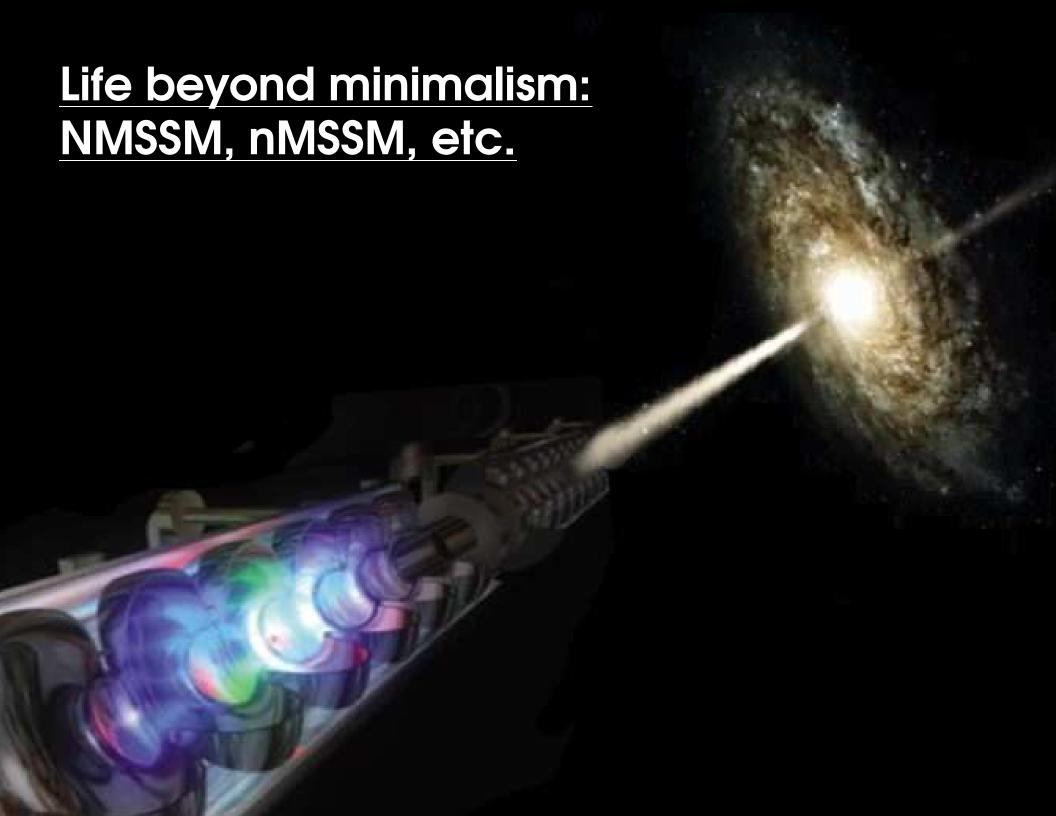
Connections between colliders and cosmology in the nMSSM A Freitos

A. Freitas
University Zürich

based on:

C. Balász, M. Carena, A. Freitas, C. Wagner, JHEP 06 (2007) 066

What comes next? - The nMSSM, colliders and cosmology


A. Freitas

University Zürich

based on:

C. Balász, M. Carena, A. Freitas, C. Wagner, JHEP 06 (2007) 066

- Life beyond minimalism: NMSSM, nMSSM, etc.
- 2. nMSSM at colliders
- 3. Connection to cosmology

MSSM with additional singlet

$$W = \lambda \hat{S} \hat{H}_1 \cdot \hat{H}_2 + \kappa \hat{S}^3 + m_N \hat{S}^3 + m_{12}^2 / \lambda \hat{S} + \text{Yukawa terms}$$

■ Solve μ -problem:

Effective μ -term through VEV of S: $\mu_{\text{eff}} = -\lambda \langle S \rangle$

Evade LEP-Higgs bounds

→ coupling allows heavier CP-even Higgs masses than MSSM

$$m_{\rm h}^2 \le M_{\rm Z}^2 (\cos^2 2\beta + \frac{2\lambda^2}{g^2 + g'^2} \sin^2 2\beta)$$

Strong 1st order electroweak phase transition

Triple-Higgs coupling λ already at tree-level

Electroweak Baryogenesis

Sakharov conditions:

