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Abstract

I review theoretical developments of the last year or so in nonperturbative su-
persymmetry.

Topics:

• Metastable vacua at strong coupling;
• Non-Abelian flux tubes, confined monopoles
• One step beyond Seiberg’s duality
• Planar equivalence
• B theory (multileg/multiloop amplitudes)
• N = (2, 0) sigma model (Heterotic flux tubes of Edalati-Tong)
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1 Metastable supersymmetry-breaking

vacua in SQCD

I will start from a topic which lies half-way between purely theoretical aspects of
supersymmetry (SUSY) and SUSY-based model-building. As well known, it is not
easy to break supersymmetry dynamically in such a way that no unwanted phe-
nomenological consequences occur. Usually one has to deal with contrived schemes
which are not elegant, to put it mildly. A few mechanisms of dynamical SUSY
breaking were discovered in 1980’s and ’90s (for a review see [1]). Approximately
at the same time people realized that some generalized Wess-Zumino models can
contain, in addition to supersymmetric vacua, local minima with positive energy
density. If the barrier between the latter and supersymmetric vacua is high enough
they represent long-lived metastable vacua in which supersymmetry is spontaneously
broken [2]. The models that were built on such vacua in 1990s tended to be rather
awkward.

In 2006 Intriligator, Seiberg and Shih showed [3] that metastable dynamical
SUSY breaking is much more generic and much simpler than was previously thought.
They considered N = 1 SU(Nc) SQCD with Nc + N flavors (N < Nc/2) as the
starting microscopic theory. As usual, each quark flavor is described by two chiral
superfields, Qk,A and Q̃Ak where k is the color index (k = 1, 2, ..., Nc) and A is the
flavor index (A = 1, 2, ..., Nc + N). All quark flavors were endowed by a common
mass term m assumed to be much smaller than the dynamical scale parameter Λ.
This theory, to be referred to as the electric theory, is strongly coupled and its
dynamics, beyond some general aspects (such as the number of SUSY vacua), is not
amenable to exhaustive analysis.

The vacuum structure of this model can be studied through its magnetic Seiberg’s
dual which is in the infrared free regime. The quark mass term is converted into a
crucial term in the superpotential of the magnetic (macroscopic) theory

W = Wtree + Wanom , (1)

where
Wtree = h̃A,k h

kB MA
B − µ2MA

A , (2)

h̃A,k and hkB denote dual quarks, k = 1, 2, ..., N , and µ ∝ √
m.

The tree-level superpotential Wtree yields metastable vacua. The anomalous
part of the superpotential, Wanom ∝ TrW 2, is responsible for Nc vacua that restore
supersymmetry. As long as m ≪ Λ supersymmetric vacua lie far away from the
metastable vacua and are separated by a huge barrier. The lifetime of the metastable
vacua can be made longer than the Universe lifetime. The same condition m ≪ Λ
allows one to control the incalculable Kähler potential corrections.
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When all quark mass terms are equal, the electric theory possesses a global
vector-like SU(Nc + N) × U(1)B symmetry. This is a flavor symmetry which is
spontaneously broken down to S(U(N)×U(Nc)) in the metastable vacua. Thus, the
latter form a compact moduli space of metastable vacua

V =
U(Nc +N)

S(U(N) × U(Nc))
, (3)

to be compared with Nc isolated stable vacua.
The Intriligator-Seiberg-Shih (ISS) finding opens for investigation a large class

of (hopefully simple) phenomenologically relevant models with dynamical SUSY
breaking. Contentious issues such as large flavor symmetries and the absence of an
R symmetry, a usual “bottle neck” in model-building, may find relatively easy solu-
tions [4]. An aspect of model-building where the ISS finding may prove promising is
constructing a“direct mediation” model, i.e. a model where the messengers are an
integral part of the SUSY-breaking sector. Since SQCD and its cousins naturally
come with large global flavor symmetries, one could imagine gauging such a symme-
try and identifying it with the Standard Model. Such a model might have different
phenomenology compared with ordinary gauge mediation.

The aspect which is of most importance to me in this talk is purely theoretical.
The ISS work raises the question of where small deformations of Seiberg’s duality
can lead us. We will see later (Sect. 3) that they will lead us pretty far — to
non-Abelian strings and confined monopoles.

2 Non-Abelian flux tubes and confined monopoles

Seiberg and Witten [5] presented the first ever demonstration of the dual Meissner
effect in non-Abelian theory, a celebrated analytic proof of linear confinement, which
caused much excitement in the community.

It took people three years to realize [6] that the flux tubes in the Seiberg–Witten
solution are not those we would like to have in QCD. Hanany, Strassler and Zaffaroni
who analyzed in 1997 the chromoelectric flux tubes in the Seiberg–Witten solution
showed that these flux tubes are essentially Abelian (of the Abrikosov–Nielsen–
Olesen type) so that the hadrons they would create would have nothing to do with
those in QCD. The hadronic spectrum would be significantly richer. And, say, in
the SU(3) case, three flux tubes in the Seiberg–Witten solution would not annihilate
into nothing, as they should in QCD ...

