Masahiro Ibe (SLAC)

SUSY 07 Karlsruhe, July 30th, 2007

Based on works with Ryuichiro Kitano (SLAC)

hep-ph/0611111 0705.3686 [hep-ph]

Introduction

LHC is coming soon.

To list "well-motivated" models to be tested is still important.

If the model can be parametrized simply and predicts distinctive features, so much the better.

Introduction

Sweet Spot Supersymmetry

Gauge Mediation Model for Gaugino + Matter +

Direct Mediation to Higgs Sector (µ-term + Higgs soft masses)

- No μ-problem, No CP-problem
- MSSM is determined by three parameters
- Distinctive Spectrum
- Consistent gravitino DM scenario

Table of contents

- Introduction
- Sweet Spot Supersymmetry
- LHC signatures

SUSY Breaking & Mediation Mechanisms

Let us assume that the SUSY is mainly broken by an F-term of $S=(s,\psi_S,F_S)$. scalar Goldstino F-term (non vanishing)

- \red Let us assume that the SUSY is mainly broken by an F-term of $S=(s,\psi_S,F_S)$.
- $ightharpoonup^{\circ}$ In terms of S, we can write down an effective theory of SUSY breaking sector;

$$K = S^{\dagger}S - \frac{(S^{\dagger}S)^2}{\Lambda^2} + \cdots$$

$$M = m^2S$$
 Higher oder terms

Tadpole term for SUSY breaking

 Λ is the mass scale of the massive fields.

4/24

- $begin{cases} egin{cases} e$
- ${
 m \ref{S}}$ Scalar mass $m_S=2rac{\langle F_S
 angle}{\Lambda}$
- Gravitino (Goldstino) $m_{3/2} = \frac{\langle F_S \rangle}{\sqrt{3} M_P}$

We can discuss physics of hidden sector below the scale Λ , with this effective theory with only two parameters $(m_{3/2}, \Lambda)$.

Gauge Mediation Model for Gaugino + Matter

Direct Mediation to Higgs Sector (µ-term + Higgs soft masses)

- No μ-problem, No CP-problem
- MSSM is determined by three parameters
- Distinctive Spectrum
- New production mechanism of gravitino DM

In terms of S, SSS is given by;

$$K = S^{\dagger}S - \frac{(S^{\dagger}S)^{2}}{\Lambda^{2}}$$

$$+ \left(\frac{c_{\mu}S^{\dagger}H_{u}H_{d}}{\Lambda} + \text{h.c.}\right) - \frac{c_{H}S^{\dagger}S(H_{u}^{\dagger}H_{u} + H_{d}^{\dagger}H_{d})}{\Lambda^{2}}$$

$$+ \left(1 - \frac{4g^{4}}{(4\pi)^{4}}C_{2}(\log|S|)^{2}\right)\Phi^{\dagger}\Phi$$

$$W = W_{\text{Yukawa}} + m^{2}S + w_{0}$$

$$+ \frac{1}{2}\left(\frac{1}{g^{2}} - \frac{2}{(4\pi)^{2}}\log S\right)\mathcal{W}^{\alpha}\mathcal{W}_{\alpha}$$

$$\langle S \rangle = \frac{\sqrt{3}}{6}\frac{\Lambda^{2}}{M_{P}} + \langle F_{S} \rangle \theta^{2}$$

In terms of S, SSS is given by;

$$K = S^{\dagger}S - \frac{(S^{\dagger}S)^{2}}{\Lambda^{2}} \longleftarrow \text{SUSY breaking sector}$$

$$+ \left(\frac{c_{\mu}S^{\dagger}H_{\mu}H_{d}}{\Lambda} + \text{h.c.}\right) / \frac{MS^{\dagger}S(H_{\mu}^{3}H_{u} + H_{d}^{\dagger}H_{d})}{\Lambda^{2}}$$

$$+ \left(1 - \frac{4g^{\dagger}}{(4\pi)^{4}}C_{2}(\log f^{\prime})^{2}\right) \Phi^{\dagger}\Phi$$

$$W = W_{\text{Mikawa}} \left(\frac{m^{2}S + w_{0}}{4}\right)$$

$$+ \frac{1}{2}\left(\frac{1}{st^{2}} - \frac{1}{(4\sqrt{2})^{2}}\log S\right)W^{*}W_{h}$$

$$\langle S \rangle = \frac{\sqrt{3}}{6} \frac{\Lambda^{2}}{M_{P}} + (F_{S})\theta^{2}$$

