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Introduction

LHC is coming soon.
By checking the 
consistency of the 
models with signatures 
one by one is necessary 
to understand what 
theory is present at high 
energy scale.

To list “well-motivated” models to 
be tested is still important.

If the model can be parametrized simply 
and predicts distinctive features, so 
much the better.
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Introduction

Sweet Spot Supersymmetry

 Gauge Mediation Model for Gaugino + Matter

Direct Mediation to Higgs Sector
＋

(μ-term + Higgs soft masses)

Distinctive Spectrum

No μ-problem, No CP-problem

MSSM is determined by three parameters

Consistent gravitino DM scenario
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Let us assume that the SUSY is mainly 
broken by an F-term of              .

SUSY Breaking & Mediation Mechanisms

S = (s,ψS , FS)

scalar
Goldstino F-term

　(non vanishing)
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Let us assume that the SUSY is mainly 
broken by an F-term of              .S = (s,ψS , FS)

In terms of　 , we can write down an 
effective theory of SUSY breaking sector;

S

K = S†S − (S†S)2

Λ2
+ · · ·

W = m2S

Tadpole term for 
SUSY breaking

    is the mass scale of 
the massive fields. 

Λ

Higher oder terms
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K = S†S − (S†S)2

Λ2
+ · · ·

W = m2S

F-term　 〈FS〉 = m2

Scalar mass mS = 2
〈FS〉
Λ

Gravitino (Goldstino) m3/2 =
〈FS〉√
3MP

We can discuss physics of hidden sector below 
the scale  , with this effective theory with 
only two parameters         .

Λ
(m3/2,Λ)

A wide class of the 
Hidden Sector Models 
can be described by this 
effective theory. 
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 Gauge Mediation Model for Gaugino + Matter

Direct Mediation to Higgs Sector
＋

(μ-term + Higgs soft masses)

Distinctive Spectrum

No μ-problem, No CP-problem
MSSM is determined by three parameters

New production mechanism of gravitino DM

Sweet Spot Supersymmetry
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K = S†S − (S†S)2

Λ2

+
(

1− 4g4

(4π)4
C2(log |S|)2

)
Φ†Φ

W = WYukawa + m2S + w0

+
1
2

(
1
g2
− 2

(4π)2
log S

)
WαWα

In terms of S, SSS is given by;

〈S〉 =
√

3
6

Λ2

MP
+ 〈FS〉θ2

+
(

cµSHuHd

Λ
+ h.c.

)
−

cHS†S(H†
uHu + H†

dHd)
Λ2

†
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In terms of S, SSS is given by;

〈S〉 =
√
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6
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MP
+ 〈FS〉θ2
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SUSY breaking sector

W =
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cµSHuHd
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−

cHS†S(H†
uHu + H†
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Λ2

†
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K = S†S − (S†S)2

Λ2

+
(

1− 4g4

(4π)4
C2(log |S|)2

)
Φ†Φ

W = WYukawa + m2S + w0

+
1
2

(
1
g2
− 2

(4π)2
log S

)
WαWα

In terms of S, SSS is given by;

〈S〉 =
√

3
6

Λ2

MP
+ 〈FS〉θ2

m2S + w0

SUSY breaking sector

W =

The chiral superfield Φ represents the matter and the Higgs superfields in the MSSM, and

WYukawa is the Yukawa interaction terms among them. We defined O(1) valued coefficients

cS , cµ, and cH . We normalize the Λ parameter so that cS = 1 in the following discussion.

The parameters cH and Λ take real values whereas cµ is a complex parameter. We consider

the supergravity Lagrangian defined by the above Kähler potential K, superpotential W , and

gauge kinetic function f . This is a closed well-defined system. The linear term of S in the

superpotential represents the source term for the F -component of S. The last term in the

superpotential, w0, is a constant, |w0| ! m2MPl/
√

3, which is needed to cancel the cosmological

constant. The scalar potential has a minimum at 〈S〉 ∼ Λ2/MPl which avoids the singularity

at S = 0. The set-up includes the dynamics of supersymmetry breaking and mediation. By

expanding fields from their vacuum expectation values, we can obtain all the mass spectrum

and interaction terms.

When we write down the Lagrangian of the standard model we usually include the Higgs

potential, V = (λH/4)(|H|2 − v2)2, and the gauge interaction terms of the Higgs boson instead

of just giving bare mass terms to the W and Z bosons. Analogous to that, the system above

contains dynamics of the supersymmetry breaking and a mechanism of its mediation instead of

simply writing down soft supersymmetry breaking terms.¶ In this sense, this way of construction

is essential for the model to be called the MSSM in a true meaning.

The effective Lagrangian is defined at the scale where the messenger fields are integrated out.

The messenger scale, k〈S〉, is not necessary to be O(〈S〉). The k parameter originally comes

from superpotential terms like, W ' kSff̄ . If the S field is a composite operator above the

scale Λ as is often the case in dynamical supersymmetry breaking scenarios, the k parameter is

suppressed by a factor of (Λ/MPl)d(S)−1, where d(S) is the dimension of the operator S above

the scale Λ. Therefore, the size of k depends on the actual mechanism of the supersymmetry

breaking.

We can see very nontrivial consistencies in this simple set-up. First, the µ-term is generated

by the Kähler term, S†HuHd/Λ:

µ =
cµFS

Λ
∼ m3/2

(

MPl

Λ

)

. (28)

With the shift of 〈S〉 in Eq. (24), the gaugino masses are

m1/2 =
g2

(4π)2
FS

〈S〉
=

g2

(4π)2
· 6m3/2

(

MPl

Λ

)2

. (29)

¶Our construction should not be confused with the spurion method of writing down the soft terms. The field
S is a propagating field and obeys the equation of motion.

14

R-symmetry is broken
by the cosmological
constant!

V (s) ! m2
S |s|2

−2m2|w0|s

m4
S = 4

m4

Λ2

supergravity

(〈V 〉 # |m2|2 − 3|w0|2 # 0)

〈s〉 # 2
m2|w0|

m2
S

$= 0

+
(

cµSHuHd

Λ
+ h.c.