	SM	NMSSM
Baryon number violation	Non-perturbative sphaleron processes	
C and CP violation	CKM phase → too small	Soft SUSY breaking e.g. gaugino masses M_i
Non-equilibrium	Strong electrowe only for $M_{ m H}\lesssim$ 40 GeV	ak phase transition also for $M_{ m H}>100$ GeV due to Higgs self-coupl.

$$W = \lambda \hat{S} \hat{H}_1 \cdot \hat{H}_2 + \kappa \hat{S}^3 + m_N \hat{S}^3 + m_{12}^2 / \lambda \hat{S} + \text{ Yukawa terms}$$

NMSSM	nMSSM
$\mathbb{Z}_3 \subset U(1)_{PQ}$ symmetry	\mathbb{Z}_5^R or \mathbb{Z}_7^R symmetry
$m_{\rm N} = 0$, $m_{12} = 0$	$m_{ m N}=0$, $\kappa=0$ $m_{ m 12}$ at higher loop order
Domain walls from $\langle S \rangle$	Subgroups of $U(1)_{\mbox{PQ}}$ broken by m_{12}

■ New parameters in nMSSM compared to MSSM:

S	uperpotential	SUSY breaking	Higgs states
	λ	a_{λ}	
	m_{12}	t_{S}	$m_{ extsf{12}} o M_{ extsf{A}}$
		m_s^2	$m_S \to v_S = \langle S \rangle$

Dark matter and nMSSM

With R-parity conservation LSP becomes stable

In nMSSM LSP is lightest neutralino $\tilde{\chi}^0_1$

→ good dark matter candidate

- $Z\tilde{\chi}_1^0\tilde{\chi}_1^0$ coupling suppressed \rightarrow Evade LEP1 bounds
- For $m_{\tilde{\chi}_1^0} \sim M_Z/2$: efficient annihilation through Z resonance
 - ightarrow Good agreement with observed Ω_{CDM}

Lightest neutralino $\tilde{\chi}_1^0$ is mainly singlino and $m_{\tilde{\chi}_1^0} \ll M_{\rm Z}$

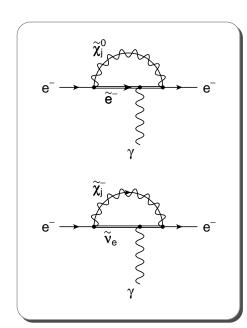
Constraints from CDM density and LEP force

$$\tan \beta \sim \mathcal{O}(1)$$
 $\lambda = 0.5...0.8$ $|\mu| = |\lambda v_s| = 100...350$ GeV (upper bound on λ from perturbativity)

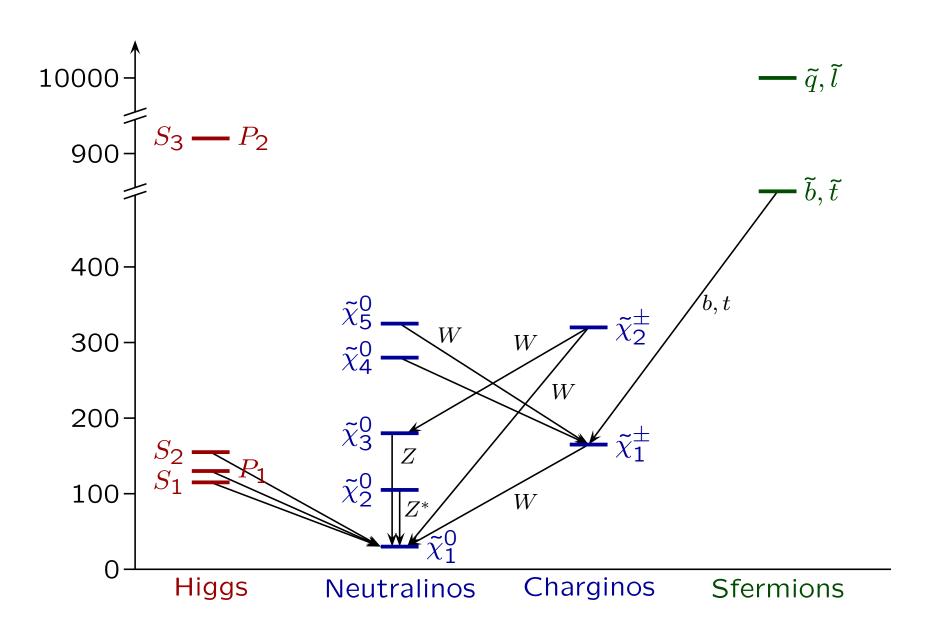
Requirement of strong electroweak phase transition for baryogenesis