Ever since searches for genuinely non-Abelian flux tubes and non-Abelian mono-
poles continued, with a decisive breakthrough in 2003-04. By that time the program
of finding field-theory analogs of all basic constructions of string/D-brane theory
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Figure 1: Various regimes for monopoles and strings.

was in full swing.1 BPS domain walls, analogs of D branes, had been identified
in supersymmetric Yang–Mills theory. It had been demonstrated that such walls
support gauge fields localized on them. and BPS saturated string-wall junctions
had been constructed [8]. And yet, non-Abelian flux tubes, the basic element of the
non-Abelian Meissner effect, remained elusive.

2.1 Non-Abelian flux tubes

They were first found [9, 10] in U(2) super-Yang–Mills theories with extended su-
persymmetry, N = 2, and two matter hypermultiplets. If one introduces a non-
vanishing Fayet–Iliopoulos parameter ξ the theory develops isolated quark vacua,
in which the gauge symmetry is fully Higgsed, and all elementary excitations are
massive. In the general case, two matter mass terms allowed by N = 2 are unequal,
m1 6= m2. There are free parameters whose interplay determines dynamics of the
theory: the Fayet–Iliopoulos parameter ξ, the mass difference ∆m and a dynamical
scale parameter Λ, an analog of the QCD scale ΛQCD. Extended supersymmetry
guarantees that some crucial dependences are holomorphic, and there is no phase
transition.

The number of colors can be arbitrary. The benchmark model supporting non-
Abelian flux tubes has the gauge group SU(N)×U(1) and N flavors. The N =
2 vector multiplet consists of the U(1) gauge field Aµ and the SU(N) gauge field Aa

µ,

1This program started from the discovery of the BPS domain walls in N = 1 supersymmetric
gluodynamics [7].
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(here a = 1, ..., N2−1), and their Weyl fermion superpartners (λ1, λ2) and (λ1a, λ2a),
plus complex scalar fields a, and aa. The latter are in the adjoint representation
of SU(N). In this sector the global SU(2)R symmetry inherent to N = 2 models
manifests itself through rotations λ1 ↔ λ2.

The quark multiplets of the SU(N)×U(1) theory consist of the complex scalar
fields qkA and q̃Ak (squarks) and the Weyl fermions ψkA and ψ̃Ak, all in the funda-
mental representation of the SU(N) gauge group (k = 1, ..., N is the color index

while A is the flavor index, A = 1, ..., N). The scalars qkA and ¯̃q
kA

form a doublet
under the action of the global SU(2)R group. Quarks and squarks have a U(1) charge
too. A U(1) Fayet-Iliopoulos (FI) term is introduced, with the FI parameter ξ.

Both gauge and flavor symmetries of the model are broken by the condensation of
scalar fields. A global diagonal combination of color and flavor groups, SU(N)C+F ,
survives the breaking (the subscript C + F means a combination of global color
and flavor groups). While SU(N)C+F is the symmetry of the vacuum, the flux tube
solutions break it spontaneously. This gives rise to orientational moduli. Topo-
logical stability of the non-Abelian strings in this model is due to the fact that
π1(U(N)/ZN) = ZN × Z.

2.2 Confined monopoles

As various parameters vary, this theory evolves in a very graphic way, see Fig. 1. At
ξ = 0 but ∆m 6= 0 (and ∆m ≫ Λ) it presents a very clear-cut example of a model
with the standard ’t Hooft–Polyakov monopole. The monopole is free to fly — the
flux tubes are not yet formed.

Switching on ξ 6= 0 traps the magnetic fields inside the flux tubes, which are weak
as long as ξ ≪ ∆m. The flux tubes change the shape of the monopole far away from
its core, leaving the core essentially intact. Orientation of the chromomagnetic field
inside the flux tube is essentially fixed. The flux tubes are Abelian.

With |∆m| decreasing, fluctuations in the orientation of the chromomagnetic field
inside the flux tubes grow. Simultaneously, the monopole which no loner resembles
the ’t Hooft–Polyakov monopole, is seen as the string junction. It acquires a life of
its own.

Finally, in the limit ∆m → 0 the transformation is complete. A global SU(2)
symmetry restores in the bulk. Orientational moduli develop on the string world-
sheet making it truly non-Abelian. The string worldsheet theory is CP(1) (CP(N−1)
for generic values of N). Two-dimensional CP(N−1) models with four supercharges
are asymptotically free. They have N distinct vacuum states. The non-Abelian flux
tubes have degenerate tensions Tst = 2πξ. The ANO string tension is N times
larger.