)
−

cHS†S(H†
uHu + H†

dHd)
Λ2

†
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K = S†S − (S†S)2

Λ2

+
(

1− 4g4

(4π)4
C2(log |S|)2

)
Φ†Φ

W = WYukawa + m2S + w0

+
1
2

(
1
g2
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(4π)2
log S

)
WαWα

In terms of S, SSS is given by;

〈S〉 =
√

3
6

Λ2

MP
+ 〈FS〉θ2

K =

W =

Gauge Mediated 
SUSY Breaking 

=
(

g2

(4π)2

)2

· 2C2

∣∣∣∣
〈FS〉
〈s〉

∣∣∣∣
2

m2
scalar

mgaugino =
g2

(4π)2
〈FS〉
〈s〉

〈FS〉
〈s〉 =

2
√

3m2MP

Λ2

= 6m3/2

(
MP

Λ

)2

+
(

cµSHuHd

Λ
+ h.c.

)
−

cHS†S(H†
uHu + H†

dHd)
Λ2

†
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K = S†S − (S†S)2

Λ2

+
(

1− 4g4

(4π)4
C2(log |S|)2

)
Φ†Φ

W = WYukawa + m2S + w0

+
1
2

(
1
g2
− 2

(4π)2
log S

)
WαWα

In terms of S, SSS is given by;

〈S〉 =
√

3
6

Λ2

MP
+ 〈FS〉θ2

K =

direct coupling between SUSY 
breaking and Higgs sector
(Giudice-Masiero Mechanism)

 PQ-symmetry
S : +2 Hu : −1 Hd : −1

+
(

cµSHuHd

Λ
+ h.c.

)
−

cHS†S(H†
uHu + H†

dHd)
Λ2

µ = cµ
〈FS〉
Λ

∼ m3/2

(
MP

Λ

)

Bµ = 0

m2
Hu,d

= cH

∣∣∣∣
〈FS〉
Λ

∣∣∣∣
2

∼ m2
3/2

(
MP

Λ

)2

No CP-phase
+ +

†
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K = S†S − (S†S)2

Λ2

+
(

1− 4g4

(4π)4
C2(log |S|)2

)
Φ†Φ

+

W = WYukawa + m2S + w0

+
1
2

(
1
g2
− 2

(4π)2
log S

)
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〈S〉 =
√

3
6

Λ2

MP
+ 〈FS〉θ2

+
(

cµSHuHd

Λ
+ h.c.

)
−

cHS†S(H†
uHu + H†

dHd)
Λ2

mgaugino ! mscalar !
g2

(4π)2
m3/2

(
MP

Λ

)2

Bµ = 0

Gauge Mediated masses

µ ! |mHu,d | ∼ m3/2

(
MP

Λ

)

Sweet Spot
mgaugino ∼ µ Λ ∼ g2

(4π)2
MP Λ ∼MGUT

mgaugino = O(100)GeV m3/2 = O(1)GeV

Λ cµ cH m2 Mmess

Free Parameters

Giudice-Masiero mechanism + PQ-symmetry

No CP-problem

These are supported by 
gravitino DM produced
by the decay of “s”.

(cµ = O(1))

〈s〉 # 1014GeV
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Sweet Spot Supersymmetry

Weak Scale

Giudice-Masiero
Mechanism

is actually the scalar component of S itself. The S scalar has a mass of the order of 100 GeV

(see Eq. (4)) because of the linear term in the superpotential. Interactions between PQ currents

and the axion S are suppressed by the scale of the symmetry breaking 〈S〉 ∼ 1014 GeV. There

is no experimental or astrophysical constraint on such a particle. As we discussed above, the S

scalar even plays an essential role in cosmology.

Dimension-four and five proton decay problem

The dimension-four operators which violate the baryon number conservation are forbidden by

an unbroken Z2 subgroup of the PQ symmetry. This is identical to the R-parity.

Dimension five operators, such as QQQL, are allowed to appear at low energy because

the PQ symmetry is spontaneously broken. In particular, if there are following terms in the

superpotential:

SQQQL , SUUDE , (35)

the dangerous terms like QQQL and UUDE appear by substituting the vacuum expectation

value of S ∼ Λ2/MPl ∼ 1014 GeV. In GUT models, these effective operators can be generated

by diagrams with colored-Higgs exchange. In this case, the coefficients of the above operators

will typically be of O(fufd/M2
GUT) where fu and fd are the Yukawa coupling constants of

up- and down-type quarks. By substituting 〈S〉, this becomes effectively QQQL or UUDE

operators suppressed by fufd/MPl. The prediction to the proton life-time is on the border of

the experimental constraints with such coefficients [47].

UV completion

The discussion so far is based on the low energy effective theory defined in Eq. (27). This

effective theory is valid up to the messenger scale k〈S〉. Although it is not necessary for the

discussion of low energy physics to specify UV models, an existence proof of an explicit UV

completion supports our ansatz in Eq. (27).

It is straightforward to UV complete the theory above the messenger scale by simply assuming

a presence of messenger particles f and f̄ which carry the standard model quantum numbers,

and an interaction term kSff̄ . The full model is K $ f †f + f̄ †f̄ and W $ kSff̄ instead of

terms involving log S in Eq. (27).

The model with messenger fields now has a supersymmetric and hence stable vacuum at

S = 0 and f = f̄ =
√

−m2/k. However, as it has been shown in Ref. [22], there is a meta-stable

19

mgaugino

mscalar

Mmess = k〈s〉

µ

m2
Hu,d

Messenger

Λ ∼ 1016GeV

GUT scale
 physics
(PQ-sym)

RGE

RGE

Schematic Picture

Two mediation scale Peculiar spectrum

GMSB

S Hu,d
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Figure 6: The RG evolution of the supersymmetry breaking parameters. RG equations at one-
loop level are used. A parameter set (µ,Mmess, M̄) = (300, 1010 , 900) [GeV] is chosen. The
left panel shows the evolution of the soft masses for t̃R (dotted), τ̃R (dot-dashed), and Hu

(solid). The m̄X parameter is defined by m̄X ≡ sgn(m2
X)|m2

X |1/2 for each chiral superfield
X. The evolution of the µ-parameter (dashed) is also shown. Negative contributions for m̄t̃
and m̄τ̃ above the messenger scale comes from the one-loop contribution through the Yukawa
interactions. Threshold effects (gauge mediation) at the messenger scale contribute to sfermion
and the Higgs mass parameters. The m2

Hu
parameter is driven to a negative value by the

stop-loop diagrams. In the right panel, gaugino masses, A-, and B-parameter are shown. The
gaugino masses are generated at the messenger scale, and induces A- and B-terms by the one-
loop running. For the phase convention of A- and B-terms, we have used the one defined in
Ref. [58].

We show in Fig. 6 an example of the RG evolution of soft supersymmetry breaking parameters

for (µ,Mmess, M̄) = (300 GeV, 1010 GeV, 900 GeV). The horizontal axis µR is the RG scale.