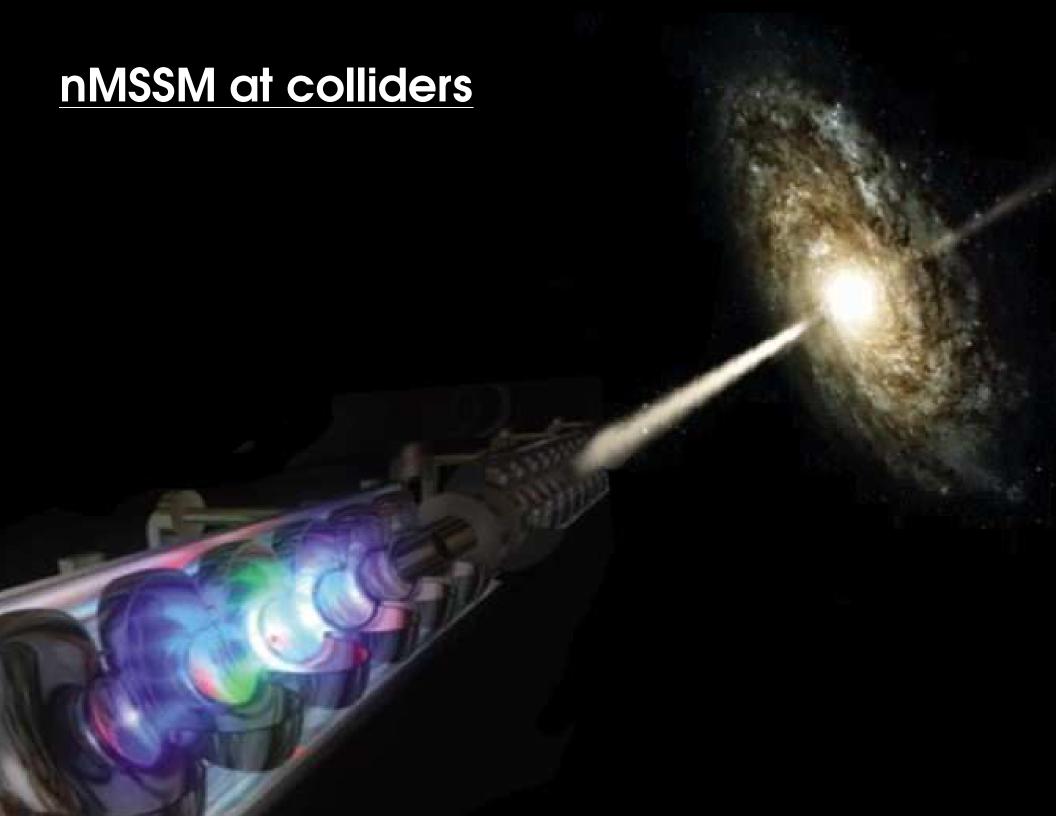
$$a_{\lambda} = 300...600 \text{ GeV}$$
 $t_s = (50...200 \text{ GeV})^3$

Typical parameter point:


$$v_s = -384 \text{ GeV}$$
 $a_{\lambda} = 373 \text{ GeV}$ $\tan \beta = 1.7$ $\lambda = 0.62$ $t_s = (157 \text{ GeV})^3$ $M_{\text{A}} = 923 \text{ GeV}$ $|M_2| = 245 \text{ GeV}$ $\phi_{\mu M_2} = 0.14$

Spectrum


- 1st/2nd gen. sfermions heavy (few TeV) to avoid EDM constraints
- $lue{}$ 3rd generation sfermions at \sim 500 GeV for baryogenesis and Higgs naturalness
- lacktriangle All neutralinos/charginos have $m < 500 \ \mathrm{GeV}$ Mainly decay through gauge bosons
- 3 CP-even Higgs states $S_{1,2,3}$ 2 CP-odd Higgs states $P_{1,2}$



