Susy QCD corrections in Higgs boson production via gluon fusion

Babis Anastasiou

CERN

Outline

NLO SUSY-QCD corrections to $gg \rightarrow h$ (in progress...)

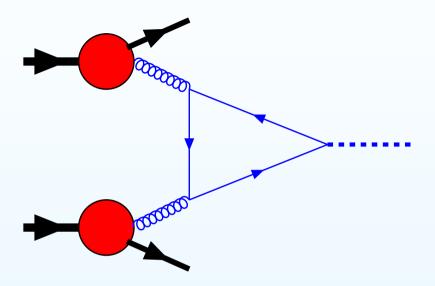
in collaboration with Stefan Beerli, Stefan Bucherer, Alejandro Daleo and Zoltan Kunszt

- introduction
- quark and scalar-quark two-loop amplitudes
- diagrams with gluinos and squarks (the method only no results)
- summary

NNLO QCD corrections for $gg \to h \to W^+W^- \to l^+l^-\nu\nu$ (full calculation with all experimental cuts at the parton level)

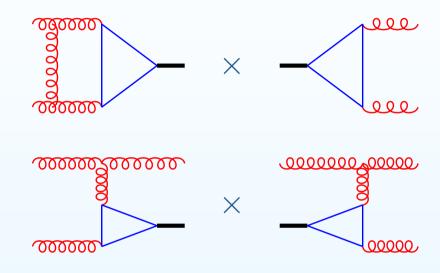
in collaboration with Günther Dissertori and Fabian Stöckli

The gluon-gluon fusion channel in the Standard Model



- Higgs boson couples to gluons at the one-loop level, through (heavy) quarks
- Recall the large gluon density at $x \sim 10^{-4} 10^{-2}, Q \sim 100 {\rm GeV}$
- Large Born cross-section at the LHC ($\sim \mathcal{O}(20)pb$)
- lacktriangle But not precise scale uncertainty $\sim 40\%$

First order QCD radiative corrections



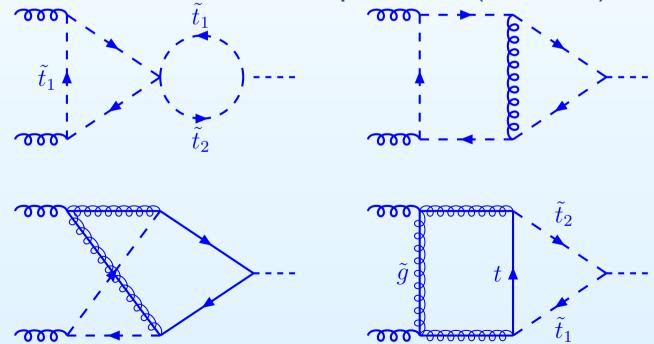
- a two-loop calculation,
 Spira, Djouadi, Graudenz,
 Zerwas
- lacktriangle large scale uncertainty $\sim 25\%$
- a very big correction ($\sim 70\%$) Dawson; Spira et. al.

Gluon fusion: sensitive to BSM physics

- Anything that couples to gluons and the Higgs boson can circulate inside the production loop!
- There is a lot of room in the model building world to change the cross-section significantly
- For example, an additional quark in a Left-Right symmetric Randall-Sundrum model could alter the Higgs cross-section from -50% to +400% without any conflict with electroweak precision data. Djouadi, Moreau
- The interpretation of the nature of the Higgs boson will also rely on the magnitude of the cross-section in various BSM models.

Two-loop corrections in BSM

- The LO cross-section is uncertain in the SM. It is the same (or worse) uncertain in BSM. Can we compute the NLO cross-section scanning a multitude of models?
- For the MSSM only, we need two loop three point diagrams with up to four different internal particles (masses)



Effective theory approach

- Heavy Quark Effective Theory is very successful for the SM Higgs boson. It will be successful in many other scenaria too.
 Still a formidable computation!
- NLO Wilson coefficient for heavy quarks+squarks+gluinos is known
 Harlander, Steinhauser
- It should be a very good approximation for a light MSSM Higgs boson
- ET hierarchies are not always satisfied. E.g. heavy Higgs boson?
 Other BSM than MSSM?