We have used the top quark mass, mt = 170.9 GeV [59]. The constraint from the electroweak

symmetry breaking fixes the m2
H parameter to be (817 GeV)2. The choice of parameters is

motivated by the discussion in the last section. The positive value of m2
H and a relatively small

value of µ(MGUT) compared to
√

m2
H are realized with this set of parameters. The lightest

Higgs boson mass is calculated to be 115 GeV. We will use this set of parameters in a collider

study in Section 4.

In the left panel of Fig. 6, scalar masses and the µ-parameter are plotted. We have defined

mass parameters m̄X ≡ sgn(m2
X)|m2

X |1/2 for each scalar mass parameter m2
X . Several interesting

things are happening here. With non-zero positive values of m2
H the Yukawa interactions induces

negative masses squared for sfermions in the third generation. The positive values are motivated

27

GMSB GMSB GM-mechGM-mech

m2
Hu,d

tanβ = 37
(output)

affect other scalar masses

SSS predicts light stau 
Λ Mmess

(mH
2
d,u > 0)

between and
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An example of UV-model

K = S†S − (S†S)2

Λ2

++
(

cµSHuHd

Λ
+ h.c.

)
−

cHS†S(H†
uHu + H†

dHd)
Λ2

S†

Hu Hd

X

q̄ q

S

Hu
q̄

X X X

H†
u

S† X
S

X X

S† X

X
S S†

Figure 3: Feynman diagrams to generate higher dimensional operators in a UV model.

minimum at 〈S〉 ∼ Λ2/MPl where supersymmetry is broken and messenger fields are massive.

The effective theory in Eq. (27) correctly describes physics around the meta-stable vacuum.

Above the mass scale Λ, we need a further UV completion. The simplest model is the

O’Raifeartaigh model [10]:

K = S†S + X†X + Y †Y , (36)

and

WS = m2S +
κ

2
SX2 + MXY XY , (37)

where κ and MXY ($ m) are a coupling constant and a mass for X and Y , respectively. There

is an approximate PQ symmetry with charges PQ(X) = −1 and PQ(Y ) = 1. By integrating

out massive fields X and Y , we obtain the Kähler term −(S†S)2/Λ2 with

1

Λ2
=

|κ|4

12(4π)2
1

M2
XY

, (38)

at one-loop level (see Fig. 3). The Higgs fields can directly couple to this system so that we obtain

effective operators in Eq. (27). The terms are generated by introducing following interaction

terms in the superpotential:

WHiggs = hHuq̄X + h̄HdqX + Mqqq̄ , (39)

where h and h̄ are coupling constants. Again, the PQ symmetry is preserved for PQ(q) =

PQ(q̄) = 0. The supersymmetry breaking still happens in this extended model. After integrating

out q and q̄, we obtain the cµS†HuHd/Λ term with

cµ

Λ
= −

κ∗hh̄

(4π)2
1

Mq
· f

(

M2
XY

M2
q

)

, (40)

where

f(x) =
1 − x + log x

(1 − x)2
. (41)

20
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u

S† X
S

X X

S† X

X
S S†

Figure 3: Feynman diagrams to generate higher dimensional operators in a UV model.

minimum at 〈S〉 ∼ Λ2/MPl where supersymmetry is broken and messenger fields are massive.

The effective theory in Eq. (27) correctly describes physics around the meta-stable vacuum.

Above the mass scale Λ, we need a further UV completion. The simplest model is the

O’Raifeartaigh model [10]:

K = S†S + X†X + Y †Y , (36)

and

WS = m2S +
κ

2
SX2 + MXY XY , (37)

where κ and MXY ($ m) are a coupling constant and a mass for X and Y , respectively. There

is an approximate PQ symmetry with charges PQ(X) = −1 and PQ(Y ) = 1. By integrating

out massive fields X and Y , we obtain the Kähler term −(S†S)2/Λ2 with

1

Λ2
=

|κ|4

12(4π)2
1

M2
XY

, (38)

at one-loop level (see Fig. 3). The Higgs fields can directly couple to this system so that we obtain

effective operators in Eq. (27). The terms are generated by introducing following interaction

terms in the superpotential:

WHiggs = hHuq̄X + h̄HdqX + Mqqq̄ , (39)

where h and h̄ are coupling constants. Again, the PQ symmetry is preserved for PQ(q) =

PQ(q̄) = 0. The supersymmetry breaking still happens in this extended model. After integrating

out q and q̄, we obtain the cµS†HuHd/Λ term with

cµ

Λ
= −

κ∗hh̄

(4π)2
1

Mq
· f

(

M2
XY

M2
q

)

, (40)

where

f(x) =
1 − x + log x

(1 − x)2
. (41)

20

O’Raifeartaigh Model

These superpotentials can be embedded into a product group 
GUT model (SO(9)XSU(5) or SO(6)XSU(5)) [’06 R. Kitano].

MXY ∼Mq ∼MGUT " 1016GeV

colored Higgs

†

(One-loop calculation)

(PQ-sym)
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f(x) =
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K = S†S − (S†S)2
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Figure 7: The corresponding value of m̄H (left) and tan β (right) to the input parameter µ
(µ(MSUSY)). We set the overall scale M̄ = 900 GeV. For different values of M̄ we can obtain
approximate relations by rescaling the axes. Curves for messenger scales Mmess = 106, 108,
1010, and 1012 GeV are shown. The curves are terminated by the mass bound of stable staus
mτ̃1 > 98 GeV [60]. Small values of µ2/m̄2

H are predicted if the UV theory is weakly coupled. A
rough classification of ‘weakly coupled’, ‘semi perturbative’, and ‘strongly coupled’ is indicated.

The left panel in Fig. 7 shows the value of m̄H (defined at the GUT scale) required by

the correct electroweak symmetry breaking with respect to the running µ-parameter at MSUSY.

Curves for different messenger scales Mmess are shown. The M̄ parameter is fixed to be 900 GeV.

For other values of M̄ , say xM̄ with an arbitrary positive number x, we can obtain curves, as a

good approximation, by rescaling the both axes by the factor of x. As is clear from the behavior

of the RG evolution shown in Fig. 6, larger values of m̄H are necessary for having smaller values

of µ. Each lines are terminated at some small value of µ, where the stau becomes too light

(mτ̃1 < 98 GeV [60]) due to the negative contribution from the running between the GUT scale

and the messenger scale. This negative contribution is significant only when tan β is large. It is

indeed the case as we will see later.