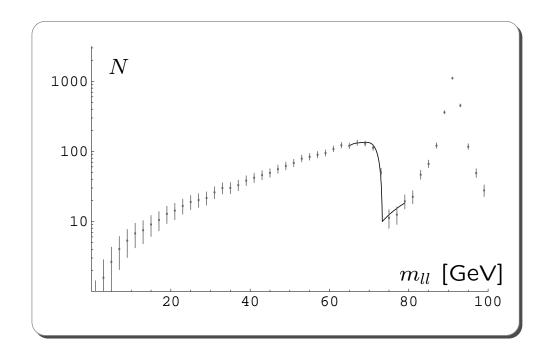
$$\rightarrow BR(S_1, S_2, P_1 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0) > 90\%$$

Spectrum

nMSSM at LHC

■ Invisible Higgs(es) can be seen, but mass measurement difficult

Choudhury, Roy '94


Eboli, Zeppenfeldt '00

Neutralinos produced in stop/sbottom cascades

e.g.
$$\tilde{g} \to b \, \tilde{b}^* \to b \bar{b} \, \tilde{\chi}_2^0 \to b \bar{b} \, l^+ l^- \, \tilde{\chi}_1^0$$

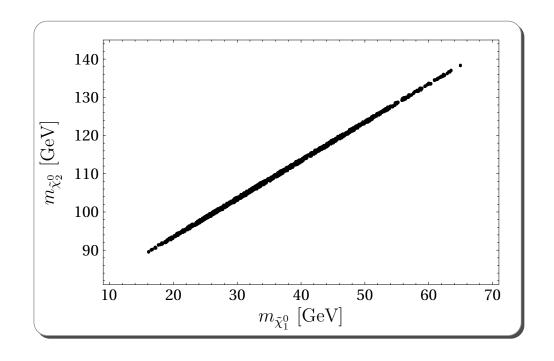
Mass measurements in invariant mass distributions

→ Good determination of mass differences

nMSSM at LHC

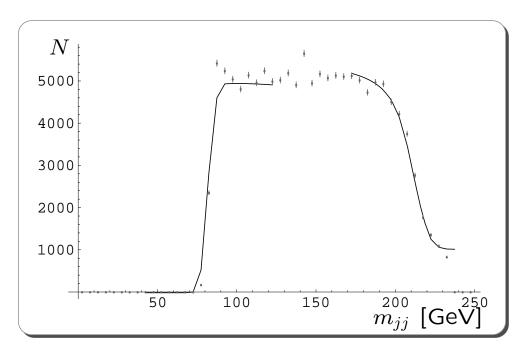
■ Invisible Higgs(es) can be seen, but mass measurement difficult

Choudhury, Roy '94


Eboli, Zeppenfeldt '00

Neutralinos produced in stop/sbottom cascades

e.g.
$$\tilde{g} \to b \, \tilde{b}^* \to b \bar{b} \, \tilde{\chi}_2^0 \to b \bar{b} \, l^+ l^- \, \tilde{\chi}_1^0$$


Mass measurements in invariant mass distributions

- → Good determination of mass differences

nMSSM at ILC

- Many SUSY particles could be discovered at 500 GeV ILC
- Reduction of SM backgrounds possible with few cuts
- Kinematic edges in energy distributions allow sparticle mass measurement

Ex.:
$$e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^-, \quad \tilde{\chi}_1^+ \to W^+ \tilde{\chi}_1^0 \to jj \, \tilde{\chi}_1^0$$

