Some Theoretical Developments in Supersymmetry

SUSY 07, Karlsruhe, Germany, July 26 - August 1, 2007 M. Shifman

Theoretical Physics Institute, University of Minnesota

Topics

- Metastable vacua at strong coupling;
- Non-Abelian flux tubes, confined monopoles
- One step beyond Seiberg's duality
- Planar equivalence
- B theory (multileg/multiloop amplitudes)
- $\mathcal{N} = (2,0)$ sigma model (Heterotic flux tubes of Edalati-Tong)

Intriligator, Seiberg, Shih '06 Metastable vacua & stuff

$$\mathcal{N} = 1 \; \mathrm{SU}(N_c) \; \mathrm{SQCD} \; \mathrm{with} \; N_c + N \; \mathrm{flavors} \; (N < N_c/2)$$
 $w_{\mathrm{electric}} = m \; \widetilde{Q} Q, \; m <<$

Magnetic dual: color SU(N), dual quarks h, meson field M

$$\mathcal{W} = \mathcal{W}_{\text{tree}} + \mathcal{W}_{\text{anom}}$$
,

- Lesson: small deformations of electric theory lead to drastic changes on the magnetic side of duality
- Applications of the idea (incl. other than MS vacua)

e.g. gluino condensate, next slide

The mystery of 5/4: $\langle \lambda \lambda \rangle_{\text{weak c.}} = (5/4)^{1/2} \langle \lambda \lambda \rangle_{\text{str.c.}} \leftarrow NSVZ, 1985$

KS '97: Chirally symmetric vacuum $\langle \lambda \lambda \rangle = 0$ fixes strong coupling

Cachazo, Douglas, Seiberg, Witten, 2002 proof of no chirally symmetric SUSY vacuum

ISS metastable vacuum has <λλ> =0!

It lives long at m<< Λ ; if a minimum survives at m \gtrsim Λ , it may play a role in strong coupling calculation!

+ Douglas, Shelton, Torroba

Eto et al. $2006 \rightarrow Flux$ tubes in ISS metastable vacua SO(N)+SU(N) with baryon U(1) gauged

- \bigstar Seiberg & Witten '94 \longleftarrow First demonstr. of dual Meissner effect in N=2;
- ★ 1997-2003 🖊 In search of Non-Abelian Flux Tubes (strings)!
- \bigstar Hanany & Tong; Auzzi et al. 2003 \bigstar Non-Abelian strings found in N = 2 U(2) SQCD with $N_f = N_c$

Benchmark Model: gauge $SU(N) \times U(1)$

Vector multiplet: A_{μ} , A_{μ}^{a} , $\lambda^{1,2}$, $\lambda^{1,2,a}$, a, a^{a}

Quarks multiplets: q^{kA} , \tilde{q}_{Ak} , ψ^{kA} , $\tilde{\psi}_{Ak}$, (A flavor)

- + Fayet Iliopoulos term ξ
- + quark mass terms m_A

- → CP(N-1) model on the string world sheet!!!

CP(2) model with 4 Q's

M. Shifman

Less supersymmetry: $N = 2 \longrightarrow N = 1$

M model
GSY 2007

 $\mathcal{N}=1$ SQCD with the gauge group $U(N_c)$ and N_c quark flavors

$$w = QMQ + \widetilde{\mu} \mathcal{A}^2$$

 μ , no massless modes in the bulk! Non-abelian strings almost intact (1/2 BPS-ness is lost)

$$\mathcal{N} = 1 \text{ SQCD}$$

Nc+N flavors

keep N_c flavors massless*

Dual quarks massive can be integr. out

Deform & dualize

Extra U(I)

N flavors are endowed with a mass term m_q

Dual th. fully Higgsed

Secondory color or ...