Each vacuum state of the worldsheet CP(N−1) theory presents a distinct string
from the standpoint of the bulk theory. There are N species of such strings. All
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Figure 2: Z2 string junction.

have the same tension. Hence, two different strings form a stable junction. Figure 2
shows this junction in the limit

ΛCP(1) ≪ |∆m| ≪
√

ξ (4)

corresponding to the lower left corner of Fig. 1. The magnetic fluxes of the U(1) and
SU(2) gauge groups are oriented along the z axis. In the limit (4) the SU(2) flux
is oriented along the third axis in the internal space. However, as |∆m| decreases,
fluctuations of Ba

z in the internal space grow, and at ∆m → 0 it has no particular
orientation in SU(2) (the lower right corner of Fig. 1). In the language of the
worldsheet theory this phenomenon is due to restoration of the O(3) symmetry in
the quantum vacuum of the CP(1) model.

The junctions of degenerate strings present what remains of the monopoles in
this highly quantum regime [11, 12]. It is remarkable that, despite the fact we are
deep inside the highly quantum regime, holomorphy allows one to exactly calculate
the mass of these monopoles. This mass is given by the expectation value of the kink
central charge in the worldsheet CP(N − 1) model (including the anomaly term).

What remains to be done? The most recent investigations zero in on N = 1
theories, which are much closer relatives of QCD than N = 2. I have time to say
just a few words on the so-called M model suggested recently [13] which seems quite
promising.

2.3 M model

The unwanted feature of N = 2 theory, making it less similar to QCD, is the
presence of the adjoint scalar field. One can get rid of it making it heavy. To
this end we must endow the adjoint superfield by a mass term. Supersymmetry of
the model becomes N = 1. Moreover, to avoid massless modes in the bulk theory
(in the limit of very heavy adjoint fields) we must introduce a “meson” superfield
MA

B analogous to that emerging in the magnetic Seiberg dual, see Sect. 1, with an
appropriately superpotential. After the adjoint field is eliminated the theory has no
’t Hooft–Polyakov monopoles in the quasiclassical limit. Nevertheless, a non-Abelian
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Meissner effect does take place: condensation of color charges (squarks) gives rise to
non-Abelian flux tubes and confined monopoles. The very fact of their existence in
N = 1 supersymmetric QCD without adjoint scalars was not known previously. The
analysis presented in Ref. [13] is analytic and is based on the fact that the N = 1
theory under consideration can be obtained starting from N = 2 SQCD in which the
’t Hooft–Polyakov monopoles do exist, through a certain limiting procedure allowing
one to track the status of these monopoles at various stages (analogous to the one
described above and summarized in Fig. 1).

The M model shares many features with the ISS magnetic theory. I will return to
this fact later. Now I would like to note that non-BPS flux tubes in the metastable
vacua of the SO(Nc) ISS theory with Nc+N−4 flavors were found by Eto et al. [14].
In a parallel consideration, they made one extra step on the way from the SU(Nc)
ISS magnetic theory towards the M model. They gauged the baryon U(1). The
U(N) magnetic theory obtained in this way supports flux tubes in the metastable
vacua [14].

The M model can be regarded as the first cousin of QCD since the adjoint fields
typical of N = 2 are eliminated in this theory. Even though supersymmetry is
considerably weakened, the overall qualitative picture survives. This is probably
one of the most important findings at the current stage.

Can a dual of the M model be identified? If yes, this would be equivalent to the
demonstration of the non-Abelian dual Meissner effect in N = 1.

3 Dualizing (almost) M model

I started my talk from ISS who slightly mass-deformed SQCD. This small deforma-
tion led to drastic consequences in the infrared-free magnetic dual theory: emergence
of a non-supersymmetric metastable vacuum.

It turns out that further quite mild deformations of this “electric” theory result
in a dual “magnetic” theory which is very close to the M model discussed above. It
preserves all salient features of the M model.

Shifman and Yung considered [15] N = 1 SQCD with the gauge group U(Nc)
and Nc+N quark flavors (N < Nc/2). The U(1) gauge factor gauging baryon charge
is the first (but not last) distinction from ISS.

The next distinction is that we keep Nc flavors massless; the corresponding squark
fields develop (small) vacuum expectation values (VEVs) on the Higgs branch. Extra
N flavors are endowed with a mass term mq which is also small compared to ΛQ, so
that all fields are dynamical (none can be integrated out).

Within the framework of this deformation of Seiberg’s procedure, on the other
side of duality, the IR free regime is deformed to give rise to a theory which has
the gauge group U(N), Nc massive dual-quark flavors plus N massless dual-quark
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flavors. In addition to gauge interactions they are coupled to the meson field MA
B

through a superpotential. The massive flavors can be integrated out while the
massless ones develop VEVs. The theory is fully Higgsed. The scales relevant to
the electric and magnetic theories are indicated in Fig. 3.

ξ
energy

m

Λ

Λq Q

M,le
M

Q

Figure 3: Scales of the electric (open points) and dual magnetic (dashes) theories.

This set-up leads one from a slightly deformed SQCD to the magnetic dual which
is very close to the M model: it supports flux tubes (strings) at weak coupling and
confines non-Abelian (dual) monopoles. The flux tubes are not BPS-saturated,
unlike those of the M model. This is inessential.

A number of states in the magnetic theory are light in the sense that their mass
tends to zero in the limit mq → 0. Via duality these light states are in one-to-one
correspondence with the light states of the original electric theory. Thus, duality
gets extended to include (in addition to massless moduli) a part of the spectrum
which is light compared to the natural dynamical scale ΛQ but not massless.

