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Scalar fields in Cosmology
• The phenomenology of scalar fields in the standard model can be rather

exotic, especially the Higgs sector is a gateway to hidden sectors.
• What about cosmology?
• Scalar fields are used to explain different phenomena (dark energy,

inflation…)
• Let me have a different perspective and raise the following question:

given what we know of cosmology ( ΛCDM), what does it take for a
scalar field to fluctuate today and hence to impact our universe today?

• The expansion of a scalar field in a expanding universe is given by

• Deriving this equation is trivial: assume Robertson-Walker metric and
use Einstein’s equations.

• Finding a solution is easy:

with



• Thus oscillations at time H are possible iff                       .

• Note that if the mass is much bigger than H, the field has reached a
minimum a long time ago and will not impact our present universe.

• However today

• How do we get such a small scalar mass?

• A regular mass term               will not do the work!

• Let us study the operator



• The action we are considering is given by:

• The corresponding field equations are:

with

where       plays the role of a mass term.



• It is useful to rewrite the field equation as

• With

• Newton’s constant is space-time dependent, this could easily
lead to a time dependence of the couplings of the standard
model.



• Using the contracted Einstein equation, we get

• The scalar field is now massive!
• Using                          and                                           we find:

• where we assumed   we thus find
• This scalar is thus relevant in today’s universe!
• For the time change of the Newton constant we obtain:

! = 1



• Our action can be mapped to a Jordan-Brans-Dicke action:

• with a space-time dependent parameter

• If we assume that the scalar field oscillates slowly we can use
the bound on the parameter of the JBD-theory (                ) and
obtain:

• and thus the time change since the Big Bang of the Newton
constant is bounded

! > 500



• A consequence can be a time variation of physical “constants”.
• If the controversial observation of Webb et al:

turned out to be correct, a natural way to describe it is a very light
scalar field.

• We could then interpret the time variation as a renormalization
effects (the details depend on the unification scheme).

• This effect is expected in Kaluza-Klein models as shown by
Marciano in 1984.



• Let us now look at the theory in the Einstein frame:

• One gets:

• Note that physics is not identical in both frames.



• Let us now expand the cosh term:

• Could we in principle have a Higgs effect? Let us assume for a
second that the scalar field is gauged.

• If             (de Sitter)  and           : no Higgs effect
• If             (anti-de Sitter)  and          or           : no Higgs effect
• If             (de Sitter)  and           : Higgs effect possible
• Note that we could have introduced a self-interaction term:
• In that case Higgs mechanism is possible both in anti-de Sitter

and de Sitter cases.

! > 0 ! > 0

! < 0

! < 0 ! < 0! > 0

! > 0



• So far we had to rely on fine-tuning to obtain a small scalar mass.
However local conformal symmetry can be imposed in the scalar sector:

• Self-interaction term is also possible                    however  it does not
introduce interesting effects.

• We are assuming that conformal invariance is broken in the gravity sector,
this will induce a conformal symmetry breaking in the scalar sector. This
is rather exotic physics. Let us thus have a model independent approach
and assume only that we are living in an expanding universe.

• The expansion of our scalar field in a Robertson-Walker universe is given
by:

• with the deceleration parameter given by:



• We thus obtain:

• using the input                       and                    i.e.

• we find:

• In other words: because the cosmological constant is of the
same order of magnitude as today’s Hubble time, a scalar field
coupled in a conformal manner to gravity would have a mass
term of the order of the Hubble time and thus will be active in
today’s universe.



• Coupling to Higgs field is dangerous!

• It thus has to couple only gravitationally to the SM which is fine
since it’s a gauge singlet.

• Local conformal invariance is required  to maintain a light scalar
field. What about conformal invariance in other sectors? Much
progress on conformal invariance in the Higgs sector: Coleman-
Weinberg does not work in the minimal SM but does work if a
singlet is added (e.g. Meissner and Nicolai).

How does the scalar field couple to SM?



• Much progress has been done as well in conformal gravity (e.g.
Mannheim):

• This action leads to a fourth order PDG. However ghost is not an
issue if you look at the quantum theory from the PT symmetric
point of view (Bender and Mannheim ): spectrum is real.

• Do we have any hint of how scales are introduced in the SM?
Maybe: typical thought experiments lead to two bounds:
– QM:

– Gravitational bound:

• Could nature be described by a theory which is scale invariant at
tree level?



Conclusions
• We have considered a scalar field coupled in a non minimal way to

the Ricci scalar.
• This mechanism naturally leads to a very light cosmological scalar

field which is active today and could lead for example to a time
variation of the Newton constant.

• The reason is that the cosmological constant is of the same order of
magnitude as today’s Hubble time: we live at an interesting time.

• There has been some interesting progress in conformal gravity (see
recent papers by Mannheim, Bender and Mannheim): developments
in PT-symmetric quantum mechanics open the door to a viable
alternative to Einstein’s gravity. If this mechanism is correct, one
typically ends up with scalar fields couple in a non-minimal way to
gravity.

• Thank you for your attention!



Backup



A minimal length from QM and GR

        Assumptions:
• Hoop Conjecture (GR): if an amount of energy E

is confined to a ball of size R, where R < E, then
that region will eventually evolve into a black
hole.

• Quantum Mechanics: uncertainty  relation.

Claim: GR and QM imply
that  no operational
procedure exists which can
measure a distance less than
the Planck length.

Minimal Ball of uncertainty:
Consider a particle of Energy E which is not already a Black hole.
Its size r must satisfy:

where 1/E is the Compton wavelength and E comes from the 
Hoop Conjecture. We find:



Our concrete model: 
We assume that the position operator 
has discrete eigenvalues separated by a 
distance lP or smaller.

         Could an interferometer do better?



• At least one of the uncertainties Δx(0) or Δx(t) must be larger  than:

• A measurement of the discreteness of x(0) requires two position
measurements, so it is limited by the greater of

    Δx(0) or Δx(t):

• This is the bound we obtain from Quantum Mechanics.



• To avoid gravitational collapse, the size R of our measuring device must
also grow such that R > M.

• However, by causality R cannot exceed t.
• GR and causality imply:

• Combined with the QM bound, they require Δx > 1 in Planck units or

• This derivation was not specific to an interferometer - the result is device
independent: no device subject to quantum mechanics, gravity and
causality can exclude the quantization of position on distances less than the
Planck length.