In terms of S, SSS is given by;

$$K = S^\dagger S - \frac{(S^\dagger S)^2}{\Lambda^2} \longleftarrow \text{SUSY breaking sector}$$

$$\frac{|V(s)| \simeq m_S^2 |s|^2}{\Lambda^2} - 2m^2 |w_0| s$$

$$\frac{|w_0| \simeq m^2 M_{\rm Pl} / \sqrt{3}}{supergravity}$$

$$m_S^4 = 4 \frac{m^4}{\Lambda^2}$$

$$|w_0| \simeq m^2 M_{\rm Pl} / \sqrt{3},$$

$$(\langle V \rangle \simeq |m^2|^2 - 3|w_0|^2 \simeq 0)$$

$$\langle S \rangle = \frac{\sqrt{3}}{6} \frac{\Lambda^2}{M_P} + \langle F_S \rangle \theta^2$$

$$\begin{cases} \langle S \rangle \simeq 2 \frac{m^2 |w^0|}{m_S^2} \neq 0 \end{cases}$$

9/24

In terms of S, SSS is given by;

$$K = S^{\dagger}S - \frac{(S^{\dagger}S)^{2}}{\Lambda^{2}}$$

$$+ \left(1 - \frac{4g^{4}}{(4\pi)^{4}}C_{2}(\log|S|)^{2}\right) \Phi^{\dagger}\Phi$$

$$W = W_{Yakawa} + m^{2}S + w_{0}$$

$$+ \frac{1}{2} \left(\frac{1}{g^{2}} \left(-\frac{2}{(4\pi)^{2}}\log S\right) \mathcal{W}^{\alpha}\mathcal{W}_{\alpha}$$

$$\langle S \rangle = \frac{\sqrt{3}}{6} \frac{\Lambda^{2}}{M_{P}} + \langle F_{S} \rangle \theta^{2}$$

$$= 6m_{3}$$

$$m_{\text{gaugino}} = \frac{g^2}{(4\pi)^2} \frac{\langle F_S \rangle}{\langle s \rangle}$$
 m_{scalar}^2

$$= \left(\frac{g^2}{(4\pi)^2}\right)^2 \cdot 2C_2 \left|\frac{\langle F_S \rangle}{\langle s \rangle}\right|^2$$

$$\frac{\langle F_S \rangle}{\langle s \rangle} = \frac{2\sqrt{3}m^2 M_P}{\Lambda^2}$$
$$= 6m_{3/2} \left(\frac{M_P}{\Lambda}\right)^2$$

In terms of S, SSS is given by;

$$K = S^{\dagger}S - \frac{(S^{\dagger}S)^{2}}{\Lambda^{2}}$$

$$+ \left(\frac{c_{\mu}S^{\dagger}H_{u}H_{d}}{\Lambda} + \text{h.c.}\right) - \frac{c_{H}S^{\dagger}S(H_{u}^{\dagger}H_{u} + H_{d}^{\dagger}H_{d})}{\Lambda^{2}}$$

direct coupling between SUSY breaking and Higgs sector (Giudice-Masiero Mechanism)

PQ-symmetry

$$S: +2 \quad H_u: +1 \quad H_d: +1$$

$$\langle S \rangle = \frac{\sqrt{3}}{6} \frac{\Lambda}{M_P} + \langle F_S \rangle \theta^2$$

$$\mu = c_{\mu} \frac{\langle F_S \rangle}{\Lambda} \sim m_{3/2} \left(\frac{M_P}{\Lambda} \right)$$

$$B\mu = 0$$

No CP-phase

$$m_{H_{u,d}}^2 = c_H \left| \frac{\langle F_S \rangle}{\Lambda} \right|^2$$

$$\sim m_{3/2}^2 \left(\frac{M_P}{\Lambda} \right)^2$$

Gauge Mediated masses

$$m_{\rm gaugino} \simeq m_{\rm scalar} \simeq \frac{g^2}{(4\pi)^2} m_{3/2} \left(\frac{M_P}{\Lambda}\right)^2$$

