R-hadron and long lived particle searches at the LHC

S. Bressler

Technion, Israel Institute Of Technology

On behalf of the ATLAS and CMS collaborations

Outline

- Motivation
- The unique signature in the LHC
- Trigger
- Discovery methods*
- Conclusions

^{*} The CMS TOF method is discussed in detail in a later talk

Motivation

- Long lived Charged particles are allowed by many models beyond the SM:
 - GMSB, split SUSY, mSUGRA, AMSB, ED...
- A unique signature which is model independent

• A "Non conventional" study - Hardware and data acquisition issues have to be considered

The unique signature in the LHC

- The signal to look for at the LHC is a charged particle with low β
 - Interacts in the detector like a heavy muon neither EM showers nor substantial hadronic showers
- A very slow particle would lose a lot of energy by ionization
- Medium β particles will arrive to the muon spectrometer with a different beam crossing
- A particle with β ~1 looks just like a high p_T muon
 - We may be able to see an excess of high p_T "muons" but not measure their mass
- The background is high p_T muons

An example model context: GMSB5

- The stau and selectron are co-NLSP
 - $M(\tau_1)=102.2$ GeV, $M(e_R)=100.3$ GeV
 - $M(\chi_1^0)=113.7$ GeV
- The NLSPs are long lived
- The cross section is 23pb
- 2 sleptons in each event

An example model context: Split SUSY

- Gluino NLSP hadronizes to long lived R-Hadron
- The R-Hadron may flip charge when it passes through matter, for example, between the Inner Detector and the muon spectrometer

400

200

Total cross-section of gluino pair production at the LHC as a function of gluino mass (using pythia)

0.3

0.4

0.5

0.6

The unique signature in the LHC **BCID**

- ATLAS length > 20m & Collision period = 25 ns → 3 events coexist in the detector at the same time
- To match correctly event fragments from different sub-detectors BCID (bunch crossing identification) is crucial
- BCID is based on time measurements, each detector unit is calibrated with respect to particles which move almost at the speed of light (β =1)
- When β<1 hits may be marked with a wrong BCID
- CMS is smaller than ATLAS

Trigger

An event must pass all trigger levels to "survive"

ATLAS trigger

Level 1:

- 40MHz to < 75KHz
- Defines RoI
- Custom HW

Level 2:

- 75KHz to ~1KHz
- Process RoI
- Quick SW

Event filter:

- 1KHz to ~100Hz
- Full event data
- Offline code

CMS trigger

Level 1:

- 40MHz up to 100KHz
- Custom HW

High level trigger:

- 100KHz to ~100Hz
- SW

Trigger for slow particle

- A long lived charged particle is most likely to trigger as a muon
- GMSB Cascade decay:
 - Other triggers are also possible
 - 2 sleptons with different β
- Split SUSY Direct production of gluinos:
 - Both R-Hadron may be slow
 - The trigger may be on the wrong BC
- An event containing long lived charged particle is likely to pass all trigger levels
- Some event data might be lost

Example: GMSB5 in ATLAS

2 sleptons with $\beta > 0.7$

1 slepton with $\beta > 0.7$

0 sleptons with $\beta > 0.7$

Discovery methods - Event flow

- 1. Collision: the particle is created
- 2. Propagation: the particle leaves hits in the detector
- 3. Digitization (HW): the hit transforms into an electronic signal digit
 - A digit contains position and time info.
- 4. Trigger (HW and SW)
- 5. Reconstruction (SW): Digits are combined into tracks
 - Digit information is lost
 - Common algorithms not accessible by the users
- 6. Analysis: the particle is discovered
 - Too late for the long lived charged particle

ATLAS TOF - RPC

β and mass reconstruction @ level 2

- The muon barrel trigger chambers (RPC) of ATLAS have a time resolution of 3.125ns
- TOF calculation was added to the barrel LVL2 algorithm muFast to get initial estimation of the particle's speed
- A slepton hypothesis based on mass measurement was added
- All slow particles would pass a standard muon hypothesis – no increase in trigger rate

ATLAS TOF -

β resolution @ level 2

ATLAS TOF -

Signal Vs. BG @ level 2: GMSB5

- The BG from high p_T muons overwhelms the signal in β
- Almost no overlap in reconstructed mass

- For Stau hypothesis with the cuts
 - $p_T>40 \text{ GeV}$
 - •M>40 GeV
 - $\beta < 0.97$

Hit radius reconstruction in the MDT - μ

- A charged particle passing the MDT will leave clusters of ionized atoms
- The electrons drift to the wire in the center of each tube

The radius from which the electrons drift to the wire is calculated from

0

0

0

0

• $t_{0\mu}$ is estimated for a muon traveling at $t_{0\mu}$

Segment reconstruction

- The segment is tangent to the radii
- Some hits from "noise" are ignored

ATLASTOF - MDT

Radius reconstruction in the MDT - slow particle

- The long time window of the MDT guarantees that data of low β particles will be saved.
- The measured hit radius is incorrect

0

0

- Larger radii result in
 - Badly fitted segment
 - Wrong direction of segment

ATLASTOF - MDT

A B reconstruction algorithm (1)

- Relies on long time window of MDT and BCID from ID
- Identify penetrating particle by associating muon hits and segments with extrapolated ID track
- Loop over possible Δt
 - Change MDT digits' time and hence radii
 - Create MDT segments from the re-timed digits

• Estimate t_0 (TOF) from the Δt that minimizes the χ^2

Include information from segments in trigger chambers

- RPC tof
- TGC direction
- Calculate β and M

ATLAS - β and mass @ reconstruction

ATLAS preliminary

ATLASTOF - MDT

A β reconstruction algorithm (2)

- 1. Divide R-Hadrons in momentum bins
- 2. In each bin find β minimizing the average χ^2
- 3. Fit β as a function of the momentum $\beta(p)$
- 4. Calculate the mass, $m=p/\gamma(p)\beta(p)$

This study requires a large pure sample of sparticles and, therefore, it was done for R-Hadrons

CMS TOF* and dE/dx

- CMS uses dE/dx in the tracker in addition to TOF in the drift tubes
- CMS beta resolution is shown for
 0.6 < β < 0.8
- The β measurement is restricted by the size of CMS.

See talk of Piotr Zalewski

Conclusions

- If nature cooperates, we have a chance to find a new charged long-lived particle
- However, this requires paying attention to details of detector and trigger operation
- Some modifications are needed to previously envisioned operation
 - In particular reading out data of additional BCs will increase efficiency for the lower β range