Extended duality allows one to analyze the magnetic theory at weak coupling
and make a number of highly nontrivial predictions for the quark theory light sector
which is at strong coupling. Non-Abelian monopoles must be important in Seiberg’s
duality being related to “dual quarks.” We make one step further suggesting that
the non-Abelian monopoles of the electric theory are the “dual quarks.” The dual
quark fields condense providing (small) masses to all gauge bosons of the magnetic
theory. The way the magnetic theory is Higgsed is very peculiar — it corresponds
to baryon-operator dominated vacuum in the quark theory. Confined monopoles
of the magnetic theory are to be interpreted as certain “constituent quarks” of the
quark theory. Both form N -plets of the global unbroken SU(N) symmetry which is
present in the quark and monopole theories, on both sides of the extended duality.

In the quark theory color is screened since the theory is fully Higgsed. There
are matter fields in the fundamental representation. Therefore long strings cannot
exist. They are screened/ruptured immediately. On the dual side we do see strings,
however. The scale of the string-induced confinement

√
ξ is small in the original

quark theory, much smaller than its dynamical scale,
√
ξ ≪ ΛQ.

This apparent puzzle can be resolved if we assume that a “secondary” gauge
theory (or a “gauge cascade”) develops in the original quark theory. Assume that
massless composite “ρ mesons” whose size is ∼ Λ−1

Q are formed in the quark theory
which interact with each other via a “secondary” gauge theory whose scale parameter
is

√
ξ. At distances ∼ 1/

√
ξ the above “ρ mesons” must be viewed as massless
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gluons. It is conceivable that they are coupled to massless “secondary” quarks
which, in addition to their gauge coupling to “ρ mesons”, have nontrivial quantum
numbers with respect to the global SU(N). With respect to the original quark theory
the “secondary” quarks are colorless (“bleached”) bound states which include the
original quarks at their core. Their sizes are proportional to ∼ Λ−1

Q and, hence, they
are pointlike on the scale of ∼ 1/

√
ξ, much in the same way as “ρ mesons”-gluons.

I think this is a very interesting interpretational issue which calls for further
investigation. On the other hand, some people may want to avoid it. To this end
one can follow the road which was suggested recently by Eto et al. [16]. Conceptually
their strategy is very similar to that of their predecessors (Ref. [15]), with one crucial
exception. Eto et al. base their electric theory on SO(Nc) rather than U(Nc). Then
they endow some quarks (chiral superfields in the vector representation of SO(Nc))
with a mass terms, keeping other flavors massless. This eliminates metastable ISS
vacua. The magnetic theory supports non-Abelian strings due to the fact that
π1(SO(N)) = Z2. At the same time, spinor probe charges in the electric theory
cannot be screened.

4 Chirally symmetric quasivacuum in

supersymmetric gluodynamics?

Since mid-1980s it is known that strong- and weak-coupling calculations of the gluino
condensate in supersymmetric gluodynamics do not match. For SU(2) gauge theory
the mismatch is 5/4 (for a review see Ref. [1], Sects. 4.2, 4.3 and 7).

To explain the puzzle Kovner and Shifman suggested [17] that an extra chirally
symmetric vacuum, with the vanishing gluino condensate, exists. This conclusion
was also supported by the Veneziano-Yankielowicz effective Lagrangian [18] with
the simplest kinetic term. However, later Cachazo et al. proved [19] that supersym-
metric chirally symmetric vacuum is impossible.

The chirally symmetric vacuum may be revived in a new incarnation, of an
unstable (non-supersymmetric) minimum. This directly follows from ISS. In their
set-up the metastable vacuum is well defined as a manifold of critical points of Wtree.
In these vacua the “dynamically generated part” of the superpotential

Wdyn ∝ (detM)1/N = 0 , (5)

cf. Eqs. (1) and (2), since M = 0 in the supersymmetry breaking ISS solution.
The dynamically generated part of the superpotential is in fact a low-energy

matrix element of the operator Trλ2, as it follows from the anomaly relation

W = Wtree +
Nc

16π2
TrW 2 (6)
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(for a derivation see e.g. Sect. 3.2 of the review [1]). Hence, in the metastable ISS
vacua

〈Trλλ〉mv → 0 as M → 0 , (7)

where the subscript mv stands for metastable vacuum. Making the quark mass
m large we approach SUSY gluodynamics. Apparently, at m ∼ Λ the metastable
vacuum becomes highly unstable. Nevertheless, it may well play the role required
from the “Kovner–Shifman vacuum” in the strong-coupling instanton calculation of
the gluino condensate.

Independent arguments in favor of the chirally symmetric unstable minimum
were given by Douglas, Shelton and Torroba (see Sect. 5 of [20]).