New techniques for analytic two-loop computations

- Automated reduction to master integrals
 Gehrmann, Remiddi; Laporta; CA, Lazopoulos
- Differential Equations Kotikov; Gehrmann, Remiddi
- Mellin-Barnes method

Smirnov; Tausk

Two-loop diagrams with one quark or squark

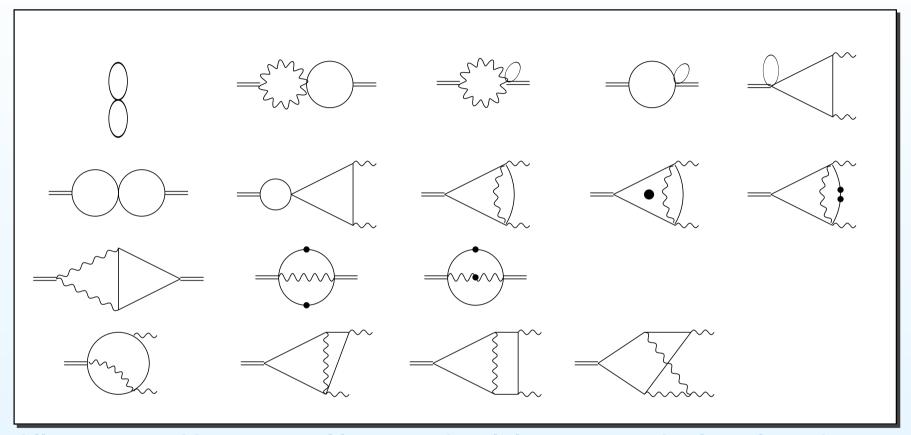
Complete analytic calculation

- reduced to linear combinations of master integrals using Laporta's algorithm
- complete set of master integrals computed with the method of differential equations (most were already known in the literature)
- analytic continuation of the master integrals above threshold

Contributions mediated by a heavy quark agree with the results of Spira *et al.* in the analytic form derived by Harlander and Kant First results for the scalar quark contributions, simultaneous with

Aglietti et al. and Mühlleitner and Spira

Master Integrals



All computed in terms of logs and polylogs or equivalent functions valid in all kinematic regions.

Squark contributions at two loops

$$\frac{4xC_F}{(1-x)^2} \left\{ 5 + \frac{3x^2}{(1-x)(1+x)} H(0,x) - 3H(1,x) + \frac{4x\zeta_2}{(1-x)^2} H(0,x) + \frac{8x(1+x^2)\zeta_2}{(1-x)^3(1+x)} H(0,0,x) + \frac{36x(1+x^2)\zeta_2^2}{5(1-x)^3(1+x)} + \frac{12x\zeta_3}{(1-x)^2} \right. \\ + \frac{16x(1+x^2)\zeta_3}{(1-x)^3(1+x)} H(0,x) - \frac{3x(1+5x)}{(1-x)^2(1+x)} H(0,0,x) + \frac{6x}{(1-x)(1+x)} H(0,1,x) + \frac{6x}{(1-x)(1+x)} H(1,0,x) \\ + \frac{16x}{(1-x)^2} H(0,-1,0,x) - \frac{x(-13+7x)}{(1-x)^3} H(0,0,0,x) + \frac{12x}{(1-x)^2} H(0,0,1,x) + \frac{8x}{(1-x)^2} H(0,1,0,x) \\ + \frac{16x}{(1-x)^2} H(1,0,0,x) - \frac{16x(1+x^2)}{(1-x)^3(1+x)} H(0,-1,0,0,x) + \frac{32x(1+x^2)}{(1-x)^3(1+x)} H(0,0,-1,0,x) \\ + \frac{2x(1+x^2)}{(1-x)^3(1+x)} H(0,0,0,0,x) - \frac{8x(1+x^2)}{(1-x)^3(1+x)} H(0,0,1,0,x) + \frac{28x(1+x^2)}{(1-x)^3(1+x)} H(0,1,0,0,x) \right\} \\ \frac{4xC_A}{(1-x)^2} \left\{ 3 - \frac{32x\zeta_2^2}{5(1-x)^2} - \frac{16x\zeta_3}{(1-x)^2} - \frac{12x\zeta_3}{(1-x)^2} H(0,x) - \frac{24x\zeta_3}{(1-x)^2} H(1,x) - \frac{2x}{(1-x)^2} H(0,0,x) + \frac{2(1-7x)x}{(1-x)^3} H(0,0,0,x) \\ + \frac{16x}{(1-x)^2} H(1,0,0,x) - \frac{4x\zeta_2}{(1-x)^2} H(0,0,x) - \frac{8x\zeta_2}{(1-x)^2} H(1,0,x) - \frac{8x}{(1-x)^2} H(0,0,-1,0,x) - \frac{2x}{(1-x)^2} H(0,0,0,0,x) \\ - \frac{16x}{(1-x)^2} H(1,0,-1,0,x) + \frac{8x}{(1-x)^2} H(1,0,0,0,x) \right\}$$

