} \hat{\sigma}_{a b}^{(1)}(M, z)+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
\frac{\mathrm{d}^{2} \hat{\sigma}_{a b}}{\mathrm{~d} M^{2} \mathrm{~d} q_{T}^{2}} & =\hat{\sigma}_{a b}^{(0)}(M) \delta\left(q_{T}^{2}\right) \delta(1-z)+\frac{\alpha_{s}}{\pi} \hat{\sigma}_{a b}^{(1)}\left(M, z, q_{T}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

where $z=M^{2} / s$.

q_{T} and invariant-mass distributions

- Soft and collinear radiations:
* $\frac{\alpha_{s}^{n}}{q_{T}^{2}} \ln ^{m} \frac{M^{2}}{q_{T}^{2}}$ or $\alpha_{s}^{n}\left(\frac{\ln ^{m}(1-z)}{1-z}\right)_{+}$terms in the distributions $(m \leq 2 n-1)$.
* Large at small q_{T} or $z \lesssim 1$.
* Fixed-order theory unreliable in these kinematical regions.
* Resummation to all orders needed.
$\Rightarrow q_{T}$-resummation.
\Rightarrow Threshold resummation.
\Rightarrow Joint resummation.
- Advantages of resummation:
* Reliable perturbative results.
* Correct quantification of these radiations (even far from critical regions).
* Accurate invariant-mass and q_{T} spectra.
q_{T}-distribution \Rightarrow stransverse mass \Rightarrow spin and mass determination.
[Lester, Summers (1999); Barr (2006)]
M-distribution and total cross section \Rightarrow accurate mass determination.
[Bozzi, BF, Klasen (2007)]

Outline

Introduction and motivations

(2) Resummation formalisms

- Main features of the resummation
- The resummed component
- Matching procedureApplications
- q_{T}-distribution
- Invariant-mass distribution
- Total cross sectionsSummary and outlook

Main features of the resummation

Reorganization of the cross section

$$
\mathrm{d} \sigma=\mathrm{d} \sigma^{(\mathrm{res})}+\mathrm{d} \sigma^{(\mathrm{fin})}
$$

- $\mathrm{d} \sigma^{\text {(res) }}$
* Contains all the logarithmic terms.
* Resummed to all orders in α_{s}.
* Exponentiation (Sudakov form factor).
- $\mathrm{d} \sigma^{(\mathrm{fin})}$
* Remaining contributions.

The resummed component: conjugate spaces

- Conjugate spaces: Mellin, impact-parameter \Rightarrow kinematics naturally factorizes.
- Factorization of the hadronic cross sections:

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma^{(\mathrm{res})}}{\mathrm{d} M^{2}}(\tau, M)=\sum_{a, b} \int_{\tau}^{1} \mathrm{~d} x_{a} \int_{\tau / x_{a}}^{1} \mathrm{~d} x_{b} f_{a / h_{1}}\left(x_{a}, \mu_{F}\right) f_{b / h_{2}}\left(x_{b}, \mu_{F}\right) \hat{\sigma}_{a b}^{(\mathrm{res})}\left(z ; \alpha_{s}\left(\mu_{R}\right), \frac{M}{\mu_{F}}, \frac{M}{\mu_{R}}\right) \\
& \quad \Downarrow \\
& \frac{\mathrm{d} \sigma^{(\mathrm{res})}}{\mathrm{d} M^{2}}(N, M)=\sum_{a, b} f_{a / h_{1}}\left(N+1, \mu_{F}\right) f_{b / h_{2}}\left(N+1, \mu_{F}\right) \hat{\sigma}_{a b}^{(\mathrm{res})}\left(N ; \alpha_{s}, \frac{M}{\mu_{R}}, \frac{M}{\mu_{F}}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \sigma(\mathrm{res})}{\mathrm{d} M^{2} \mathrm{~d} q_{T}^{2}}\left(\tau, M, q_{T}\right)=\sum_{a, b} \int_{\tau}^{1} \mathrm{~d} x_{a} \int_{\tau / x_{a}}^{1} \mathrm{~d} x_{b} f_{a / h_{1}}\left(x_{a}, \mu_{F}\right) f_{b / h_{2}}\left(x_{b}, \mu_{F}\right) \hat{\sigma}_{a b}^{(\mathrm{res})}\left(z, q_{T} ; \alpha_{s}\left(\mu_{R}\right), \frac{M}{\mu_{F}}, \frac{M}{\mu_{R}}\right) \\
& \frac{\mathrm{d}^{2} \sigma(\mathrm{res})}{\mathrm{d} M^{2} \mathrm{~d} q_{T}^{2}}\left(N, M, q_{T}\right)=\sum_{a, b} f_{a / h_{1}}\left(N+1, \mu_{F}\right) f_{b / h_{2}}\left(N+1, \mu_{F}\right) \int \frac{b}{2} \mathrm{~d} b J_{0}\left(b q_{T}\right) \mathcal{W}_{a b}^{F}\left(N, b ; \alpha_{s}, \frac{M}{\mu_{R}}, \frac{M}{\mu_{F}}\right) .
\end{aligned}
$$