5 Planar Equivalence

Planar equivalence is equivalence in the large-N limit of distinct QCD-like theories
in their common sectors (see [21]). Most attention received equivalence between
SUSY gluodynamics and its orientifold and Z2 orbifold daughters. The Lagrangian
of the parent theory is

L = − 1

4g2
P

Ga
µνG

a
µν +

i

g2
P

λaαDαβ̇λ̄
aβ̇ (8)

where λaα is the gluino (Weyl) field in the adjoint representation of SU(N), and
g2

P stands for the coupling constant in the parent theory. The orientifold daughter
is obtained by replacing λaα by the Dirac spinor in the two-index (symmetric or
antisymmetric) representation (to be referred to as orienti-S or orienti-AS). The
gauge coupling stays intact. To obtain the Z2 orbifold daughter (to be referred to
as orbi) we must pass to the gauge group SU(N/2)×SU(N/2), replace λaα by a
bifundamental Dirac spinor, and rescale the gauge coupling, g2

D = 2g2
P .

5.1 Brief history

Genesis of planar equivalence can be traced to string theory. In 1998 Kachru and
Silverstein studied [22] various orbifolds of R6 within the AdS/CFT correspondence,
of which I will speak later. Starting from N = 4, they obtained distinct — but
equivalent in the infinite-N limit — four-dimensional daughter gauge field theories
with matter, with varying degree of supersymmetry, all with vanishing β functions.2

The next step was made by Bershadsky et al. [23]. These authors eventually
abandoned AdS/CFT, and string methods at large. Analyzing gauge field theories
per se they proved that an infinite set of amplitudes in the orbifold daughters of the

2This statement is slightly inaccurate; I do not want to dwell on subtleties.
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parent N = 4 theory in the large-N limit coincide with those of the parent theory,
order by order in the gauge coupling. Thus, explicitly different theories have the
same planar limit, at least perturbatively.

After a few years of relative oblivion, interest in the issue of planar equivalence
was revived by Strassler [24]. He shifted the emphasis away from the search for
supersymmetric daughters, towards engineering QCD-like daughters. Strassler con-
sidered ZN orbifolds. In 2003 an orientifold daughter of SUSY gluodynamics was
suggested as a prime candidate for nonperturbative equivalence [25, 21]. At N = 3
this orientifold daughter identically reduces to one-flavor QCD! Thus, one-flavor
QCD is planar-equivalent to SUSY gluodynamics. This remarkable circumstance
allows one to copy results of these theories from one to another. For instance,
color confinement of one-flavor QCD to supersymmetric Yang–Mills, and the exact
gluino condensate in the opposite direction. This is how the quark condensate was
calculated, for the first time analytically, in one-flavor QCD [26].

5.2 Recent Developments

Kovtun, Ünsal and Yaffe formulated (and derived) [27, 28] the necessary and suffi-
cient conditions for nonperturbative planar equivalence to be valid. This condition
is nonbreaking of discrete symmetries: interchange Z2 invariance for the Z2 orbifold
daughter, and C invariance for the orientifold daughter. Although at first glance it
does not seem to be a hard problem to prove that spontaneous breaking of the dis-
crete symmetries does not occur, in fact, this is a challenging problem which defies
exhaustive solution so far.

The question of the discrete symmetry nonbreaking would be automatically
solved if one could prove that the expansion in fermion loops (say, for the vacuum
energy) is convergent in some sense [29].

To be more exact, let us give a mass term m to the fermions, and assume at first
this mass term to be large, m≫ Λ. Then the Nf expansion is certainly convergent.
The question is “is there a singularity, so that at small m the convergence is lost?”
I believe that there is no such singularity. If so, both Z2 orbi and orienti-S/AS
are nonperturbatively equivalent to supersymmetric gluodynamics. Note that this
statement does not refer to ZN orbi with N > 2. In this case no mass term is
possible in the orbi theory, it is chiral.

On what I base my belief? Consider supersymmetric gluodynamics with SUSY
slightly broken by a small mass term of gluino. At N = ∞ the vacuum structure
of this theory is exactly the same as the vacuum structure of pure Yang–Mills (the
latter was derived by Witten [30], see also [31, 32]). Thus, I would say that the
expansion in the number of fermion loops should work. This is of course not a
mathematical theorem, but rather a physics argument.

Since for given number of fermion loops and given m 6= 0 each expansion term in
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supersymmetric gluodynamics is exactly the same as the corresponding expansion
term in Z2 orbi and orienti-S/AS, the fermion loop expansions in all three theories
must be convergent.

Since in pure gauge theory, with no fermions, the vacuum is unique [30], then so
is the case for Z2 orbi and orienti-S/AS at m 6= 0. The uniqueness of the vacuum
state (for θ = 0) implies the absence of the spontaneous breaking of the discrete
symmetries in the above daughter theories.

If the statement is valid for small m 6= 0 extrapolation to m = 0 must be smooth
since none of these theories has massless particles in the limit m = 0. They all have
a mass gap ∼ Λ.

The studies of planar equivalence reminded us of a remarkable fact: so far we
have no rigorous proof of the absence of the spontaneous breaking of C invariance
in QCD-like theories [28, 33]. For P invariance such proof exists [34], it is iron-clad,
but essentially non-dynamical. Can we find a proof of C invariance? (Of course, in
QCD per se this fact is well established empirically.)