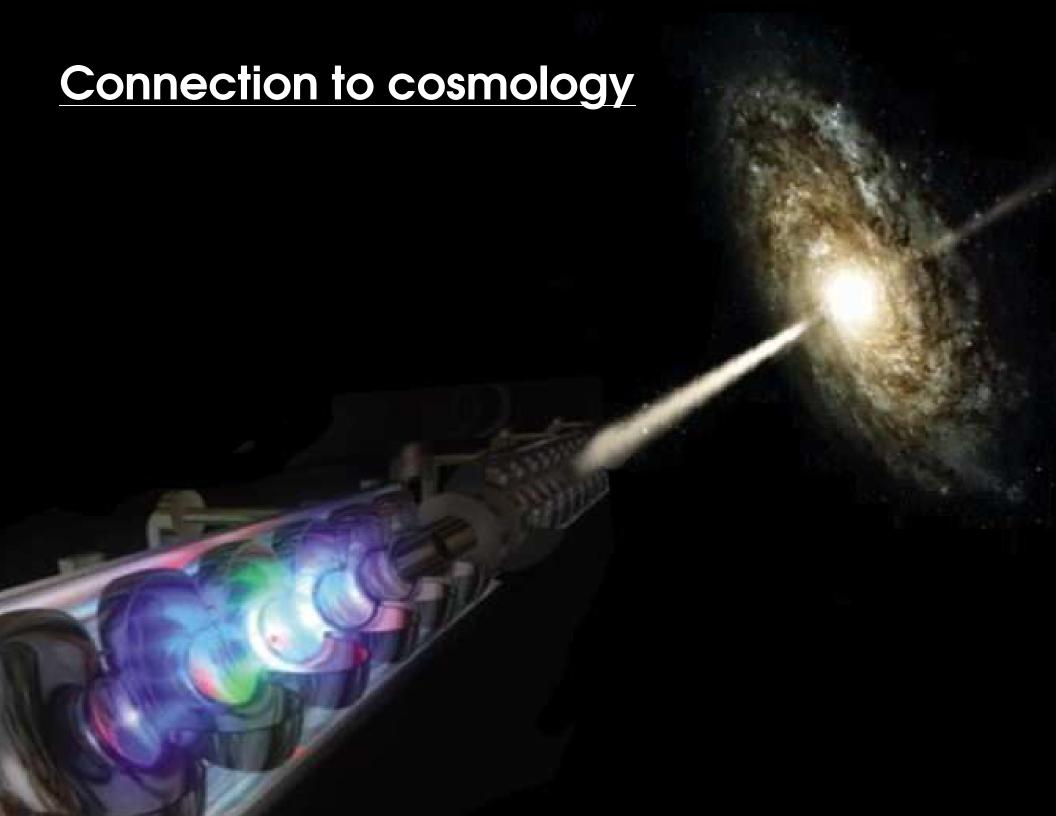
nMSSM at ILC

- Two (invisible) scalar Higgs bosons S_1 and S_2 can be found and measured th rough $e^+e^- \to Z\,S_k$
- \blacksquare At ILC with $\sqrt{s}=500$ GeV charginos and neutralinos can be precisely measured similar to MSSM

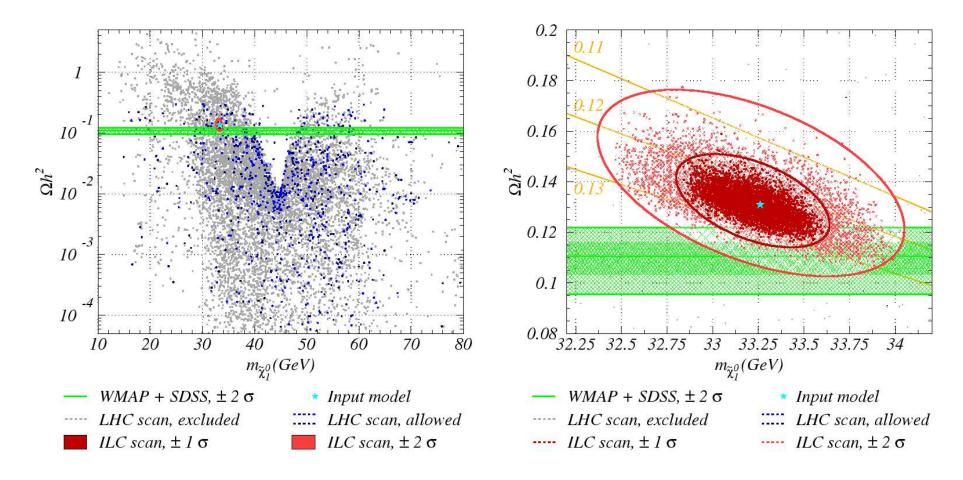
	$ ilde{\chi}_1^0$	$ ilde{\chi}_2^0$	$ ilde{\chi}^0_3$	$ ilde{\chi}_{4}^{0}$	$ ilde{\chi}_1^\pm$	$ ilde{\chi}_2^\pm$
\overline{m}	33	107	182	278	165	320 GeV
δm	0.4	1.2	5	3.5	0.05	5.5 GeV