As we discussed in the previous section, the UV completion of the theory above the GUT

scale suggests that the Higgs fields do not get strongly coupled. The discussion is based on the

requirement of the O(1) Yukawa coupling constant for the top quark. This indicates a (small)

hierarchy between the mH-parameter and the µ-parameter at the GUT scale since the ratio

µ2/m2
H turns out to be the loop-expansion parameter. We indicate in the plot the region with

0 ≤ µ2/m̄2
H < 1/100 to be ‘weakly coupled’, 1/100 ≤ µ2/m2

H < 1/4 to be ‘semi perturbative’,
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discuss in the next section the overall feature of this scenario at the LHC and demonstrate a

way of confirming/excluding the framework.

4 LHC signatures

The theoretical success of the sweet spot supersymmetry motivates us to consider what will be

the experimental signatures at the LHC experiments. We show in this section that there are

several unique features. We present a way of confirming/excluding the model in the case where

the lighter stau is the NLSP.

4.1 Overview of supersymmetric events with τ̃ NLSP

As we have seen in the last section, it is plausible that the lighter stau is the NLSP. A small value

of the µ-parameter is a natural consequence of UV physics, and that makes τ̃ light through the

RG evolution. If it is the NLSP, the lifetime of stau is of O(1000) seconds with our assumption of

the O(1) GeV gravitinos. The LHC signals with such a long-lived stau will be quite different from

ones with the usual assumption of the neutralino LSP. There have been many studies on collider

signatures for the quasi-stable τ̃ -NLSP scenario, for example, in [61]-[72]. We demonstrate here
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Prediction of (perturbative) SSS

Light Higgsino
Light Stau

Large tanβ

(Stau NLSP can be easily realized)
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Sweet Spot Supersymmetry
Three low energy parameters (µ,Mmess, M̄)

We can reconstruct model parameters 
by measuring three masses.
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LHC Signatures
Benchmark Point

g̃ 1013 ν̃L 543
χ±

1 270 t̃1 955
χ±

2 404 t̃2 1177
χ0

1 187 b̃1 1128
χ0

2 276 b̃2 1170
χ0

3 307 τ̃1 116
χ0

4 404 τ̃2 510
ũL 1352 ν̃τ 502
ũR 1263 h0 115
d̃L 1354 H0 770
d̃R 1251 A0 765
ẽL 549 H± 775
ẽR 317 G̃ 0.5

Table 1: Masses of superparticles and Higgs bosons in GeV for our benchmark point, µ =
300 GeV, Mmess = 1010 GeV and M̄ = 900 GeV. The gravitino mass is fixed to account for the
observed dark matter density (see Eq. (30)). Here, the masses of the squarks and sleptons of the
second generation are omitted, since they are equal to the ones of the first generation. We use
the notation for the superparticles and Higgs bosons in the MSSM in Ref. [78].

reconstruction of model parameters with τ̃ NLSP at the LHC experiments.∗

We select the following benchmark point for the collider study:

µ = 300 GeV , Mmess = 1010 GeV , M̄ = 900 GeV . (56)

This set represents the most theoretically motivated region of the parameter space as we have

discussed before. As we can see in Fig. 8 the NLSP is the stau with this set of parameters.

We have calculated the spectrum by solving RG equations at one-loop level. The running

parameters at the scale MSUSY ≡ (m2
t̃L

m2
t̃R

)1/4 = 1053 GeV have been used for the calculation

of the spectrum. We have ignored the QCD finite corrections at the low energy threshold,

which would amount to about 10%. In Table 1, we listed masses of superparticles and Higgs

bosons. We used mt = 170.9 GeV. The stau mass is 116 GeV, and its lifetime is calculated

to be 3000 seconds with the gravitino mass determined by the dark matter density, m3/2 =

500 MeV. The running gaugino mass parameters at MSUSY, Mi = g2
i M̄ , are M1 = 195 GeV,

M2 = 364 GeV, and M3 = 1013 GeV. The lightest neutralino χ0
1 is, therefore, mostly the Bino,

χ0
2 and χ0

3 mainly consist of the Higgsino components, and the Wino is the heaviest, χ0
4. The

lighter and heavier charginos, χ±
1 and χ±

2 , are mainly the Higgsino and the Wino, respectively.

The gluino and squark masses are about 1TeV. The Higgs boson mass, 115 GeV, is calculated

∗Recent studies on the lifetime measurement of the long-lived charged NLSP in the collider experiments show
that it is possible to determine the gravitino mass in some range of the parameter region [73]-[77] although those
proposals require an extra experimental set-up to collect the charged NLSP.
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to be 3000 seconds with the gravitino mass determined by the dark matter density, m3/2 =
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i M̄ , are M1 = 195 GeV,
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1 is, therefore, mostly the Bino,
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3 mainly consist of the Higgsino components, and the Wino is the heaviest, χ0
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lighter and heavier charginos, χ±
1 and χ±

2 , are mainly the Higgsino and the Wino, respectively.

The gluino and squark masses are about 1TeV. The Higgs boson mass, 115 GeV, is calculated

∗Recent studies on the lifetime measurement of the long-lived charged NLSP in the collider experiments show
that it is possible to determine the gravitino mass in some range of the parameter region [73]-[77] although those
proposals require an extra experimental set-up to collect the charged NLSP.
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Spectrum

tanβ = 37
(output)

Stau NLSP(116GeV)
(lifetime O(1000)sec.)

χ0
1 χ0

2 χ0
3 χ0

4

Bino Higgsino Wino

gluinos, squarks ~ 1TeV
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Figure 9: The dominant decay modes of g̃ and q̃. The percentages show the branching ratios
of each modes. The shaded modes are relevant for the analysis of the reconstruction of the
neutralino masses.
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Figure 10: The dominant decay modes of χ0 and χ±. The shaded modes are relevant for the
analysis of the reconstruction of the neutralino masses.

by using a one-loop effective potential with taking into account leading two-loop corrections by

appropriately choosing a renormalization scale for the running top quark mass which appears

in the effective potential [79]. Similar values, 114 − 115 GeV, are obtained by using publicly

available codes [80, 81].

The total cross section of the superparticle production at the benchmark point is 1.4 pb for

the center-of-mass energy of the LHC. The cross section is dominated by pair productions of

g̃g̃, q̃g̃, and q̃q̃. The subsequent decays of these colored particles generate hard jets and other

supersymmetric particles such as neutralinos and charginos. The decays of these non-colored

superparticles, in the end, produce two quasi-stable τ̃1’s for each supersymmetric event. Most

of the stau pairs escape a detector and leave two charged tracks.

