

Extra Dimensions

Ben Lillie

Argonne National Laboratory and The University of Chicago

SUSY 07

Plan

- Lessons for colliders from extra dimensions
 - O Spins (UED)
 - O Tops (RS)

Universal Extra Dimensions Appelquist, Cheng, Dobrescu hep-ph/0012100

Exactly what it sounds like

Exactly what it sounds like

All SM fields
branes

Appelquist, Cheng, Dobrescu hep-ph/0012100

Exactly what it sounds like

Kaluza-Klein modes:

$$m^{(n)2} = n^2/R^2 + m_0^2$$
(SM mass)

Appelquist, Cheng, Dobrescu hep-ph/0012100

Exactly what it sounds like

Appelquist, Cheng, Dobrescu hep-ph/0012100

Exactly what it sounds like

Kaluza-Klein modes:

$$m^{(n)2} = n^2/R^2 + m_0^2$$
(SM mass)

branes

- 5D momentum ⇒ KK number conservation
- Walls break momentum conservation

Appelquist, Cheng, Dobrescu hep-ph/0012100

Kaluza-Klein modes:

$$m^{(n)2} = n^2/R^2 + m_0^2$$
(SM mass)

branes

- 5D momentum ⇒ KK number conservation
- Walls break momentum conservation
- KK parity left conserved

Spectrum - KK level I

Cheng, Matchev, Schmaltz hep-ph/0204342 0205314

- Lightest state is stable
- I-loopcorrections arecalculable
- Spectrumcertainly possiblein the MSSM

Is there a difference?

Smillie, Webber, hep-ph/0507170 (Barr, hep-ph/0405052)

$$\hat{m} = m_{ql}^{\text{near}}/(m_{ql}^{\text{near}})_{\text{max}} = \sin(\theta^*/2)$$

Is there a difference?

Smillie, Webber, hep-ph/0507170 (Barr, hep-ph/0405052)

Charge asymmetry

UED-like

mSUGRA-like

 $\hat{m} = m_{ql}^{\text{near}} / (m_{ql}^{\text{near}})_{\text{max}} = \sin(\theta^*/2)$

Is it a gluino?

Alves, Éboli, Plehn hep-ph/0605067

Is it a gluino?

Can also use decays through a sbottom (b').

Alves, Éboli, Plehn hep-ph/0605067

Is it a gluino?

- Can also use decays through a sbottom (b').
- O Purely hadronic observables available
 - e.g. azimuthal angle between b-jets

Alves, Éboli, Plehn hep-ph/0605067

For every spin, turn, turn, turn

$$\frac{d\Gamma}{dt_{f\bar{f}}} \propto \alpha + \beta t_{f\bar{f}}$$

Scenario	Slope β	Intercept α
0000 Lun	$\left(2M_{g'}^2 - M_Q^2\right)\left(M_Q^2 - 2M_{\gamma'}^2\right)$	$(M_Q^4 + 4M_{\gamma'}^2 M_{g'}^2) t_{f\bar{f}}^{(edge)}$
··· Lin	$-\left(M_Q^2-2M_{\gamma'}^2\right)$	$M_Q^2 \ t_{f\bar{f}}^{(edge)}$
0000	$\left(2M_{g'}^2 - M_Q^2\right)$	$M_Q^2 \ t_{f\bar{f}}^{(edge)}$
	-1	$t_{far{f}}^{(edge)}$

Wang, Yavin, hep-ph/0605296 Kilic, Wang, Yavin, hep-ph/0703085

- Observation of non-zero slope:
 - Matter partner is fermionic
 - Possible to extract spin information about other particles in the chain (requires luck)

We need spin measurements at the LHC

- We need spin measurements at the LHC
 - O Even (especially?) in processes with MET

- We need spin measurements at the LHC
 - O Even (especially?) in processes with MET
- It's possible

- We need spin measurements at the LHC
 - O Even (especially?) in processes with MET
- It's possible
- Needs realistic experimental study

- We need spin measurements at the LHC
 - O Even (especially?) in processes with MET
- It's possible
- Needs realistic experimental study
- Easy (easier) at the ILC

- We need spin measurements at the LHC
 - O Even (especially?) in processes with MET
- It's possible
- Needs realistic experimental study
- Easy (easier) at the ILC
 - O Take as a challenge!

Is that all?

Is that all?

The gluon partner is either a vector (spin 1) or a spinor (spin 1/2), right?

Is that all?