Giudice-Masiero mechanism + PQ-symmetry

$$\mu \simeq |m_{H_{u,d}}| \sim m_{3/2} \left(\frac{M_P}{\Lambda}\right)$$

$$B\mu = 0$$
 ——— No CP-problem

Sweet Spot
$$(c_{\mu} = O(1))_2$$

$$m_{\rm gaugino} \sim \mu \longrightarrow \Lambda \sim \frac{g^2}{(4\pi)^2} M_P \longrightarrow \Lambda \sim M_{\rm GUT} \longrightarrow \langle s \rangle \simeq 10^{14} {\rm GeV}$$

$$m_{\rm gaugino} = O(100) \,\text{GeV}$$
 \longrightarrow $m_{3/2} = O(1) \,\text{GeV}$

$$m_{3/2} = O(1) \,\text{GeV}$$

Free Parameters

$$\Lambda = c_{\mu} = c_{H} = m^{2} = M_{
m mess}$$

$$K = S^{\dagger}S - \frac{(S^{\dagger}S)^{2}}{\Lambda^{2}}$$

$$\left(+ \left(\frac{c_{\mu}SH_{u}H_{d}}{\Lambda} + \text{h.c.} \right) - \frac{c_{H}S^{\dagger}S(H_{u}^{\dagger}H_{u} + H_{d}^{\dagger}H_{d})}{\Lambda^{2}} \right)$$

$$+ \left(1 \left(-\frac{4g^{4}}{(4\pi)^{4}}C_{2}(\log|S|)^{2} \right) \Phi^{\dagger}\Phi$$

$$W = W_{\text{Yukawa}} + m^{2}S + w_{0}$$

$$+ \frac{1}{2} \left(\frac{1}{g^{2}} \left(-\frac{2}{(4\pi)^{2}} \log S \right) \mathcal{W}^{\alpha}\mathcal{W}_{\alpha}$$

$$\langle S \rangle = \sqrt{\frac{3}{6}} \frac{\Lambda^{2}}{M_{B}} + F_{S} \rangle \theta^{2}$$

$$\cdot (\langle s \rangle \simeq 10^{14} \text{GeV})$$

These are supported by gravitino DM produced by the decay of "s".

Gauge Mediated masses

$$m_{\rm gaugino} \simeq m_{\rm scalar} \simeq \frac{g^2}{(4\pi)^2} m_{3/2} \left(\frac{M_P}{\Lambda}\right)^2$$

Giudice-Masiero mechanism + PQ-symmetry

$$\mu \simeq |m_{H_{u,d}}| \sim m_{3/2} \left(\frac{M_P}{\Lambda}\right)$$

$$B\mu = 0$$
 — No CP-problem

Sweet Spot
$$(c_{\mu} = O(1))$$

Sweet Spot
$$(c_{\mu} = O(1))$$

 $m_{\rm gaugino} \sim \mu \longrightarrow \Lambda \sim \frac{g^2}{(4\pi)^2} M_P \longrightarrow \Lambda \sim M_{\rm GUT}$ $\longrightarrow \langle s \rangle \simeq 10^{14} {\rm GeV}$

$$m_{\text{gaugino}} = O(100) \,\text{GeV}$$
 \longrightarrow $m_{3/2} = O(1) \,\text{GeV}$

 $+\left(1 - \frac{4g^4}{(4\pi)^4} C_2(\log |S|)^2\right) \Phi^{\dagger} \Phi$

 $W = W_{\text{Yukawa}} + m^2 S + w_0$

 $K = S^{\dagger}S - \frac{(S^{\dagger}S)^2}{\Lambda^2}$

These are supported by gravitino DM produced by the decay of "s".