Discovery of two neutralino states with $m_{\tilde{\chi}_{1,2}^0} \ll m_{\tilde{\chi}_1^\pm}$ immediately tells $> {\rm MSSM}$

Allows prediction for CDM abundance and consistency-check for baryogenesis

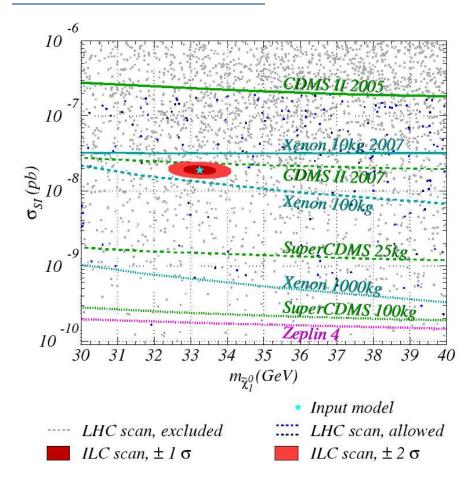

Interpretation of results

Fundamental parameters from neutralino/chargino maesurements:

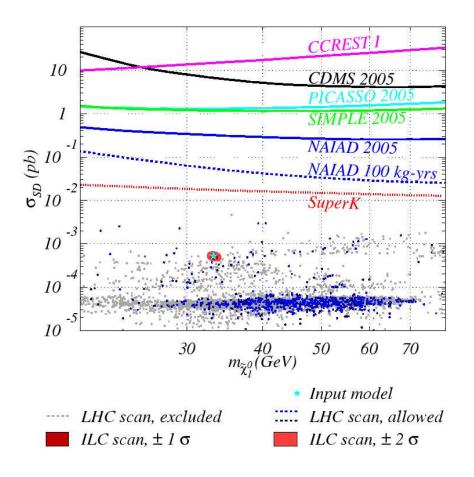

$$M_1 = (122.5 \pm 1.3) \; {
m GeV}, \qquad |\kappa| < 2.0 \; {
m GeV}, \qquad m_{\widetilde{
u}_{
m e}} > 5 \; {
m TeV}, \ M_2 = (245.0 \pm 0.7) \; {
m GeV}, \qquad an eta = 1.7 \pm 0.09, \qquad m_{\widetilde{e}_{
m R}} > 1 \; {
m TeV}. \ |\lambda| = 0.619 \pm 0.007, \qquad |\phi_M| < 0.32, \ v_{
m S} = (-384 \pm 4.8) \; {
m GeV},$$

- Higgs triple coupling can be measured precisely
- Absence of cubic singlet self-coupling can be tested (nMSSM ↔ NMSSM)

$$M_{\tilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & \mathcal{O}(v) & \mathcal{O}(v) & 0\\ 0 & M_2 & \mathcal{O}(v) & \mathcal{O}(v) & 0\\ \mathcal{O}(v) & \mathcal{O}(v) & 0 & \boldsymbol{\lambda} v_s & \mathcal{O}(v)\\ \mathcal{O}(v) & \mathcal{O}(v) & \boldsymbol{\lambda} v_s & 0 & \mathcal{O}(v)\\ 0 & 0 & \mathcal{O}(v) & \mathcal{O}(v) & \kappa \end{pmatrix}$$



Dark matter density projection from simulation


- LHC does not tell much
- ILC allows computation with precision comparable to WMAP

Direct detection

- Large singlino component of $\tilde{\chi}_1^0$: Spin-independent cross-section is sizeable due to singlet-Higgs coupling λ
 - Spin-dependent cross-section is very small
- Next generation SI experiments can probe this scenario

Direct detection

• Large singlino component of $\tilde{\chi}_1^0$: Spin-independent cross-section is sizeable due to singlet-Higgs coupling λ

Spin-dependent cross-section is very small

 Next generation SI experiments can probe this scenario

Testing electroweak baryogenesis

- Neutralino/chargino parameters allow to extract some parameters
- More information from Higgs masses:

$$M_{S1} = 115.2 \pm 0.13$$
 GeV, $M_{S2} = 156.6 \pm 0.19$ GeV

Mass matrix of CP-even Higgs bosons gets large corrections:

$$M_S^2 = M_{S,\text{tree}}^2 + \Delta M_S^2$$

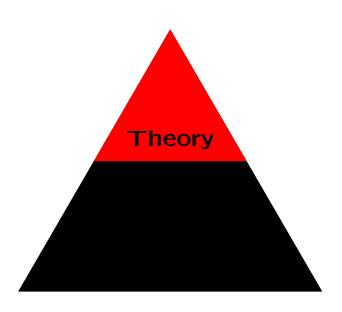
Leading contributions from t/\tilde{t} loops, e.g.