5.3 Center-group symmetry and the limit N → ∞
The planar equivalence between the parent and daughter theories described in the
beginning of Sect. 5 holds not only on R4 but in arbitrary geometry. Therefore,
one can compare phase diagrams and, in particular, temperature dependences. This
topic was open by Sannino [35], a thorough discussion was presented recently by
Ünsal [36].

There is a famous Polyakov criterion regarding confinement/deconfinement in
SU(N) Yang–Mills theories. If one compactifies R4 into R3 × S1 and considers the
Polyakov line along the compactified direction, its expectation value may or may
not vanish. If it does not vanish, the ZN symmetry — the center of the gauge
SU(N) group — is broken. On the other hand, if the Polyakov line vanishes the ZN

symmetry is unbroken. The former case corresponds to deconfinement, the latter to
confinement.

Introducing quarks may bring in a problem with this criterion, since there is no
center-group symmetry, generally speaking. This is in one-to-one correspondence
with the fact that there are no genuine long strings in QCD. They break through
quark-antiquark pair creation.

Here the N = ∞ limit helps. In SU(N) Yang–Mills theory with quarks in the
fundamental representation in the ’t Hooft limit the fundamental quarks decouple,
we are left with pure Yang–Mills which does have center group, and once it is broken,
the theory is in the confinement phase. The Polyakov line is a good order parameter.
The same is valid with regards to supersymmetric gluodynamics even at finite N .
Gluinos do not decouple at largeN , but they do not ruin the center-group symmetry.

However, consider, for instance, the AS orientifold daughter of supersymmetric
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Figure 4: One fermion loop (i.e. log det (i 6∂+ 6Aa T a
AS)) in the gluon field background

(shown as shaded areas).

gluodynamics. AtN = ∞ two-index antisymmetric fermions do not decouple. There
is no apparent center-group symmetry in this theory, right? It is clear that the
confinement/deconfinement criterion as the center-group breaking vs. nonbreaking
is in trouble. Through planar equivalence we know that at N = ∞ the temperature
behavior of this theory is exactly the same as in supersymmetric gluodynamics where
the Polyakov criterion is perfectly applicable. Where is a way out?

What seems obvious is not always correct. I want to argue that the center-group
symmetry which is not seen at the Lagrangian level in orienti theories,3 in fact,
appears dynamically in the ’t Hooft limit.

To see that this is indeed the case let us turn to a “refined” proof of planar equiv-
alence presented in [29]. The analysis is based on Nf expansion in the given “back-
ground” gluon field, with the subsequent integration over the gluon field. Figure 4
displays one-fermion loop in planar geometry (i.e. on a sphere). The gluon fields
“inside” and “outside” the loop do not communicate with each other at N → ∞.
This is indicated by distinct shadings. Averaging over the gluon field inside the loop
is independent of averaging outside. This means that in calculating this contribu-
tion we can introduce two distinct gluons, two independent SU(N)’s. Each has its
ZN center. However, only one of them survives due to the fact that the propagating
fermion has two fundamental indices upstairs. A typical multiloop contribution (five
fermion loops) is shown in Fig. 5. Here we have six distinct SU(N) gluons, with five
constraints on six ZN center groups. Again, one ZN center survives. Needless to
say, this symmetry disappears at 1/N level.

Thus, we do have a ZN center-group symmetry in orienti-S/AS! Conceptually,
this is a non-trivial statement, at the same time being a trivial consequence of planar
equivalence. After all (reduced) SUSY is also not obvious apriori in orienti theo-
ries. This observation invalidates some statements in the literature; in particular, it
restores “equal-rights” status for even and odd values of N .

3For even N there is, of course, an obvious Z2 center group, which is no match to ZN
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Figure 5: An example of fermion multiloops in the gluon field background at N → ∞.

6 D Branes in Field Theory

In 1996 Dvali and I reanalyzed [7] supersymmetric gluodynamics, found an anoma-
lous (1, 0) central charge in superalgebra, not seen at the classical level, and argued
that this central charge will be saturated by domain walls interpolating between
vacua with distinct values of the order parameter, the gluino condensate 〈λλ〉, la-
beling N distinct vacua of the theory. An exact relation expressing the wall tension
in terms of the gluino condensate was obtained. Elementary walls interpolate be-
tween vacua n and n + 1, while k-walls interpolate between n and n+ k.

In 1997 Witten interpreted [37] the above BPS walls as analogs of D-branes.
This is because their tension scales as N ∼ 1/gs rather than 1/g2

s typical of solitonic
objects (here gs is the string constant). Many promising consequences ensued. One
of them was the Acharya–Vafa derivation of the wall world-volume theory [38].
Using a wrapped D-brane picture and certain dualities they identified the k-wall
world-volume theory as 1+2 dimensional U(k) gauge theory with the field content
of N = 2 and the Chern-Simons term at level N breaking N = 2 down to N = 1.
Later Armoni and Hollowood exploited this set-up to calculate the wall-wall binding
energy [39].