The decay cascades start with the the decays of g̃ and q̃ as shown in Fig. 9. We have used

ISAJET 7.69 [82] to calculate the branching ratios. Since the gluino is lighter than squarks, it

decays into a neutralino or a chargino through three-body decay modes. The dominant channel

is the decay into a pair of third generation quarks and a Higgsino, χ±
1 or χ0

2,3, through the

Yukawa interaction of the top quark. The main decay mode of the squarks are q̃ → g̃ + q,

followed by the gluino decay. Therefore, for each supersymmetric event, many hard jets are

produced. Especially, a significant number of b-jets are produced by the gluino decays (and also

by the subsequent decays of the top quarks). This is an interesting feature of the model, but
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by using a one-loop effective potential with taking into account leading two-loop corrections by

appropriately choosing a renormalization scale for the running top quark mass which appears

in the effective potential [79]. Similar values, 114 − 115 GeV, are obtained by using publicly

available codes [80, 81].

The total cross section of the superparticle production at the benchmark point is 1.4 pb for

the center-of-mass energy of the LHC. The cross section is dominated by pair productions of

g̃g̃, q̃g̃, and q̃q̃. The subsequent decays of these colored particles generate hard jets and other

supersymmetric particles such as neutralinos and charginos. The decays of these non-colored

superparticles, in the end, produce two quasi-stable τ̃1’s for each supersymmetric event. Most

of the stau pairs escape a detector and leave two charged tracks.

The decay cascades start with the the decays of g̃ and q̃ as shown in Fig. 9. We have used

ISAJET 7.69 [82] to calculate the branching ratios. Since the gluino is lighter than squarks, it

decays into a neutralino or a chargino through three-body decay modes. The dominant channel

is the decay into a pair of third generation quarks and a Higgsino, χ±
1 or χ0

2,3, through the

Yukawa interaction of the top quark. The main decay mode of the squarks are q̃ → g̃ + q,

followed by the gluino decay. Therefore, for each supersymmetric event, many hard jets are

produced. Especially, a significant number of b-jets are produced by the gluino decays (and also

by the subsequent decays of the top quarks). This is an interesting feature of the model, but
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stable, charged tracks

Decay modes

Typical Event at LHC
Many b/τ-jets + low-velocity 2 charged tracks

difficult to analyze...
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by using a one-loop effective potential with taking into account leading two-loop corrections by

appropriately choosing a renormalization scale for the running top quark mass which appears

in the effective potential [79]. Similar values, 114 − 115 GeV, are obtained by using publicly

available codes [80, 81].

The total cross section of the superparticle production at the benchmark point is 1.4 pb for

the center-of-mass energy of the LHC. The cross section is dominated by pair productions of

g̃g̃, q̃g̃, and q̃q̃. The subsequent decays of these colored particles generate hard jets and other

supersymmetric particles such as neutralinos and charginos. The decays of these non-colored

superparticles, in the end, produce two quasi-stable τ̃1’s for each supersymmetric event. Most

of the stau pairs escape a detector and leave two charged tracks.

The decay cascades start with the the decays of g̃ and q̃ as shown in Fig. 9. We have used

ISAJET 7.69 [82] to calculate the branching ratios. Since the gluino is lighter than squarks, it

decays into a neutralino or a chargino through three-body decay modes. The dominant channel

is the decay into a pair of third generation quarks and a Higgsino, χ±
1 or χ0

2,3, through the

Yukawa interaction of the top quark. The main decay mode of the squarks are q̃ → g̃ + q,

followed by the gluino decay. Therefore, for each supersymmetric event, many hard jets are

produced. Especially, a significant number of b-jets are produced by the gluino decays (and also

by the subsequent decays of the top quarks). This is an interesting feature of the model, but
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charged track

We use hadronic decay mode of τ
[’98 Hinchiliffe & Paige]

cf.The analysis with leptonic modes discussed in 
[’06 Ellis,Raklev,Oye] is difficult in our case.

Select events with 2 stau candidates.

Select events with 1 tau-jet candidate.
(one of them should be slow         )βγ < 2.2
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Figure 13: Left) The distribution of the lowest invariant mass combination of τ̃1 and τ -jet. The
shaded histogram shows the events with a mis-identified τ -jet which is simulated by assuming
a mis-tagging probability of a non-τ -labelled jet to be 1%. The small allows and dashed lines
denote the input values of three neutralino masses. Three curves are fitting functions of three
endpoints which correspond to the endpoints of χ0

1,2,3 from left to right, respectively. The third
endpoint is statistically not very significant. Right) The same as the left figure but we assumed
the mis-tagging probability to be 5% per a non-τ -labelled jet. The endpoints of χ0

2 and χ0
3 are

visible whereas the significance of χ0
1 events are reduced due to the shape of the background

events. The bin size is 10 GeV in the right figure.

the Eτ-jet/Eτ > 1 region. The detailed shape of the distribution, of course, depends on the

actual algorithm for the calibration. We performed a fitting of the distribution around the peak

with a smeared jagged function f(x),

f(x;x0,σ, C1, C2) =

∫ ∞

−∞
dx′ g(x − x′;x0)√

2πσ2
exp

[

−
x′2

2σ2

]

, (65)

g(x;x0) =

{

C1 x, (0 < x < x0),
C2 x, (x0 < x),

(66)

with four fitting parameters, the position of the edge x0, the smearing factor σ, and two slopes

C1 and C2. The fitting gives the position of the edge x0 to be x0 = 1.049 ± 0.003, about five

percent larger than unity. Since we will identify the position of the edge in the Mτ̃ τ distribution

as the neutralino mass, the bias ends up with systematic errors of the mass measurement toward

larger values. Therefore, in the actual analysis of the LHC data, we need to understand the

shift of the edge location caused by the calibration of the τ -jets energy.

Having understood the edge structure of the Eτ-jet/Eτ distribution, we try to reconstruct

the neutralino masses. Fig. 13 shows the distribution of the smaller invariant mass out of two
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Figure 12: The distribution of the τ -jet energy fraction Eτ-jet/Eτ in the hadronic decay modes
of τ in supersymmetric cascade decays. In the left panel, we show the energy fractions for τ ’s
which originate from three species of neutralinos, χ0

1, χ0
2 and χ0

3, respectively. They are rescaled
so that the number of events are the same for three neutralinos. In the right panel, we did not
distinguish the origin of τ . Shaded histograms are the distribution of the energy fraction for the
two-body decays, τ → πν, τ → ρν and τ → a1ν assuming stable mesons. Energy calibration of
the τ -jets is performed by AcerDET.