Eto et al. SO(N) instead of U(N)

$$\pi_1(SO(N)) = Z_2$$

Spinor probe quarks are not screened! The question of scale is still there

$$\mathcal{L} = -\frac{1}{4g^2} G^a_{\mu\nu} G^{\mu\nu\,a} + \frac{i}{2} \bar{\lambda} D \lambda$$

gluon gluino

supersymmetric gluodynamics

Orienti: $\lambda \rightarrow Dirac \Psi^{ij}$

 Z_2 Orbi Dirac bifundamental $SU(2N)
ightarrow SU(N) imes SU(N) \ g_D^2 = 2g_P^2$

Orienti-AS: at N=3 one-flavor QCD \rightarrow quark condensate,...

Kovtun, Ünsal, Yaffe: necessary and sufficient cond. ⇒ nonbeaking of discrete symmetries:

C for orienti and Z_2 for orbi

Sannino; Ünsal ⇒
T dependence of
planar equivalence

c in QCD-like theories? P proof ← vafa, Witten

M. Shifman

Discrete symmetry nonbreaking = convergence of expansion in fermion loops in pure Yang-Mills -> ASV, '06

is unique at $\theta=0$

Witten: in pure YM vacuum is unique at
$$\theta=0$$
 Convergence=uniqueness of vacuum

Ploykov's criterion: Z_N center in orienti at $N \rightarrow \infty$

$$R_3 \times S_1$$
 compactification $\left\langle P \exp \left(\int_{S_1} i A_{\mu} dx^{\mu} \right) \right\rangle$

Polyakov line = $0 \rightarrow Z_N$ unbroken \rightarrow confinment

Polyakov line $\neq 0 \rightarrow Z_N$ broken \rightarrow deconfinment

 $\Psi^{ij} \rightarrow Z_2$ at most at even N ????

*** At $N \rightarrow \infty$ we find Z_N center in orienti ***

Two SU(N)'s, one condition

Six SU(N)'s, five conditions

Developments in field-theoretic D branesDS '96

- Sakai, Tong→ generic boojums
- Eto et al. → Moduli matrix method for multiwalls & multistrings

Multileg/multiloop amplitudes in pert. YM theories

- " '90s, Bern, Dixon, Kosower→string methods in SUSY theor.
- 2003, Witten→twistor variables in gluon amplitudes
- 2005, BCFW→on-shell amplitudes from recursion relations

★B theory ???★

$$\mathcal{A}(2 \text{ gluons} \rightarrow 2 \text{ gluons}) = \mathcal{A}(2 \text{ gluons} \rightarrow 2 \text{ gluons})_{\text{tree}} \times$$

$$\exp\left[\left(\text{IR divergent}\right) + \frac{f(\lambda)}{8}\left(\ln\frac{s}{t}\right)^2 + \text{const.}\right] \quad \textbf{ $\leftarrow '05$ Bern, Dixon, Smirnov,} \\ \text{weak coupl.conjecture}$$

1 cusp anom. dím.

2007, Alday & Maldacena, gauge-gravity duality, strong coupling. At $\lambda \rightarrow \infty$ single class. string conf. with BC depending on momenta. BDS confirmed!

*** Edalati-Tong heterotic flux tubes ***

- Return to M model, N=2 broken to N=1
- Bosonic part of string worldsheet model intact, CP(N-1)
 - *Fermionic part? Supersymmetrization?*
 - Four supercharges $\rightarrow N = (2,2)$ standard SUSY CP(N-1)
 - In fact, we have $C \times CP(N-1)$; supersymmetrization with two supercharges possible \rightarrow chiral N=(2,0) SUSY CP(N-1)!!!Left-handed fermions interact differently from right-handed on the worldsheet

Conclusions

- Metastable vacua at strong coupling;
- Non-Abelian flux tubes, confined monopoles
- One step beyond Seiberg's duality
- Planar equivalence
- B theory (multileg/multiloop amplitudes)
- $\mathcal{N} = (2,0)$ sigma model (Heterotic flux tubes of Edalati-Tong)