- The logarithms are included in the functions $\hat{\sigma}^{(\text {res })}$ and \mathcal{W}^{F} :

$$
\left(\frac{\ln (1-z)}{1-z}\right)_{+} \rightarrow \ln ^{2} \bar{N} \text { with } \bar{N}=N \exp \left[\gamma_{E}\right] \quad \frac{1}{q_{T}^{2}} \ln \frac{M^{2}}{q_{T}^{2}} \rightarrow \ln \bar{b}^{2} \quad \text { with } \bar{b}=\frac{b M}{2} \exp \left[\gamma_{E}\right]
$$

The resummed component: the partonic cross section

- The process-dependence is factorized outside the exponent:

$$
\begin{aligned}
\mathcal{W}_{a b}^{F}(N, b) & =\mathcal{H}_{a b}^{F}(N) \exp \{\mathcal{G}(N, b)\} \\
\hat{\sigma}_{a b}^{(\text {res })}(N) & =\sigma^{(L O)} \tilde{C}_{a b}\left(N ; \alpha_{s}\right) \exp \{\mathcal{G}(N, L)\}
\end{aligned}
$$

- \mathcal{H}^{F} - and $\tilde{C}_{\text {-functions: }}$
* Can be computed perturbatively and are process-dependent.
* Contain real and virtual collinear radiation, and hard contributions.
- The Sudakov form factor contains the soft-collinear radiation:
* Can be computed perturbatively and is process-independent.
- Used formalisms:
* Universal q_{T}-resummation. [Catani, de Florian, Grazzini (2001); Bozzi, Catani, de Florian, Grazzini (2006)]
* Threshold resummation including collinear radiation. [Sterman (1987); Catani, Trentadue (1989, 1991); Krämer, Laenen, Spira (1998); Catani, de Florian, Grazzini (2001)]
* Universal joint resummation. [Laenen, Sterman, Vogelsang (2001); Kulesza, Sterman, Vogelsang (2002, 2004); Bozzi, BF, Klasen (in prep.)]

The finite component: matching procedure

- Fixed-order theory
* Reliable far from the critical kinematical regions $\left(z \ll 1, q_{T} \gg 0\right)$.
* Spoiled in the critical regions $\left(z \sim 1, q_{T} \sim 0\right)$.
- Resummation
* Needed in the critical regions.
* Not justified far from the critical regions.
- Both contributions important in the intermediate kinematical regions.
- Information from both fixed-order and resummation needed.
- Need to avoid double-counting.
- Consistent matching procedure required:

$$
\mathrm{d} \sigma^{(\mathrm{fin})}=\mathrm{d} \sigma^{(\mathrm{f} . \mathrm{o} .)}-\mathrm{d} \sigma^{(\exp)} .
$$