τ ,

τ → πν (11%), τ → ρν (26%), τ → a1ν (18%). (64)

The ρ and a1 mesons subsequently decay into two pions and three pions, respectively. Here the

percentages of each mode denote the branching ratios. The branching ratio of the leptonic modes

are 35%, and the other 10% comes from more than five-body decay modes or the modes with

K mesons. When we ignore the width of the mesons, the energy fraction Emeson/Eτ from each

decay distributes uniformly between (m2
meson/m2

τ , 1) in the relativistic limit of τ (Eτ " mτ ). In

the figure, we show the distributions of Emeson/Eτ as shaded histograms. The energy fraction

in other hadronic modes tends to pile up near the edge because of the kinematics of the many

body final state. The distribution of Emeson/Eτ well resembles the properties of the distribution

of Eτ-jet/Eτ . The thresholds at each meson mass are smeared by the effects of their finite decay

widths (see for e.g., [90]).

It is important to notice that the distribution of Eτ-jet/Eτ has a tail in the unphysical region,

Eτ-jet/Eτ > 1. These entries come mainly from the calibration of the τ -jet energy used in the

detector simulation. Especially, we should note that the distribution is slightly biased toward

40
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1 events are reduced due to the shape of the background

events. The bin size is 10 GeV in the right figure.

the Eτ-jet/Eτ > 1 region. The detailed shape of the distribution, of course, depends on the

actual algorithm for the calibration. We performed a fitting of the distribution around the peak

with a smeared jagged function f(x),

f(x;x0,σ, C1, C2) =

∫ ∞

−∞
dx′ g(x − x′;x0)√

2πσ2
exp

[

−
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]

, (65)

g(x;x0) =

{

C1 x, (0 < x < x0),
C2 x, (x0 < x),

(66)

with four fitting parameters, the position of the edge x0, the smearing factor σ, and two slopes

C1 and C2. The fitting gives the position of the edge x0 to be x0 = 1.049 ± 0.003, about five

percent larger than unity. Since we will identify the position of the edge in the Mτ̃ τ distribution

as the neutralino mass, the bias ends up with systematic errors of the mass measurement toward

larger values. Therefore, in the actual analysis of the LHC data, we need to understand the

shift of the edge location caused by the calibration of the τ -jets energy.

Having understood the edge structure of the Eτ-jet/Eτ distribution, we try to reconstruct

the neutralino masses. Fig. 13 shows the distribution of the smaller invariant mass out of two

41

Eτ-jet/Eτ

χ
0
1

χ
0
2

χ
0
3

HERWIG+TAUOLA+AcerDET

π±ντ

ρ±ντ

a
±
1 ντ

Eτ-jet/Eτ

x0 = 1.049 ± 0.003

σ = 0.072 ± 0.003

endpoint (fit):

smearing factor (fit):

Figure 12: The distribution of the τ -jet energy fraction Eτ-jet/Eτ in the hadronic decay modes
of τ in supersymmetric cascade decays. In the left panel, we show the energy fractions for τ ’s
which originate from three species of neutralinos, χ0

1, χ0
2 and χ0
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the τ -jets is performed by AcerDET.

τ ,

τ → πν (11%), τ → ρν (26%), τ → a1ν (18%). (64)

The ρ and a1 mesons subsequently decay into two pions and three pions, respectively. Here the

percentages of each mode denote the branching ratios. The branching ratio of the leptonic modes

are 35%, and the other 10% comes from more than five-body decay modes or the modes with

K mesons. When we ignore the width of the mesons, the energy fraction Emeson/Eτ from each

decay distributes uniformly between (m2
meson/m2

τ , 1) in the relativistic limit of τ (Eτ " mτ ). In

the figure, we show the distributions of Emeson/Eτ as shaded histograms. The energy fraction

in other hadronic modes tends to pile up near the edge because of the kinematics of the many

body final state. The distribution of Emeson/Eτ well resembles the properties of the distribution

of Eτ-jet/Eτ . The thresholds at each meson mass are smeared by the effects of their finite decay

widths (see for e.g., [90]).

It is important to notice that the distribution of Eτ-jet/Eτ has a tail in the unphysical region,

Eτ-jet/Eτ > 1. These entries come mainly from the calibration of the τ -jet energy used in the

detector simulation. Especially, we should note that the distribution is slightly biased toward
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Figure 11: The τ̃ − τ invariant mass distribution. The combination with the lowest invariant
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effect of the missing energy in the τ decays. The left panel of Fig. 12 shows the distribution of

the energy fraction of τ -jet, Eτ-jet/Eτ , in the neutralino decays. We plotted histograms for each

neutralino, χ0
1, χ0

2 and χ0
3. We rescaled the histograms so that the number of events are the same

for each neutralino. Energies are measured in the laboratory frame. With the HERWIG event

generator and the TAUOLA package, effects of the polarization of τ are taken into account.

As we can see, there are sharp edges in the distribution at Eτ-jet/Eτ = 1. Especially, the

edge is sharper for χ0
1 compared to χ0

2 and χ0
3. This can be understood as an effect of the

polarization of τ .‡ Since the stau is mostly right-handed, the chirality of τ from the neutralino

decay is right-handed (left-handed) if the neutralino is gaugino-like (Higgsino-like). By the V −A

current structure of the weak interaction, neutrinos tend to be emitted in the opposite (same)

direction to the τ direction if τ is right-handed (left-handed), and that makes the edge sharper

(broader) [90]. With this structure, we can expect that the Mτ̃ τ distribution reconstructed with

τ -jet four-momentum shows sharp edges at three neutralino masses although the Higgsino edges

become slightly weaker.

In the right panel of Fig. 12 we plotted the same quantity, Eτ-jet/Eτ , from all the neu-

tralino decays. The overall shape, monotonically increasing function and has a sharp edge at

Eτ-jet/Eτ = 1, can be understood from the distribution of Eτ-jet/Eτ in the two-body decays of

‡We thank L. Dixon for pointing out the possibility of having polarization effects.
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τ → πν (11%), τ → ρν (26%), τ → a1ν (18%). (64)

The ρ and a1 mesons subsequently decay into two pions and three pions, respectively. Here the

percentages of each mode denote the branching ratios. The branching ratio of the leptonic modes

are 35%, and the other 10% comes from more than five-body decay modes or the modes with

K mesons. When we ignore the width of the mesons, the energy fraction Emeson/Eτ from each

decay distributes uniformly between (m2
meson/m2

τ , 1) in the relativistic limit of τ (Eτ " mτ ). In

the figure, we show the distributions of Emeson/Eτ as shaded histograms. The energy fraction

in other hadronic modes tends to pile up near the edge because of the kinematics of the many

body final state. The distribution of Emeson/Eτ well resembles the properties of the distribution

of Eτ-jet/Eτ . The thresholds at each meson mass are smeared by the effects of their finite decay

widths (see for e.g., [90]).