 $\left(rac{c_{\mu}SH_{u}H_{d}}{\Lambda}+ ext{h.c.}
ight)-rac{c_{H}S^{\dagger}S(H_{u}^{\dagger}H_{u}+H_{d}^{\dagger}H_{d}^{\dagger}H_{d}^{\dagger})}{\Lambda^{2}}$

Free Parameters

$$m_{\tilde{g}}$$
 μ $m_{H_{u,d}}^2$ $m_{3/2}$ M_{mess}

Gauge Mediated masses

$$m_{\rm gaugino} \simeq m_{\rm scalar} \simeq \frac{g^2}{(4\pi)^2} m_{3/2} \left(\frac{M_P}{\Lambda}\right)^2$$

Giudice-Masiero mechanism + PQ-symmetry

$$\mu \simeq |m_{H_{u,d}}| \sim m_{3/2} \left(\frac{M_P}{\Lambda}\right)$$

$$B\mu = 0$$
 — No CP-problem

Sweet Spot
$$(c_{\mu} = O(1))_2$$

$$m_{\rm gaugino} \sim \mu \longrightarrow \Lambda \sim \frac{g^2}{(4\pi)^2} M_P \longrightarrow \Lambda \sim M_{\rm GUT} \longrightarrow \langle s \rangle \simeq 10^{14} \text{GeV}$$

$$m_{\rm gaugino} = O(100) \,\text{GeV}$$
 \longrightarrow $m_{3/2} = O(1) \,\text{GeV}$

$\sqrt{\lambda}$ 1014 α α

 $+\left(1\left(-\frac{4g^4}{(4\pi)^4}C_2(\log|S|)^2\right)\Phi^\dagger\Phi^\dagger$

 $W = W_{\text{Yukawa}} + m^2 S + w_0$

 $K = S^{\dagger}S - \frac{(S^{\dagger}S)^2}{\Lambda^2}$

These are supported by gravitino DM produced by the decay of "s".

 $\left(+ \left(\frac{c_{\mu} S H_u H_d}{\Lambda} + \text{h.c.} \right) - \frac{c_H S^{\dagger} S (H_u^{\dagger} H_u + H_d^{\dagger} H_u)}{\Lambda^2} \right)$

Free Parameters (EWSB)

$$m_{\tilde{g}}$$
 μ $m_{N_{u,d}}$ $m_{3/2}$ M_{mess}

Gauge Mediated masses

$$m_{\rm gaugino} \simeq m_{\rm scalar} \simeq \frac{g^2}{(4\pi)^2} m_{3/2} \left(\frac{M_P}{\Lambda}\right)^2$$

Giudice-Masiero mechanism + PQ-symmetry

$$\mu \simeq |m_{H_{u,d}}| \sim m_{3/2} \left(\frac{M_P}{\Lambda}\right)$$

$$B\mu = 0$$
 — No CP-problem

Sweet Spot
$$(c_{\mu} = O(1))$$

Sweet Spot
$$(c_{\mu} = O(1))$$
 $m_{\rm gaugino} \sim \mu \longrightarrow \Lambda \sim \frac{g^2}{(4\pi)^2} M_P \longrightarrow \Lambda \sim M_{\rm GUT}$

$$m_{\text{gaugino}} = O(100) \,\text{GeV}$$
 \longrightarrow $m_{3/2} = O(1) \,\text{GeV}$

$$K = S^{\dagger}S - \frac{(S^{\dagger}S)^{2}}{\Lambda^{2}}$$

$$\left(+ \left(\frac{c_{\mu}SH_{u}H_{d}}{\Lambda} + \text{h.c.} \right) - \frac{c_{H}S^{\dagger}S(H_{u}^{\dagger}H_{u} + H_{d}^{\dagger}H_{d})}{\Lambda^{2}} \right)$$

$$+ \left(1 \left(-\frac{4g^{4}}{(4\pi)^{4}}C_{2}(\log|S|)^{2} \right) \Phi^{\dagger}\Phi$$

$$W = W_{\text{Yukawa}} + m^{2}S + w_{0}$$

$$+ \frac{1}{2} \left(\frac{1}{g^{2}} \left(-\frac{2}{(4\pi)^{2}} \log S \right) W^{\alpha}W_{\alpha}$$

$$\langle S \rangle = \sqrt{\frac{3}{6}} \frac{\Lambda^{2}}{M_{D}} + F_{S} \rangle \theta^{2}$$

