Leptonic B Decays at BaBar ## Guglielmo De Nardo University and INFN Napoli On the behalf of the BaBar collaboration 15th International Conference on Supersymmetry and the Unification of Fundamental Interactions #### **Outline** #### Recent results from the BaBar collaboration - $B \rightarrow \tau \nu$ - Semileptonic tag analysis - Hadronic tag analysis - **■ B → K**τμ - B \rightarrow $\ell^+\ell^-\gamma$ ## B→lv decays #### In the Standard Model $$\mathcal{B}_{SM}(\mathbf{B} \to \tau \mathbf{v}) = \frac{G_F m_B}{8\pi} m_{\tau}^2 (1 - \frac{m_{\tau}}{m_B^2}) f_B^2 |V_{ub}|^2 \tau_B$$ helicity suppression We can extract $f_B \times |Vub|$ from BF measurement $\mathcal{B}_{SM}(B \to \tau \nu)$ in the range [0.7,1.6]x10⁻⁴ depending f_B and |Vub| used. UTFit collaboration predicts (0.85 \pm 0.11) x10⁻⁴ using all experimental constraints available and indirectly determining f_B (i.e. not from lattice QCD) #### Beyond the Standard Model - Charged Higgs mediated amplitude in 2HDM - •See for example: W.Hou, Phys. Rev. D. 48, 2342 - Branching Fraction enhanced or suppressed - constrain the $(m_{H+}, tan\beta)$ parameter space Charged Higgs mass ## B > τν experimental challenges $$\mathcal{B}^{SM}(B \rightarrow \tau \nu) \sim 10^{-4}$$ $\mathcal{B}^{SM}(B \rightarrow \mu \nu) \sim 10^{-7}$ $\mathcal{B}^{SM}(B \rightarrow e \nu) \sim 10^{-10}$ $B \rightarrow \tau \nu$ helicity favored but experimentally more difficult #### Main τ decay modes: - \sim 71% of the total τ decays - •Final state contains: - •1 track (+ 1 π^0 in the ρ channel) - 2-3 neutrinos - Not many kinematical constraints - Cleaning the experimental environment helps - Reconstructing the other B (tag B) of the event - Look for the signal in the rest of the event ## Tag technique #### •Hadronic: #### Two tag methods - ■Tag B⁻ \rightarrow D^{(*)0} $n_1\pi^{\pm}$, n_2K^{\pm} , $n_3K^0_s$, $n_4\pi^0$ (n₁ +n₂ <= 5; n₃<=2; n₄<=2) - Full reconstruction of B decays - Use of beam energy constraints to check the tag B candidate consistency $$m_{ES} = \sqrt{(E^*_{beam})^2 - (p^*_B)^2}$$ $$\Delta E = E_B - E^*_{beam}$$ Higher purity but lower statistics #### Semileptonic: - ■Tag B→ $D^{(*)0}$ ℓν(ℓ = e, μ) - High semileptonic BFs - Partial reconstruction (additional neutrino) - Higher statistics but lower purity Look for signal in the rest of the event ## B > τν with semileptonic tag - Tagged 2.5 x10⁶ B mesons ($\varepsilon^{\text{tag}} = 0.66\%$) - Most discriminating variable $E_{\rm extra}$ = Σ E (energy of neutral clusters and tracks not assigned to the tag B or the signal candidates) - Mode dependent selection E_{extra} < 0.25-0.48 GeV - Tag efficiency and E_{extra} model validated using double tagged events - Expected background evaluated by extrapolating data in E_{extra} sidebands with same ratio as in MC | τ decay