Many massive particle in the loops

- Analytic computations are not easy any more! Mass-thresholds and singualrities in D=4 dimensions.
- Could be attacked numerically; e.g. methods of Passarino and Uccirati or Spira et al.
- These methods operate on a case by case basis and may be limited in applications.
- Do we have an algorithm which can treat generic mutli-loop integrals with infrared, ultraviolet, and all types of threshold singularities?

Automated numerical methods

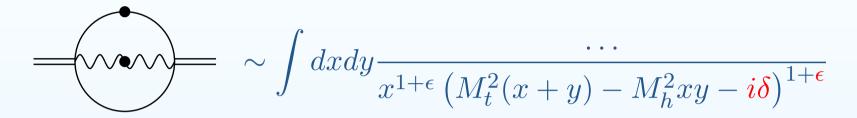
Two general and fully automated methods to deal with multiloop integrals in a numerical way

sector decomposition

- Binoth, Heinrich
- extended to fully differential NNLO cross section calculations
 CA, Melnikov, Petriello
- not possible to handle thresholds automatically
- numerical integration of Mellin-Barnes representations CA, Daleo;
 Czakon
 - works fine both in Euclidean and physical regions
 - has problems in most loop integrals with internal masses
 - most probably cannot deal with thresholds

None of these two can do $gg \rightarrow h$ at two loops

Loop Singularities



• (Overlapping) singularities at the edges of the integration region. Regulated by ϵ

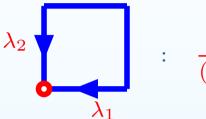
$$x = y = 0$$

• Threshold singularities $\rightsquigarrow i\pi$ terms

$$M_t^2(x+y) = M_h^2 xy$$

Overlapping singularities can be factorized

Singularity when two (or more) variables reach the same corner



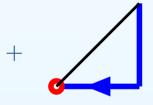
$$: \frac{\lambda_1^{\epsilon} \lambda_2^{\epsilon}}{(\lambda_1 + \lambda_2)^2} f(\lambda_1, \lambda_2)$$

Split into sectors

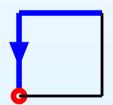
Binoth, Heinrich; Denner, Roth; Hepp

$$\lambda_2$$
 λ_1

•



lacktriangle map each sector to [0,1]