Low energy phenomenology

Free Parameters (EWSB)

$$m_{\tilde{g}}$$
 μ $m_{N_{u,d}}$ $m_{3/2}$ M_{mess}

Cosmology

Two mediation scale \longrightarrow Peculiar spectrum

14/24

An example of UV-model

$$K = S^{\dagger}S - \frac{(S^{\dagger}S)^{2}}{\Lambda^{2}}$$

$$+ \left(\frac{c_{\mu}S^{\dagger}H_{u}H_{d}}{\Lambda} + \text{h.c.}\right) - \frac{c_{H}S^{\dagger}S(H_{u}^{\dagger}H_{u} + H_{d}^{\dagger}H_{d})}{\Lambda^{2}}$$

(One-loop calculation)

$$W_S=m^2S+rac{\kappa}{2}SX^2+M_{XY}XY$$
 , O'Raifeartaigh Model $W_{
m Higgs}=hH_uar qX+ar hH_dqX+M_qqar q$, (PQ-sym)

colored Higgs

These superpotentials can be embedded into a product group GUT model (SO(9)XSU(5) or SO(6)XSU(5)) ['06 R. Kitano].

$$\longrightarrow M_{XY} \sim M_q \sim M_{\rm GUT} \simeq 10^{16} {\rm GeV}$$
15/24

An example of UV-model

$$K = S^{\dagger}S - \frac{(S^{\dagger}S)^{2}}{\Lambda^{2}}$$

$$+ \left(\frac{c_{\mu}S^{\dagger}H}{\Lambda} H_{d} + \text{h.c.}\right) - \frac{c_{H}S^{\dagger}S(H_{u}^{\dagger}H_{u} + H_{d}^{\dagger}H_{d})}{\Lambda^{2}}$$

$$W_S = m^2 S + rac{\kappa}{2} S X^2 + M_{XY} X Y$$
 , O'Raifeartaigh Model

An example of UV-model

An example of UV-model

$$K = S^{\dagger}S - \frac{(S^{\dagger}S)^{2}}{\Lambda^{2}}$$

$$+ \left(\frac{c_{\mu}S^{\dagger}H_{u}H_{d}}{\Lambda} + \text{h.c.}\right) - \frac{c_{H}S^{\dagger}S(H_{u}^{\dagger}H_{u} + H_{d}^{\dagger}H_{d})}{\Lambda^{2}}$$

Perturbative example

$$m_{H_{u,d}}^2 > 0 \longrightarrow \text{Light Stau}$$
 $m_{H_{u,d}}^2 \sim \text{(1-loop)}, \ \mu \sim \text{(1-loop)}$ $\longrightarrow \mu/m_{H_{u,d}} \sim \text{(1-loop)}^{1/2}$ $\longrightarrow \text{Light Higgsino}$ $15/24$

Prediction of (perturbative) SSS

Light Stau (Stau NLSP can be easily realized)
Light Higgsino
Large tanß

Sweet Spot Supersymmetry

Three low energy parameters $(\mu, M_{ ext{mess}}, ar{M})$

$$\uparrow m_{\rm gaugino} = g^2 \bar{M}$$

We can reconstruct model parameters by measuring three masses.

Benchmark Point

$$\mu = 300 \text{ GeV}$$
, $M_{\text{mess}} = 10^{10} \text{ GeV}$, $\bar{M} = 900 \text{ GeV}$

——→ gluinos, squarks ~ 1TeV

$$\sigma(pp \to \tilde{g}\tilde{g}, \tilde{g}\tilde{q}, \tilde{q}\tilde{q}) \simeq 1.4 \,\mathrm{pb}$$

Spectrum

$$\begin{array}{|c|c|c|c|c|c|c|} \tilde{g} & 1013 & \tilde{\nu}_L & 543 \\ \chi_1^{\pm} & 270 & \tilde{t}_1 & 955 \\ \chi_2^{\pm} & 404 & \tilde{t}_2 & 1177 \\ \chi_1^0 & 187 & \tilde{b}_1 & 1128 \\ \chi_2^0 & 276 & \tilde{b}_2 & 1170 \\ \chi_3^0 & 307 & \tilde{\tau}_1 & 116 \\ \chi_4^0 & 404 & \tilde{\tau}_2 & 510 \\ \tilde{u}_L & 1352 & \tilde{\nu}_{\tau} & 502 \\ \tilde{u}_R & 1263 & h^0 & 115 \\ \tilde{d}_L & 1354 & H^0 & 770 \\ \tilde{d}_R & 1251 & A^0 & 765 \\ \tilde{e}_L & 549 & H^{\pm} & 775 \\ \tilde{e}_R & 317 & \tilde{G} & 0.5 \\ \end{array}$$

$$\tan \beta = 37$$
 (output)

Decay modes

Typical Event at LHC

Many b/τ -jets + low-velocity 2 charged tracks

difficult to analyze...