mode | Expected background | observed | |----------------------------------|---------------------|----------| | τ→eνν | 44.3 ± 5.2 | 59 | | τ→μνν | 39.8 ± 4.4 | 43 | | $\tau \rightarrow \pi \nu$ | 120.3 ± 10.2 | 125 | | $\tau \rightarrow \pi \pi^0 \nu$ | 17.3 ± 3.3 | 18 | | All modes | 221.7 ± 12.7 | 245 | Submitted to PRD: arXiv:0705.1820 Tagged 5.9×10^5 fully reconstructed B mesons ($\varepsilon^{tag} = 0.15\%$) - Use m_{ES} to discriminate combinatorial background - Mode dependent selection: - Veto on extra charged tracks - Particle identification - $E_{extra} = \Sigma E$ (extra neutral clusters) - E_{extra} < 0.1-0.29 GeV BaBar preliminary | | | premimary | |----------------------------------|---------------------|-----------| | τ decay
mode | Expected background | observed | | τ→ενν | 1.5 ± 1.4 | 4 | | τ→μνν | 1.8 ± 1.0 | 5 | | $\tau \rightarrow \pi \nu$ | 6.8 ± 2.1 | 10 | | $\tau \rightarrow \pi \pi^0 \nu$ | 4.2 ± 1.4 | 5 | | All modes | 14.3 ± 3.0 | 24 | #### B→τν Branching Fraction - Likelihood combining poisson probabilities of all the τ channels - Use the background predictions and the number of observed events to obtain the BF confidence interval. $$\mathcal{L}(\mathbf{s} + \mathbf{b}) = \prod_{i=1}^{4} \frac{e^{(\mathbf{s}_{i} + \mathbf{b}_{i})} (\mathbf{s}_{i} + \mathbf{b}_{i})^{n_{i}}}{n_{i}} \qquad \mathbf{s}_{i} = N_{B} \varepsilon_{i} \mathcal{B}$$ $$Q(\mathcal{B}) = -2\ln(\mathcal{L}(\mathbf{s} + \mathbf{b}) / \mathcal{L}(\mathbf{b}))$$ Signal significance: $\sqrt{-Q_{min}}$ BaBar semileptonic tag analysis: $$\mathcal{B}(B \to \tau \nu) = (0.9 \pm 0.6 \pm 0.1) \times 10^{-4} [1.3\sigma]$$ BaBar hadronic tag analysis: preliminary $$\mathcal{B}(B \rightarrow \tau \nu) = (1.8^{+1.0}_{-0.9} \pm 0.3) \times 10^{-4}$$ [2.2 σ] Combined Result: BaBar preliminary $[2.6\sigma]$ $$\mathcal{B}(B \to \tau \nu) = (1.2 \pm 0.4^{\text{stat}} \pm 0.3^{\text{bkg}} \pm 0.2^{\text{eff}}) \times 10^{-4}$$ **SM** prediction: $\mathcal{B} = (1.6 \pm 0.4) \times 10^{-4}$ Belle result: $$\mathcal{B} = (1.79^{+0.56}_{-0.49}^{+0.56}) \times 10^{-4} [3.5\sigma]$$ with 414 fb⁻¹ PRL 97, 251802 (2006) 414 fb⁻¹ ## Interpreting the result (SM) $$\mathcal{B}_{SM}(B \to \tau \nu) = \frac{G_F^2 m_B}{8\pi} m_\tau^2 (1 - \frac{m_\tau^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$ CKM-fitter collaboration showed at FPCP 07 the constraint on the $\rho-\eta$ plane using f_R = (223 \pm 15 \pm 26) MeV (lattice QCD) UT-Fit collaboration updated their results with the lastest BaBar measurement See http://www.utfit.org (rare decays) BaBar only UT-fit constraint on R_b and f_B PDF Courtesy from M.Bona #### CKM-Fitter @ FPCP 07 ## Interpreting the result (2HDM) Shown above the limit set by direct search at LEP: m_{H+} >78.5 GeV @95% CL The comparison between the SM expectation and the BaBar combined result excludes regions on the $(m_{H+}, \tan\beta)$ plane $$\mathcal{B}(\mathbf{B} \to \tau \mathbf{v}) = \mathcal{B}_{\mathbf{SM}}(\mathbf{B} \to \tau \mathbf{v}) \times \left(1 - \tan^2 \beta \frac{m_{B^{\pm}}^2}{m_{H^{\pm}}^2}\right)^2$$ ## $B \rightarrow K \tau \mu$ - Forbidden in the SM - Lepton flavor violation from adding a Higgs - b→s flavor changing neutral current - Permitted in Grand Unified Theories (GUTs) doublet. - See for example Sher and Yuan, Phys. Rev. D44, 1461 (1991) - Lepton couplings tend to be proportional to $\eta_{ij} = \sqrt{m_i m_j}/m_{ au}$ - Transitions involving third generations of both quark and leptons are favored in this framework $$\eta_{ee} = 0.0003$$ $\eta_{e\mu} = 0.004$ $\eta_{e\tau} = 0.02$ $\eta_{\mu\mu} = 0.06$ $\eta_{\mu\tau} = 0.24$ ## $B \rightarrow K \tau \mu$ - Search based on 346 fb⁻¹ - Look for signal on the recoil of hadronic tag Bs - B \rightarrow D 0 (K π) $\mu\nu$ data control sample to normalize the signal BF - 1-prong τ decay modes (e, μ , π) studied. - \bullet τ four momentum determined using kinematics: - $p_{\tau} = p_{Btag} p_K p_{\mu}$ | τ decay
mode | Expected background | observed | |----------------------------|---------------------|----------| | τ → evv | 0.5 ± 0.3 | 1 | | τ→μνν | 0.6 ± 0.3 | 0 | | $\tau \rightarrow \pi \nu$ | 1.8 ± 0.6 | 2 | First search ever done for this channel No evidence of signal Upper limit (90%CL): $\mathcal{B}(B \rightarrow K\tau\mu) < 7.7x10^{-5}$ #### First search ever done for these channels - Search based on 320x10⁶ BB pairs - Look for B⁰ candidates combining two leptons (electrons or muons) and a photon - Constrain the B candidate to be consistent with the production at the Y(4S) using m_{ES} and ΔE | τ decay
mode | Expected background | Observed | |--|---------------------|----------| | B → e ⁺ e ⁻ γ | 1.75 ± 1.38 | 1 | | B → μ ⁺ μ ⁻ γ | 2.66 ± 1.40 | 1 | - FCNC processes - Suppressed in the SM - BF is O(10⁻¹⁰) - Can be enhanced by new physics ## Summary - $B \rightarrow \tau \nu$ - $\mathbf{B} = (1.2 \pm 0.4^{\text{stat}} \pm 0.3^{\text{bkg}} \pm 0.2^{\text{eff}}) \times 10^{-4}$ - 2.6s significance (3.2s stat.) - Set constraints on New Physics parameters - B→Kτμ - First search ever done - No evidence of signal - $\mathcal{B} < 7.7 \text{ x} 10^{-5}$ @90% CL - B $\rightarrow \ell^+\ell^-\gamma$ - First search ever done - $\mathcal{B}(B \rightarrow e^+e^-\gamma) < 1.2 \times 10^{-7} @90\% CL$ - $\mathcal{B}(B \to \mu^+ \mu^- \gamma) < 1.5 \times 10^{-7} @90\% CL$ Recent BaBar results ## Backup slides ## $B \rightarrow e/\mu\nu$ #### BF helicity suppressed - BF_{SM}($\mu\nu$)=(4.7 ± 0.7)x10⁻⁷ - BF_{SM}(ev)=(11.1 \pm 0.1)x10⁻¹¹ - Search for signal on the recoil of hadronic tagged events - •Only one neutrino→ reconstruction of tag B completely constraints kinematics - Signal B rest frame estimated from tag B 4-vector, allowing to exploit 2-body signal kinematics. ## $B \rightarrow e/\mu\nu$ - Analysis based on 209 fb⁻¹ - Observed 0 events in each of e and m channels with expected backgrounds of 0.23 and 0.12 events respectively $$B(B^+ \rightarrow e^+ \nu) < 