In 2002 Yung and I considered N = 2 model, weakly coupled in the bulk (and,
thus, fully controllable), which supports both BPS walls and BPS flux tubes [8].
We demonstrated that a gauge field is indeed localized on the wall; for the minimal
wall this is a U(1) field while for nonminimal walls the localized gauge field is
non-Abelian. We also found a BPS wall-string junction related to the gauge field
localization. The field-theory string does end on the BPS wall, after all! The end
point of the string on the wall, after Polyakov’s dualization, becomes a source of
the electric field localized on the wall. In 2005 Sakai and Tong analyzed [40] generic
wall-string configurations. Following condensed matter physicists they called them
boojums.

Among advances of the recent years I want to single out one development: the
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so-called moduli matrix approach for description of BPS-saturated multiwall and
multistring configurations and their junctions in N = 2 U(N) theories [41, 42] (for
a review see [43]). The moduli matrix is shown to be a useful tool in exhaustive
description of all BPS solutions since it provides a universal parametrization for
complicated moduli spaces typical in multiwall and multistring configurations. The
total moduli space of multiwalls is demonstrated to be given by the complex Grass-
mann manifold SU(Nf)/[SU(N)× SU(Nf −N)×U(1)]. It can be decomposed into
various topological sectors corresponding to boundary conditions specified by partic-
ular vacua. Charges characterizing composite solitons give a negative contribution in
Abelian theories and can contribute either positively or negatively) in non-Abelian
theories. Various applications of the moduli matrix approach were worked out, for
instance, interaction rules of monopoles, vortices, and walls were derived. Among
other applications, as a test, a detailed analysis of the moduli space of axially sym-
metric 2-strings in U(2) gauge theory with two flavors was carried out [44]. The
moduli space in this case is CP(2)/Z2, a manifold containing an A1 -type (Z2) orb-
ifold singularity. This limiting case coincides with the answer obtained in the same
problem previously [45] by a totally different method.

7 Advanced perturbative calculations with gluons

and quarks

In gauge theories obtaining high orders in the perturbative expansion (multiparton
scattering amplitudes at tree level and with loops) is an immense technical challenge.
Due to the gauge nature of interactions, the final expressions for such amplitudes
are orders of magnitude simpler than intermediate expressions.

In the 1990’s Bern, Dixon and Kosower pioneered applying string methods to
obtain loop amplitudes in supersymmetric theories. The observed simplicity of these
results (generalizing the elegant structure of the Parke-Taylor amplitude [46]) led
to an even more powerful approach based on unitarity. Their work resulted in an
advanced helicity formalism exhibiting a feature of the amplitudes, not apparent
from the Feynman rules, an astonishing simplicity. In 2003 Witten uncovered [47]
a hidden and elegant mathematical structure in terms of algebraic curves in terms
of twistor variables in gluon scattering amplitudes: he argued that the unexpected
simplicity could be understood in terms of twistor string theory.

This observation created a diverse and thriving community of theorists advancing
perturbative calculations at tree level and beyond, as it became clear that loop
diagrams in gauge theories have their own hidden symmetry structure. Most of
these results do not directly rely on twistors and twistor string theory, except for
some crucial inspiration. So far, there is no good name for this subject. Marcus
Spradlin noted that an unusually large fraction of contributors’ names start with
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the letter B .4 Therefore, perhaps, we should call it B theory, with B standing for
beautiful, much in the same way as M in M theory stands for magic. I could
mention a third reason for “B theory”: Witten linked the scattering amplitudes to
a topological string known as the “B model.”

B theory revived, at a new level, many methods of the pre-QCD era, when
S-matrix ideas ruled the world. For instance, in a powerful paper due to Britto,
Cachazo, Feng and Witten (BCFW) [48], tree-level on-shell amplitudes were shown
in a very simple and general way to obey recursion relations. Their proof was
based only on Cauchy’s theorem and general (factorization) properties of tree-level
scattering! The BCFW recursion relations gave us a way to calculate scattering
amplitudes without using any gauge fixing or unphysical intermediate states.

Although the ultimate goal of the B theory is calculating QCD amplitudes,
the concept design of various ideas and methods is carried out in supersymmetric
theories, which provide an excellent testing ground. Looking at super-Yang–Mills
offers a lot of insight into how one can deal with the problems in QCD.

Of all supersymmetric theories probably the most remarkable is N = 4 Yang–
Mills. Its special status is due to the fact that (a) it is conformal, and (b) in the
planar strong coupling limit it is dual to string theory on AdS5 × S5.

In 2005 Bern, Dixon and Smirnov calculated in this theory 2 gluons → 2 gluons
amplitude up to three loops [49]. Based on this and earlier results with Anastasiou
and Kosower [50] they suggested an ansatz for the maximally helicity violating n-
point amplitudes to all loop orders in perturbation theory in the planar limit. For
2 gluons → 2 gluons amplitude the Bern-Dixon-Smirnov conjecture takes the form

A(2 gluons → 2 gluons) = A(2 gluons → 2 gluons)tree ×

exp

[

(IR divergent) +
f(λ)

8

(

ln
s

t

)2

+ const.