It is important to notice that the distribution of Eτ-jet/Eτ has a tail in the unphysical region,

Eτ-jet/Eτ > 1. These entries come mainly from the calibration of the τ -jet energy used in the

detector simulation. Especially, we should note that the distribution is slightly biased toward
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Figure 14: Left) The stau mass mτ̃1 as a function of Mmess for four values of the µ-parameter.
The overall scale is set for M̄ = 900 GeV. The dashed horizontal line corresponds to τ̃1 mass,
mτ̃1 = 116 GeV, at the benchmark point. The thick vertical line denotes the value of Mmess

determined by assuming 5% precisions of µ and M̄ . Right) The pseudo-scalar Higgs boson mass
mA as a function of Mmess for four values of the µ-parameter. The overall scale is set for M̄ =
900 GeV. The dashed horizontal line corresponds to the prediction of mA for Mmess = 1010 GeV.
The thick vertical line denotes the value of Mmess determined from the stau mass measurement
(see the left panel). The arrow on the mA axes denotes the error of the prediction including the
error ∆M̄ .

In most cases, a simpler analysis than the global fit is possible. First, by assuming that the

model is correct, we can find that one of the two neutralinos we measured in the previous section

should be Higgsino-like since their masses deviate from a GUT relation between M1 and M2.

Secondly, we can neglect the tan β dependence in the neutralino masses. With a large value of

tan β (see Fig. 7), corrections are of O(1/ tan β). Thus, the neutralino masses depend merely

on the messenger scale Mmess. The parameters µ and M̄ can be determined at the level of 5%

from the measurement of two leading neutralino masses. If we can also measure the mass of χ0
3,

we can check the consistency of the GUT relation between M1 and M2 from the mass splitting

between χ0
2 and χ0

3, which provides a non-trivial check of GUT theories.

We can then determine Mmess from the measured stau mass. We demonstrate in the left

panel of Fig. 14 the determination of the messenger scale Mmess. Once we know the value of µ

and M̄ , mτ̃1 can be calculated as a function of Mmess. Since we measure mτ̃1 at a few permille

level, and µ and M̄ at 5% level, we can read off the corresponding value of Mmess from the

figure. We find that the exponent of Mmess is determined with an accuracy of ±0.2. Therefore,
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In most cases, a simpler analysis than the global fit is possible. First, by assuming that the

model is correct, we can find that one of the two neutralinos we measured in the previous section

should be Higgsino-like since their masses deviate from a GUT relation between M1 and M2.

Secondly, we can neglect the tan β dependence in the neutralino masses. With a large value of

tan β (see Fig. 7), corrections are of O(1/ tan β). Thus, the neutralino masses depend merely

on the messenger scale Mmess. The parameters µ and M̄ can be determined at the level of 5%

from the measurement of two leading neutralino masses. If we can also measure the mass of χ0
3,

we can check the consistency of the GUT relation between M1 and M2 from the mass splitting

between χ0
2 and χ0

3, which provides a non-trivial check of GUT theories.

We can then determine Mmess from the measured stau mass. We demonstrate in the left

panel of Fig. 14 the determination of the messenger scale Mmess. Once we know the value of µ

and M̄ , mτ̃1 can be calculated as a function of Mmess. Since we measure mτ̃1 at a few permille

level, and µ and M̄ at 5% level, we can read off the corresponding value of Mmess from the

figure. We find that the exponent of Mmess is determined with an accuracy of ±0.2. Therefore,
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Sweet Spot Supersymmetry
Gauge Mediation + Giudice-Masiero Mechanism

(+PQ-symmetry)

Summary

Light Stau + Light Higgsino

No μ-problem, No CP-problem

MSSM is determined by three parameters
We can perform consistency 
check of the model at LHC.

Collider signal can be different 
from minimal gauge mediation.

What’s new?
As far as I know, no one explicitly discussed that we 
can solve the mu-problem and the CP problem by 
assuming direct mediation  with PQ-symmetry.

Besides, the effects of such direct mediated masses to 
the RGE of other susy masses are an interesting 
observation.

Collider analysis for our nightmare spectrum is also 
interesting.

Although I did not explained, the success of the DM 
generation is also an important feature of this model.
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What’s new?
As far as I know, no one explicitly discussed that we 
can solve the mu-problem and the CP problem by 
assuming direct mediation  with PQ-symmetry.

Besides, the effects of such direct mediated masses to 
the RGE of other susy masses are an interesting 
observation.

Collider analysis for our nightmare spectrum is also 
interesting.

Although I did not explained, the success of the DM 
generation is also an important feature of this model.

A1

Isolated Leptons, Photon
Isolated from other clusters by ∆R = 0.4. 
Transverse energy deposited in cells in a cone 
∆R = 0.2 around the cluster is less than 10GeV.

A cluster is recognized as a jet by a cone-based 
algorithm if it has pT > 15 GeV in a cone ∆R = 0.4.

Jet

Labeled either as a light jet, b-jet, c-jet or τ-
jet, using information of the event generators.

A flavor independent calibration of jet four-momenta 
optimized to give a proper scale for the di-jet decay 
of a light Higgs boson.



Event Selection

What’s new?
As far as I know, no one explicitly discussed that we 
can solve the mu-problem and the CP problem by 
assuming direct mediation  with PQ-symmetry.

Besides, the effects of such direct mediated masses to 
the RGE of other susy masses are an interesting 
observation.

Collider analysis for our nightmare spectrum is also 
interesting.

Although I did not explained, the success of the DM 
generation is also an important feature of this model.

A2

Sign of mu
g-2
b-s gamma
is labeled either as a light jet, b-jet, c-jet or τ -jet, using information of 
the event generators.a calibration of jet four-momenta using a flavor 
independent parametrization, optimized to give a proper scale for the di-
jet decay of a light 
Higgs boson.

Triggering [’99 Atlas Collabolation]
one isolated electron with pT > 20 GeV; 
one isolated photon with pT > 40 GeV; 
two isolated electrons/photons with pT > 15 GeV; 
one muon with pT > 20 GeV; 
two muons with pT > 6 GeV; 
one isolated electron with pT > 15 GeV 
+ one isolated muon with pT > 6 GeV;
one jet with pT > 180 GeV;
three jets with pT > 75 GeV;
four jets with pT > 55 GeV.

