

Plan

Lessons for colliders from extra dimensions

O Spins (UED)
O Tops (RS)

UED and SUSY a tale of two spins

Universal Extra Dimensions

Appelquist, Cheng, Dobrescu hep-ph/00I 2100
Exactly what it sounds like

Universal Extra Dimensions

Appelquist, Cheng, Dobrescu hep-ph/00I2 100
Exactly what it sounds like

Exactly what it sounds like

Kaluza-Klein modes:

$$
m^{(n) 2}=n^{2} / R^{2}+m_{0}^{2}
$$

Universal Extra Dimensions

Appelquist, Cheng, Dobrescu hep-ph/00I2 100
Exactly what it sounds like

Kaluza-Klein modes:

$$
m^{(n) 2}=n^{2} / R^{2}+m_{0}^{2}
$$

5D momentum $\Rightarrow K K$ number conservation

Universal Extra Dimensions

Exactly what it sounds like

Kaluza-Klein modes:

$$
m^{(n) 2}=n^{2} / R^{2}+m_{0}^{2}
$$

5D momentum $\Rightarrow K K$ number conservation
Walls break momentum conservation

Exactly what it sounds like

Kaluza-Klein modes:

$$
m^{(n) 2}=n^{2} / R^{2}+m_{0}^{2}
$$

5D momentum $\Rightarrow \mathrm{KK}$ number conservation
Walls break momentum conservation
O KK parity left conserved

Spectrum - KK level
 Cheng, Matchev, Schmaltz hep-ph/0204342 02053 I

Lightest state is stable

O I-loop
corrections are calculable

O Spectrum
 certainly possible in the MSSM

Is there a difference?

$$
\hat{m}=m_{q l}^{\text {near }} /\left(m_{q l}^{\text {near }}\right)_{\max }=\sin \left(\theta^{*} / 2\right)
$$

Is there a difference?

Charge asymmetry (larmeppmoverosiz)

UED-like
mSUGRA-like

$$
\hat{m}=m_{q l}^{\text {near }} /\left(m_{q l}^{\text {near }}\right)_{\max }=\sin \left(\theta^{*} / 2\right)
$$

Is it a gluino?

Alves, Éboli, Plehn hep-ph/0605067

Is it a gluino?

Alves, Éboli, Plehn hep-ph/0605067

Can also use decays
through a sbottom (b').

Is it a gluino?

Can also use decays through a sbottom (b').

O Purely hadronic observables available
e.g. azimuthal angle between b-jets

For every spin, turn, turn, turn

$\frac{d \Gamma}{d t_{f \bar{f}}} \propto \alpha+\beta t_{f \bar{f}}$

Scenario	Slope β	Intercept α
$\text { roor }<$	$\left(2 M_{g^{\prime}}^{2}-M_{Q}^{2}\right)\left(M_{Q}^{2}-2 M_{\gamma^{\prime}}^{2}\right)$	$\left(M_{Q}^{4}+4 M_{\gamma^{\prime}}^{2} M_{g^{\prime}}^{2}\right) t_{f f}^{(e \bar{f}}(\underline{e d e)}$
	$-\left(M_{Q}^{2}-2 M_{\gamma^{\prime}}^{2}\right)$	$M_{Q}^{2} t_{f \bar{f}}^{(e d g e)}$
	$\left(2 M_{g^{\prime}}^{2}-M_{Q}^{2}\right)$	$M_{Q}^{2} t_{f \bar{f}}^{(e d g e)}$
	-1	$t_{f \bar{f}}^{(e d g e)}$

Wang, Yavin, hep-ph/0605296
Kilic, Wang, Yavin, hep-ph/0703085

Observation of non-zero slope:

Matter partner is fermionic

Possible to extract spin information about other particles in the chain (requires luck)

Lesson I

Lesson I

We need spin measurements at the LHC

Lesson I

We need spin measurements at the LHC

Even (especially?) in processes with MET

Lesson I

O We need spin measurements at the LHC

Oven (especially?) in processes with MET

O It's possible

Lesson I

O We need spin measurements at the LHC

Even (especially?) in processes with MET

It's possible

Oeeds realistic experimental study

Lesson I

O We need spin measurements at the LHC

Oven (especially?) in processes with MET

It's possible

Oeeds realistic experimental study

Oasy (easier) at the ILC

Lesson I

O We need spin measurements at the LHC

Even (especially?) in processes with MET

It's possible

Needs realistic experimental study

O Easy (easier) at the ILC
Take as a challenge!

$0-8$

Is that all?

O The gluon partner is either a vector (spin I) or a spinor (spin I/2), right?

Is that all?

O The gluon partner is either a vector (spin I) or a spinor (spin I/2), right?

O Wrong

If 5D, why not 6D?

If 5D, why not 6D?

A vector needs to eat another degree of freedom to be massive

If 5D, why not 6D?

5D

A vector needs to eat another degree of freedom to be massive

O The KK modes eat their own A_{5}
$\left(A_{\mu}, A_{5}\right)$
\downarrow A_{μ}
$2+1=3$

If 5D, why not 6D?

A vector needs to eat another degree of freedom to be massive

O The KK modes eat their own A_{5}

If 5D, why not 6D?