- The gluon partner is either a vector (spin 1) or a spinor (spin 1/2), right?
 - O Wrong

 A vector needs to eat another degree of freedom to be massive

- A vector needs to eat another degree of freedom to be massive
 - O The KK modes eat their own ${\cal A}_5$

5D

$$(A_{\mu}, A_5)$$
 \downarrow
 A_{μ}

2+1=3

- A vector needs to eat another degree of freedom to be massive
 - \bigcirc The KK modes eat their own A_5

- A vector needs to eat another degree of freedom to be massive
 - \bigcirc The KK modes eat their own A_5
- In 6D there is an extra degree of freedom

6D spectrum

Dobrescu, Kong, Mahbubani hep-ph/070323 I Dobrescu, Hooper, Kong, Mahbubani arxiv: 0706.3409

- Scalars are lightest states!
 - $\bigcirc \Rightarrow Scalar DM$
- Lightest colored state also scalar

goes through KK fermion

⇒ lepton modes dominate

n leptons

1/R (GeV)

(compactification radius)

n leptons

Small mass splittings so leptons and photons are soft

1/R (GeV)

(compactification radius)

n leptons

- Small mass splittings so leptons and photons are soft
- Scalar DM: measuring spin gives a important prediction/check

1/R (GeV)

(compactification radius)

Lesson 2

Don't forget lesson I

L. Randall, R. Sundrum hep-ph/9905221

$$ds^2 = dx^2 - dy^2$$

L. Randall, R. Sundrum hep-ph/9905221

O UEDs → Flat metric

$$ds^2 = dx^2 - dy^2$$

 $ds^2 = e^{-2ky}dx^2 - dy^2$

L. Randall, R. Sundrum hep-ph/9905221

- O UEDs → Flat metric
- O RS uses the AdS, or "warped" metric

$$ds^2 = e^{-2ky}dx^2 - dy^2$$

$$M \to e^{-\pi kL} M \quad (L \simeq 30/k)$$

L. Randall, R. Sundrum hep-ph/9905221

- O UEDs → Flat metric
- O RS uses the AdS, or "warped" metric
- O Geometrically solves the Hierarchy problem

Davoudiasl, Hewett, Rizzo, hep-ph/9911262 Pomarol, hep-ph/9911294

Could localize the entire SM to the IR brane

- Could localize the entireSM to the IR brane
- Cutoff is lowered by the same geometry to ~ 10 TeV

- Could localize the entireSM to the IR brane
- Cutoff is lowered by the same geometry to ~ 10 TeV

- Could localize the entire SM to the IR brane
- Cutoff is lowered by the same geometry to ~ 10 TeV
 - Bad

- Could localize the entireSM to the IR brane
- Cutoff is lowered by the same geometry to ~ 10 TeV
 - Bad
- OSM (except Higgs vev) in bulk solves this problem

The good...

- Generates fermion mass hierarchy
 - Overlap on IR brane is exponentially supressed
- Model variations can change arrangement of chiralities
 - Always strong IR localization for one top chirality

...the bad...

- O Strong coupling to top (and maybe bottom)
- Weak(er) coupling to light fermions

$$g_{ttA} \simeq 4g_{\rm SM}$$

 $g_{ffA} \simeq -\frac{1}{5}g_{\rm SM}$

O ALL gauge KKs decay primarily into $t\bar{t}$

... the ugly

- O Resonance masses are generally > 2-3 TeV
- Produce highly collimated "top-jets"
 - Traditional top searches will fail

Fraction of events

6 degrees of collimation

2 TeV resonance

Lillie, Randall, Wang, hep-ph/0701166

I top completely collimated: 50%

Both fully separated: 5%

"Separated": $\Delta R > 0.4$

Fraction of events

6 degrees of collimation

4 TeV resonance

l top completely

Lillie, Randall, Wang, hep-ph/0701166

collimated: ~99%

Both fully separated: ~0%

"Separated": $\Delta R > 0.4$

Agashe, Belyaev, Krupovnickas, Perez, Virzi hep-ph/0612015

- Tag events with lepton + missing
 - O modified lepton isolation criterion: lepton can be inside b-jet if $m_{\ell b} > 40~{\rm GeV}$

Gluon KK resonance

Skiba, Tucker-Smith, hep-ph/0701247

- Search for b'
- Focus on jet mass as discriminant
 - O How robust is the jet mass?

 k_T algorithm D = 0.5

Baur, Orr, arxiv:0707.2066

- Found strong jetalgorithm dependence
 - \bigcirc k_T algorithm slurps up a lot of the underlying event
 - Can be fixed by underlying event subtraction?

$$R = D = 0.5$$
 cone k_T

Baur, Orr, arxiv:0707.2066

- Found strong jetalgorithm dependence
 - $\bigcirc k_T$ algorithm slurps up a lot of the underlying event
 - Can be fixed by underlying event subtraction?

$$R = D = 0.5$$
 cone k_T

Fundamental QCD limit?

$$\langle m(j) \rangle \propto \sqrt{\alpha_s} p_T(j)$$

Butterworth, Ellis, Raklev, hep-ph/0702150

- Use jet-mass to identify gauge and higgs bosons in SUSY events
 - Would also be useful in, e.g., longitudinal W-scattering

Lesson 3

- High energy top channels are crucial
- A robust algorithm for tagging "top-jets" is needed
- Many unresolved issues
 - O b-tagging efficiency?
 - O Reliability of jet mass?
 - O All-hadronic channels?
- Full study needed

Conclusions

- Extra dimensions point to important and difficult channels and analyses
 - Olt's possible we can measure spins in long decay chains at the LHC
 - Olt's certain that we should try
 - O Still unique challenges in high mass resonance production
- They also might just turn out to exist....