Stau Mass Measurement

['00 Ambrosanio,Mele,Petrarca,Polesello,Rimoldi] For $m_{ ilde{ au}_1} \simeq$ 100GeV stau mass can be measured with an accuracy of 100MeV.

Reconstruction of neutralino masses

cf.The analysis with leptonic modes discussed in ['06 Ellis,Raklev,Oye] is difficult in our case.

Select events with 2 stau candidates. (one of them should be slow $\beta\gamma < 2.2$) Select events with 1 tau-jet candidate.


```
42,900 (30fb<sup>-1</sup>) SUSY event

After selection

2000 event
```

Main background
Wrong combination of tau-stau
We chose a stau for the smaller
invariant mass. (efficiency 70%)
Miss-tagging of non-tau-jet
tau-tag efficiency 50%
mis-tag probability 1%

We can determine masses of χ_1^0, χ_2^0 with an accuracy of 0(5)%.

We can determine masses of χ_1^0, χ_2^0 with an accuracy of O(5)%.

Parameter Reconstruction

$$(m_{\chi_{1,2}^0} \longrightarrow \mu, \ \bar{M})$$
 $(m_{\tilde{\tau}_1} \longrightarrow M_{
m mess})$
 $\Delta \mu \sim 20 \, {
m GeV} \ \Delta \bar{M} \sim 50 \, {
m GeV}$
 $\Delta \log_{10} M_{
m mess} \sim 0.2$

$$M_A = 745 \pm 40 \,\mathrm{GeV}$$

We can perform non-trivial check! 23/24

Summary

Sweet Spot Supersymmetry

- No μ-problem, No CP-problem
- Light Stau + Light Higgsino

 Collider signal can be different

 from minimal gauge mediation.
- MSSM is determined by three parameters

 We can perform consistency
 check of the model at LHC.

AcerDET

Isolated Leptons, Photon

Isolated from other clusters by $\Delta R = 0.4$.

Transverse energy deposited in cells in a cone $\Delta R = 0.2$ around the cluster is less than 10GeV.

Jet

A cluster is recognized as a jet by a cone-based algorithm if it has pT > 15 GeV in a cone $\Delta R = 0.4$.

Labeled either as a light jet, b-jet, c-jet or t-jet, using information of the event generators.

A flavor independent calibration of jet four-momenta optimized to give a proper scale for the di-jet decay of a light Higgs boson.

Event Selection

Triggering ['99 Atlas Collabolation]

```
one isolated electron with pT > 20 GeV; one isolated photon with pT > 40 GeV; two isolated electrons/photons with pT > 15 GeV; one muon with pT > 20 GeV; two muons with pT > 6 GeV; one isolated electron with pT > 15 GeV + one isolated muon with pT > 6 GeV; one jet with pT > 180 GeV; three jets with pT > 75 GeV; four jets with pT > 55 GeV.
```

Isolated electrons/photons, muons and jets in the central regions of pseudorapidity Inl < 2.5, 2.4, and 3.2, respectively.

Staus with $\beta\gamma > 0.9$ as muons in the simulation of triggering. ['06 Ellis, Raklev, Oye]

Event Selection

Two stau candidates for neutralino reconstruction (consistent with measured stau mass)

$$\beta' - 0.05 < \beta_{\text{meas}} < \beta' + 0.05$$
,
 $\beta' = \sqrt{p_{\text{meas}}^2/(p_{\text{meas}}^2 + m_{\tilde{\tau}_1}^2)}$

Both have pT>40GeV, $\beta/\gamma>0.4$ One of the stau candidates must have $\beta\gamma<2.2$

 $M_{\rm eff}$ >800GeV ——— SM background negligible ['00 Ambrosanio, Mele, Petrarca, Polesello, Rimoldi]

One tau-jet candidate