A vector needs to eat another degree of freedom to be massive

O The KK modes eat their own A_{5}

In 6D there is an extra degree of freedom
$\left(A_{\mu}, A_{5}, A_{6}\right)$
\downarrow
$\left(A_{\mu}, \phi\right)$
$2+2=3+1$

6D spectrum

Dobrescu, Kong, Mahbubani hep-ph/070323 I
Dobrescu, Hooper, Kong, Mahbubani arxiv: 0706.3409

O Scalars are lightest states!

O $=$ Scalar DM
O Lightest colored state also scalar

Lepton-Photon

goes through KK fermion
\Rightarrow lepton modes dominate

Lepton-Photon

n leptons

$1 / R(G e V)$
(compactification radius)

Lepton-Photon

Small mass splittings so leptons and photons are soft

n leptons

$1 / R(\mathrm{GeV})$
(compactification radius)

Lepton-Photon

Small mass splittings so leptons and photons are soft

Scalar DM: measuring spin gives a important prediction/check

$1 / R(G e V)$
(compactification radius)

Lesson 2

O Don't forget lesson I

Warped dimensions or

 why thinner isn't better
The Randall-Sundrum model

$$
d s^{2}=d x^{2}-d y^{2}
$$

The Randall-Sundrum model

O UEDs \rightarrow Flat metric

$$
d s^{2}=d x^{2}-d y^{2}
$$

The Randall-Sundrum model

O UEDs \rightarrow Flat metric

ORS uses the AdS, or "warped" metric

The Randall-Sundrum model

$$
\begin{gathered}
d s^{2}=e^{-2 k y} d x^{2}-d y^{2} \\
M \rightarrow e^{-\pi k L} M \quad(L \simeq 30 / k)
\end{gathered}
$$

O UEDs \rightarrow Flat metric
RS uses the AdS, or "warped" metric

Geometrically solves the Hierarchy problem

Where to put the SM?

Where to put the SM?

IR (TeV)

O Could localize the entire SM to the IR brane

Where to put the SM?

O Cutoff is lowered by the same geometry to $\sim 10 \mathrm{TeV}$

Where to put the SM?

O Cutoff is lowered by the same geometry to $\sim 10 \mathrm{TeV}$

Where to put the SM?

O Cutoff is lowered by the same geometry to ~ 10 TeV

OBad

Where to put the SM?

OOOUV (Planck)

O Could localize the entire SM to the IR brane

O Cutoff is lowered by the same geometry to ~ 10 TeV

OBad
OSM (except Higgs vev) in bulk solves this problem

The good...

UV
(Planck)

IR (TeV)

O Generates fermion mass
hierarchy
O Overlap on IR brane is exponentially supressed

O Model variations can change arrangement of chiralities

Always strong IR localization for one top chirality

...the bad...

UV
(Planck)

O Strong coupling to top (and maybe bottom)

O Weak(er) coupling to light fermions

$$
\begin{gathered}
g_{t t A} \simeq 4 g_{\mathrm{SM}} \\
g_{f f A} \simeq-\frac{1}{5} g_{\mathrm{SM}}
\end{gathered}
$$

O ALL gauge KKs decay primarily into $t \bar{t}$

... the ugly

Resonance masses are generally > 2-3 TeV

O Produce highly collimated "top-jets"

Traditional top searches will fail

6 degrees of collimation

2 TeV resonance

Fraction of events

\longleftarrow I top completely collimated: 50\%

Both fully separated: 5\%

6 degrees of collimation

4 TeV resonance

Separated": $\Delta R>0.4$

Finding energetic tops
 Agashe, Belyaev, Krupovnickas, Perez, Virzi hep-ph/06I20I5

Tag events with lepton + missing
modified lepton isolation criterion: lepton can be inside b-jet if $m_{\ell b}>40 \mathrm{GeV}$

Gluon KK resonance

Finding energetic tops

Skiba, Tucker-Smith, hep-ph/0701247

k_{T} algorithm $D=0.5$

Finding energetic tops

Baur, Orr, arxiv:0707.2066
O Found strong jet algorithm dependence
$\bigcirc k_{T}$ algorithm slurps up a lot of the underlying event

O Can be fixed by underlying event subtraction?

$$
\underset{\text { cone }^{\pi}}{ } \quad R=\underset{\kappa_{k}}{D}=0.5
$$

Finding energetic tops

O Found strong jet algorithm dependence
$\bigcirc k_{T}$ algorithm slurps up a lot of the underlying event

O Can be fixed by underlying event subtraction?

$$
\begin{aligned}
& \quad R=\underset{\text { cone }^{\pi}}{\mathrm{k} k_{T}}=0.5 \\
& \hline
\end{aligned}
$$

Fundamental QCD limit?

$$
\langle m(j)\rangle \propto \sqrt{\alpha_{s}} p_{T}(j)
$$

Finding energetic other-than-tops

Butterworth, Ellis, Raklev, hep-ph/0702 I 50Use jet-mass to identify gauge and higgs bosons in SUSY events

Would also be useful in, e.g., longitudinal W-scattering

Lesson 3

O High energy top channels are crucial

A robust algorithm for tagging "top-jets" is needed

Many unresolved issues
b-tagging efficiency?
Reliability of jet mass?
All-hadronic channels?
O Full study needed

Conclusions

Oxtra dimensions point to important and difficult channels and analyses

It's possible we can measure spins in long decay chains at the LHC

Olt's certain that we should try
Still unique challenges in high mass resonance production

They also might just turn out to exist....