]

(9)

where λ is the ’t Hooft coupling and the function f(λ) is directly related with the
cusp anomalous dimension.

Recently there was an elegant development in this issue due to Alday and Malda-
cena [51]. In a tour-de-force work they performed the strong coupling computation
by using the gauge theory/gravity duality that relates N = 4 Yang–Mills to string
theory on AdS5 ×S5. They found that the leading order result at large values of the
’t Hooft coupling λ is given by a single classical string configuration. The classical
string solution depends on the momenta kµ

i of the final and initial gluons. The

4E.g. Badger, Bedford, Berger, Bern, Bidder, Bjerrum-Bohr, Brandhuber, Britto, Buchbinder,
... (Of course, one should not forget about Cachazo, Dixon, Feng, Forde, Khoze, Kosower, Roiban,
Spradlin, Svrček, Travaglini, Vaman, Volovich, ...). This reminds me of a joke of a proof given by
a physicist that almost all numbers are prime: one is prime, two is prime, three is prime, five is
prime, while four is an exception just supporting the general rule.
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Alday-Maldacena strong coupling result perfectly matches Eq. (9)! It should be
stressed that it is an AdS/CFT match for a rather non-trivial dynamical quantity.

8 N = (2, 0) sigma model (heterotic flux tube)

Now I want to discuss a stimulating recent development due to Edalati and Tong:
heterotic flux tubes in N = 1 theories. As was mentioned, non-Abelian flux tubes
were first discovered in N = 2 SUSY Yang–Mills with the appropriately chosen
matter sector (8 supercharges). The flux tube solutions are 1/2 BPS. Hence, the
effective low-energy theory of moduli fields on the string worldsheet must have four
supercharges.

In this problem there are two classes of bosonic moduli which split from each
other: orientational moduli and two translational moduli. The orientational moduli
form CP(N − 1) model, while the translational ones do not interact. Then the
requirement of four supercharges in two dimensions unambiguously leads us to N =
(2, 2) CP(N − 1) model on the string world sheet. (Of course, in addition, there
is the N = (2, 2) free theory of translational/supertranslational moduli, which is
dynamically trivial and thus uninteresting.)

An intriguing question arises when one deforms the bulk theory to break N = 2
down to N = 1. If this is done in a judicious way, e.g. through a superpotential
W(A) for the adjoint fields,5 1/2 BPS flux tube solutions stay essentially intact.
Moreover, the number of the boson and fermion zero modes, which become moduli
fields on the string worldsheet, does not change either. However, the bulk theory
has now only four supercharges. According to the standard logic this would imply
two supercharges in the string worldsheet theory.

If superorientational and supertranslational modes are decoupled, supersym-
metrization of the orientational and translational modes occurs separately. The
orientational modes form CP(N −1) model. As well-known, requiring N = 1 SUSY
in CP(N −1) automatically leads to a nonchiral model with extended supersymme-
try, N = (2, 2). This was the line of reasoning Yung and I followed in 2005 [52] in
arguing that non-Abelian strings obtained in N = 1 bulk theories with W(A) ∝ A2

have enhanced supersymmetry.
This would be certainly true if the worldsheet theory was just CP(N − 1) sigma

model. In fact, it is C × CP(N − 1) sigma model. Edalati and Tong noted [53]
that the latter does have a generalization with two supercharges due to the fact that
superorientational and supertranslational modes gets entangled. In two dimensions
there are two distinct superalgebras with two supercharges: the nonchiral (1,1)
algebra and the chiral N = (2, 0) algebra. It is the latter which was shown [53]

5The simplest choice is W(A) ∝ A2. Inclusion of higher powers of A is possible.
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to be relevant. As a result, the right- and left-moving fermions acquire different
interactions, and the flux tube becomes heterotic!

In essence, the deformation of the CP(N − 1) model found by Edalati and Tong
reduces to a four-fermion interaction coupling left-handed superorientational fields
Ψ† j̄

1 and Ψi
1 with the left-handed fermion fields η1, η

†
1 originating from the would-be

supertranslational modes (the two modes corresponding to two supercharges that

are lost in the transition from N = 2 to N = 1). It is of the type Rij̄ Ψi
1Ψ

† j̄
1 η1η

†
1.

Direct derivation of such terms from the bulk theory is quite tricky. Instead, Edalati
and Tong considered a class of superpotentials W(A) in the bulk theory, derived
the corresponding bosonic sector of the worldsheet theory and then reconstructed
the fermionic sector using N = (2, 0). As an independent check they showed that
various symmetries of the bosonic sector of the worldsheet theory match symmetries
of the bulk theory.

Direct derivation of the fermionic sector of string worldsheet theories for various
N = 1 bulk theories supporting non-Abelian 1/2 BPS flux tubes remains an open
question.

Very promising developments are expected to follow [54].
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