$$\Delta M_{S,11}^2 pprox rac{3}{8\pi^2} rac{m_{
m t}^4}{v^2} \log rac{m_{ ilde{t}_1}^2 m_{ ilde{t}_2}^2}{m_{
m t}^4}$$

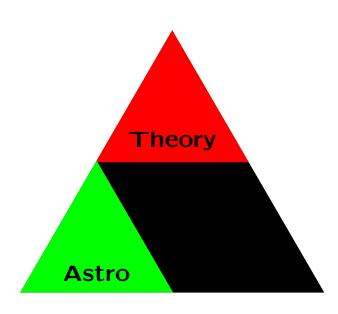
In general very complicated, depends on stop mixing, A_{t}

Assumptions: $\delta m_{\tilde{t}} = 50$ GeV (no simulations for LHC available) $A_{\rm t} \lesssim 500$ GeV (from small stop mass difference)

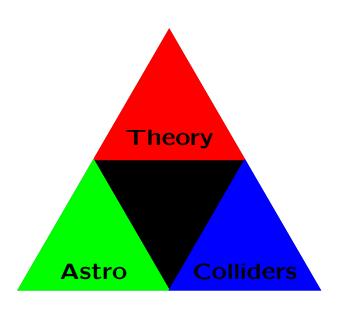
Testing electroweak baryogenesis

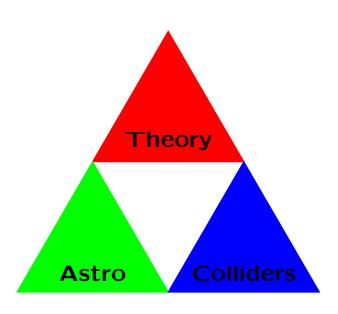

- Neutralino/chargino parameters allow to extract some parameters
- More information from Higgs masses:

$$M_{S1} = 115.2 \pm 0.13$$
 GeV, $M_{S2} = 156.6 \pm 0.19$ GeV


Parameter	Input value	Expected constraints	Range preferred
		from ILC	by baryogenesis
m_s	106.5 GeV	$88 < m_s < 122$	$50 \lesssim m_s \lesssim 200$
a_{λ}	373 GeV	$352 < a_{\lambda} < 390$	$300 \lesssim a_{\lambda} \lesssim 600$
$t_s^{1/3}$	157 GeV	$117 < t_s^{1/3} < 181$	$50 \lesssim t_s^{1/3} \lesssim 200$

 Constraints from experiment not very precise (mainly from loop corrections)
 but sufficient to test conditions for EWBG


- The nMSSM is an appealing framework for
 - Explaining the origin of matter and dark matter
 - lacktriangle Solving the μ problem
 - Avoiding fine-tuning in the Higgs sector


- The nMSSM is an appealing framework for
 - Explaining the origin of matter and dark matter
 - lacktriangle Solving the μ problem
 - Avoiding fine-tuning in the Higgs sector
- Astrophysical constraints restrict the allowed parameters, but the underlying fabric can only be unveiled by collider experiments

- The nMSSM is an appealing framework for
 - Explaining the origin of matter and dark matter
 - lacktriangle Solving the μ problem
 - Avoiding fine-tuning in the Higgs sector
- Astrophysical constraints restrict the allowed parameters, but the underlying fabric can only be unveiled by collider experiments
- Collider experiments can explore
 - The new particle zoo
 - The validity of SUSY dark matter
 - The ingredients for baryogenesis

- The nMSSM is an appealing framework for
 - Explaining the origin of matter and dark matter
 - lacktriangle Solving the μ problem
 - Avoiding fine-tuning in the Higgs sector
- Astrophysical constraints restrict the allowed parameters, but the underlying fabric can only be unveiled by collider experiments
- Collider experiments can explore
 - The new particle zoo
 - The validity of SUSY dark matter
 - The ingredients for baryogenesis