Isolated electrons/photons, muons and jets 
in the central regions of pseudorapidity 
|η| < 2.5, 2.4, and 3.2, respectively.

Staus with βγ > 0.9 as muons in the simulation of 
triggering.[’06 Ellis,Raklev,Oye]



Event Selection

What’s new?
As far as I know, no one explicitly discussed that we 
can solve the mu-problem and the CP problem by 
assuming direct mediation  with PQ-symmetry.

Besides, the effects of such direct mediated masses to 
the RGE of other susy masses are an interesting 
observation.

Collider analysis for our nightmare spectrum is also 
interesting.

Although I did not explained, the success of the DM 
generation is also an important feature of this model.

A3

Sign of mu
g-2
b-s gamma
is labeled either as a light jet, b-jet, c-jet or τ -jet, using information of 
the event generators.a calibration of jet four-momenta using a flavor 
independent parametrization, optimized to give a proper scale for the di-
jet decay of a light 
Higgs boson.

Two stau candidates for neutralino reconstruction
(consistent with measured stau mass)

Ref. [71]†; one from the sagitta measurement error,

σ(pτ̃1)

pτ̃1
= 0.0118% × (pτ̃1/GeV), (59)

one from a multiple scattering term,

σ(pτ̃1)

pτ̃1
= 2% ×

√

1 +
m2

τ̃1

p2
τ̃1

, (60)

and one from the fluctuation of energy loss in the calorimeter,

σ(pτ̃1)

pτ̃1
= 89% × (pτ̃1/GeV)−2 (61)

We have smeared the stau momentum according to these resolution width σ(pτ̃1).

If the measured velocity of the stau is high enough, such as βγ > 0.9 [71], the stau will be

identified with a muon and can be used as a trigger. However, for slow staus, we need to rely on

other triggers. For the simulation of the triggering, we have chosen only events passing one of

the following conditions [88]: one isolated electron with pT > 20 GeV, one isolated photon with

pT > 40 GeV, two isolated electrons/photons with pT > 15 GeV, one muon with pT > 20 GeV,

two muons with pT > 6 GeV, one isolated electron with pT > 15 GeV and one isolated muon

with pT > 6GeV, one jet with pT > 180 GeV, three jets with pT > 75 GeV, and four jets with

pT > 55 GeV. Here, isolated electrons/photons, isolated muons and jets must be in the central

regions of pseudorapidity |η| < 2.5, 2.4, and 3.2, respectively. Following [71], we treated staus

with βγ > 0.9 as muons in the simulation of triggering.

For the event selection, we require two stau candidates for each event. Since the stau mass

can be precisely determined, a stau identification can be performed by testing if its measured

mass by Eq. (57) is consistent with the actual mass. For the consistency test, we took a window

of the measured velocity, βmeas:

β′ − 0.05 < βmeas < β′ + 0.05 , (62)

where β′ is a velocity calculated from the measured momentum, pmeas, by assuming the stau

mass, i.e., β′ =
√

p2
meas/(p

2
meas + m2

τ̃1
) (see [68]). To reduce the standard model background

from mis-identifications of muons as staus, we required one of the stau candidate selected above

to have βγ < 2.2. The transverse momentum cut, pT > 20 GeV, is also imposed. The lower

limit on the velocity βγ > 0.4 is imposed to ensure the stau to reach the muon chamber. As for

the isolation of stau, we have used the same criterion with that of the muon.

†According to the paper, the original study has been done by G. Polesello and A. Rimoldi, in ATLAS Internal
Note ATL-MUON-99-06, but it is not publicly available.
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Ref. [71]†; one from the sagitta measurement error,

σ(pτ̃1)

pτ̃1
= 0.0118% × (pτ̃1/GeV), (59)

one from a multiple scattering term,

σ(pτ̃1)

pτ̃1
= 2% ×

√

1 +
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τ̃1

p2
τ̃1

, (60)

and one from the fluctuation of energy loss in the calorimeter,

σ(pτ̃1)

pτ̃1
= 89% × (pτ̃1/GeV)−2 (61)

We have smeared the stau momentum according to these resolution width σ(pτ̃1).

If the measured velocity of the stau is high enough, such as βγ > 0.9 [71], the stau will be

identified with a muon and can be used as a trigger. However, for slow staus, we need to rely on

other triggers. For the simulation of the triggering, we have chosen only events passing one of

the following conditions [88]: one isolated electron with pT > 20 GeV, one isolated photon with

pT > 40 GeV, two isolated electrons/photons with pT > 15 GeV, one muon with pT > 20 GeV,

two muons with pT > 6 GeV, one isolated electron with pT > 15 GeV and one isolated muon

with pT > 6GeV, one jet with pT > 180 GeV, three jets with pT > 75 GeV, and four jets with

pT > 55 GeV. Here, isolated electrons/photons, isolated muons and jets must be in the central

regions of pseudorapidity |η| < 2.5, 2.4, and 3.2, respectively. Following [71], we treated staus

with βγ > 0.9 as muons in the simulation of triggering.

For the event selection, we require two stau candidates for each event. Since the stau mass

can be precisely determined, a stau identification can be performed by testing if its measured

mass by Eq. (57) is consistent with the actual mass. For the consistency test, we took a window

of the measured velocity, βmeas:

β′ − 0.05 < βmeas < β′ + 0.05 , (62)

where β′ is a velocity calculated from the measured momentum, pmeas, by assuming the stau

mass, i.e., β′ =
√

p2
meas/(p

2
meas + m2

τ̃1
) (see [68]). To reduce the standard model background

from mis-identifications of muons as staus, we required one of the stau candidate selected above

to have βγ < 2.2. The transverse momentum cut, pT > 20 GeV, is also imposed. The lower

limit on the velocity βγ > 0.4 is imposed to ensure the stau to reach the muon chamber. As for

the isolation of stau, we have used the same criterion with that of the muon.

†According to the paper, the original study has been done by G. Polesello and A. Rimoldi, in ATLAS Internal
Note ATL-MUON-99-06, but it is not publicly available.
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One of the stau candidates 
must have βγ<2.2

Both have pT>40GeV, β/γ>0.4

Meff >800GeV SM background negligible
[’00 Ambrosanio,Mele,Petrarca,Polesello,Rimoldi]

One tau-jet candidate
pT>40GeV
tau-tag efficiency 50%
mis-tag probability 1%