7.9 \times 10^{-6}$$ $B(B^+ \rightarrow \mu^+ \nu) < 6.2 \times 10^{-6}$ at 90% CL Method free from experimental issues related to backgorund modeling but currently statistically limited ## $B \rightarrow \ell \nu \gamma$ - Presence of photon removes helicity suppression - BR enhanced - Universality of leptonic branching fraction recovered - Measuring the BF in a limited phase space region provide information on the QCD parameter $I_{\rm B}$ $$\Delta \mathcal{B} = \alpha \frac{G_F^2 |V_{ub}|^2}{32\pi^4} f_B^2 \tau_B m_B^3 \left[a + bL + cL^2 \right]$$ $$L=(m_B/3)(1/\lambda_B+1/(2m_b))$$, a, b, c: (model independent) computable constants $\lambda_{\rm B}$: first inverse moment of B light cone distribution amplitude (enters calculations of BF of hadronic B decays) $\sim \Lambda_{\rm OCD}$ SM expectation for the branching fraction $B(B \rightarrow l \nu \gamma) \sim (1-5)x10^{-6}$ (Korchemsky, Pirjol and Yan Phys Rev D61, 114510, 2000) Measure partial BF in the phase space region: $1.875 < E_{\ell}^* < 2.850 GeV, \quad 0.45 < E_{\gamma}^* < 2.35 GeV, \quad \cos\theta_{\ell\gamma} < -0.36$ •Identify lepton and signal photon and perform an inclusive reconstruction (i.e. 4-vector sum) of the other B Neutrino 4-vector obtained from missing momentum vector Extract signal from ML fit to m_{FS} and neutrino E-|p| in signal and sideband regions No evidence of signal set UL at 90% CL $$\Delta B(B \to \gamma \mu \nu_{\mu}) < 2.1 \times 10^{-6}$$ $\Delta B(B \to \gamma e \nu_{e}) < 2.8 \times 10^{-6}$ $\Delta B(B \to \gamma \ell \nu_{\ell}) < 2.3 \times 10^{-6}$ (Bayesian limits with flat prior in BF) With some input from theory, joint fit translates to: BF($B \rightarrow y t v_t$)< 5.0 x 10⁻⁶ (90% CL) Approaching the SM prediction #### Combined BaBar+Belle B > τν - BaBar combined (346 fb⁻¹): Preliminary - $\mathcal{B}(B \to \tau \nu) = (1.2 \pm 0.4^{\text{stat}} \pm 0.3^{\text{bkg}} \pm 0.2^{\text{eff}}) \times 10^{-4}$ - Belle had tag (414 fb⁻¹): PRL 97,251802 (2006) - $\mathcal{B}(\mathbf{B} \to \tau \mathbf{v}) = (1.79^{+0.56}_{-0.49}^{+0.56}) \times 10^{-4}$ - BaBar+Belle (Gaussian weighted average) - $\mathcal{B}(B \to \tau \nu) = (1.41 \pm 0.43) \times 10^{-4}$ ## The m_H vs. $tan\beta$ plot in two Higgs doublet extensions of the SM: $$\mathcal{B}(\mathbf{B} \to \tau \mathbf{v}) = \mathcal{B}_{\mathbf{SM}}(\mathbf{B} \to \tau \mathbf{v}) \times \left(1 - \tan^2 \beta \frac{m_{B^{\pm}}^2}{m_{H^{\pm}}^2}\right)^2$$ For a fixed value of tanb and increasing values of m_{H} : - 1) Small higgs mass: the BF is enhanced (ruled out by the measurement) - The BF approach the SM prediction and can not be resolved over the uncertainty (start the gap). - 3) The NP factor become less than 1 and the BF is suppressed but still we are not able to resolve it. - 4) The BF is significantly suppressed (ruled out by the measurement) - 5) The suppression term approach 1 and we loose exclusion again