Summary: complete resummation formulae

- Invariant-mass spectrum

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} M^{2}}(\tau, M) & =\frac{\mathrm{d} \sigma^{(\mathrm{F} . \mathrm{O} .)}}{\mathrm{d} M^{2}}(\tau, M) \\
& +\oint_{C_{N}} \frac{\mathrm{~d} N}{2 \pi i} \tau^{-N}\left[\frac{\mathrm{~d} \sigma^{(\mathrm{res})}}{\mathrm{d} M^{2}}(N, M)-\frac{\mathrm{d} \sigma^{(\exp)}}{\mathrm{d} M^{2}}(N, M)\right]
\end{aligned}
$$

- Transverse-momentum spectrum

$$
\begin{aligned}
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} M^{2} \mathrm{~d} q_{T}^{2}}\left(\tau, M, q_{T}\right) & =\frac{\mathrm{d}^{2} \sigma(\mathrm{~F} \cdot \mathrm{O} \cdot)}{\mathrm{d} M^{2} \mathrm{~d} q_{T}^{2}}\left(\tau, M, q_{T}\right) \\
& +\oint_{C_{N}} \frac{\mathrm{~d} N}{2 \pi i} \tau^{-N} \int \frac{b \mathrm{~d} b}{2} J_{0}\left(q_{T} b\right)\left[\frac{\mathrm{d}^{2} \sigma^{(\mathrm{res})}}{\mathrm{d} M^{2} \mathrm{~d} q_{T}^{2}}(N, b)-\frac{\mathrm{d}^{2} \sigma^{2}(\exp)}{\mathrm{d} M^{2} \mathrm{~d} q_{T}^{2}}(N, b)\right] .
\end{aligned}
$$

* Far from the critical regions, $\mathrm{d} \sigma^{(\mathrm{res})} \approx \mathrm{d} \sigma^{(\exp)} \Rightarrow$ Perturbative theory.
* In the critical regions, $\mathrm{d} \sigma^{(\mathrm{F} . \mathrm{O} .)} \approx \mathrm{d} \sigma^{(\exp)} \Rightarrow$ Pure resummation.
* In the intermediate regions \Rightarrow Consistent matching.

Outline

Introduction and motivationsResummation formalisms

- Main features of the resummation
- The resummed component
- Matching procedure
(3) Applications
- q_{T}-distribution
- Invariant-mass distribution
- Total cross sections
(4) Summary and outlook

q_{T}-distribution at the LHC

[Bozzi, BF, Klasen (2006; in prep.)]

* SPS1a and BFHK-B SUSY scenarios (slepton masses $\approx 100-200 \mathrm{GeV}$).
* Finite results at small q_{T}; enhancement at intermediate q_{T}; finite total σ.
* Improvement of scale dependences: (NLL+F.O. $\lesssim 5 \%$; F.O. 10\%).
* Effects of the threshold-enhanced contributions in the intermediate- q_{T} region.

Invariant-mass distribution at the LHC

[Bozzi, BF, Klasen (2007; in prep.)]

* SPS1a and BFHK-B SUSY scenarios (slepton masses $\approx 100-200 \mathrm{GeV}$).
* Normalization to LO cross section.
* Small $M: \mathrm{d} \sigma^{(\text {res })} \approx \mathrm{d} \sigma^{(\exp)} ;$ Large $M: \mathrm{d} \sigma^{(\mathrm{F} . \mathrm{O} .)} \approx \mathrm{d} \sigma^{(\exp)}$.
* Reduced SUSY-loop effects.
* Joint-exponent reproduces q_{T}-exponent.
\Rightarrow some differences with threshold-resummation (however under control).

Threshold-resummed total cross sections at the Tevatron

[Bozzi, BF, Klasen (2007)]

* SPS7 slope.
* NLO and threshold-resummation effects important.
* Resummation more important for heavier sleptons.
* Shift in $m_{\tilde{e}_{L}}$ if deduced from total σ measurement.

Outline

Introduction and motivationsResummation formalisms

- Main features of the resummation
- The resummed component
- Matching procedure
(3) Applications
- q_{T}-distribution
- Invariant-mass distribution
- Total cross sections

4 Summary and outlook

Conclusion and outlook

- Full NLO SUSY-QCD calculations, including squark mixing.
- Threshold, q_{T} and joint resummations.
- Comparison with the Monte Carlo approach.
- Study of other SUSY particle production processes.