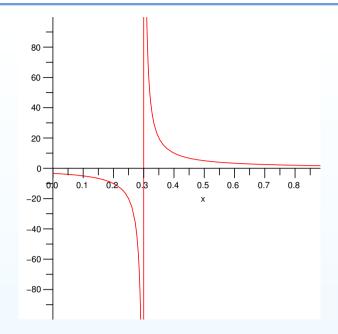


$$= \int_0^1 d\lambda_1 d\lambda_2 \frac{1}{\lambda_1^{-1+\epsilon}} \frac{f(\lambda_1, \lambda_2 \lambda_1)}{(1+\lambda_2)^2} + \int_0^1 d\lambda_1 d\lambda_2 \frac{1}{\lambda_2^{-1+\epsilon}} \frac{f(\lambda_1 \lambda_2, \lambda_2)}{(1+\lambda_1)^2}$$

Threshold singularities

 Singular inside the integration region; not the edges

$$I = \int_0^1 dx \frac{1}{x - a - \mathbf{i0}},$$



- Regulator i0 is not good enough for a numerical evaluation.
- Choose a different contour $C: z = x i\lambda x(1-x)$

$$I = \int_C dz \frac{1}{z - a} = \int_0^1 dx \frac{\partial z}{\partial x} \frac{1}{z - a}$$
$$= \int_0^1 dx \left[1 + i\lambda \left(1 - \frac{x}{2} \right) \right] \frac{1}{x - a - i\lambda x (1 - x)}$$

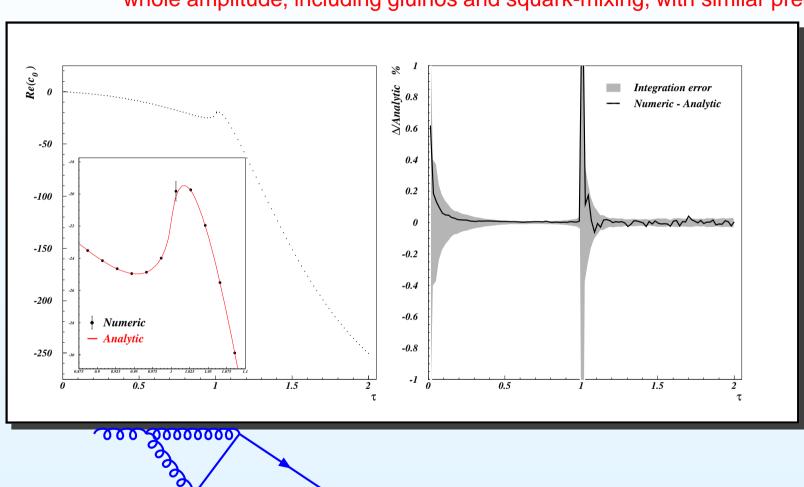
Suitable for numerical integration!

General multi-loop integration method

- Merge the sector decomposition algorithm with an algorithm proposed by Nagy and Soper to deform the contour automatically for Feynman parameters
- Very general method introduced by two groups:
 - Lazopoulos, Melnikov, Petriello to compute $pp \to ZZZ$ at NLO
 - CA, Beerli, Daleo for the two-loop SUSY QCD amplitude, re-computing numerically all diagrams with (initially) only quarks or one squark.

SUSY QCD corrections to $gg \rightarrow h$

whole amplitude, including gluinos and squark-mixing, with similar precision



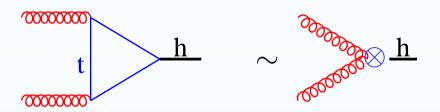
$$= \mathcal{C} \left(\frac{c_1}{\epsilon} + c_0 \right)$$

Status of the calculation

- Have computed all two-loop diagrams with quarks, squarks (and squark-mixing), gluinos.
- Renormalization + checked the infrared poles
- Performed a consistency check with our separate analytic calculation in the $m_h \to 0$ limit.
- We are checking against the computation of the Wilson coefficient of Harlander and Steinhauser
- lacktriangle Re-computed the real radiation $gg \rightarrow hg, \ldots$ amplitudes
- Finishing checks on the two-loop amplitude
- Writing the NLO Monte-Carlo program. Results soon (sorry!)

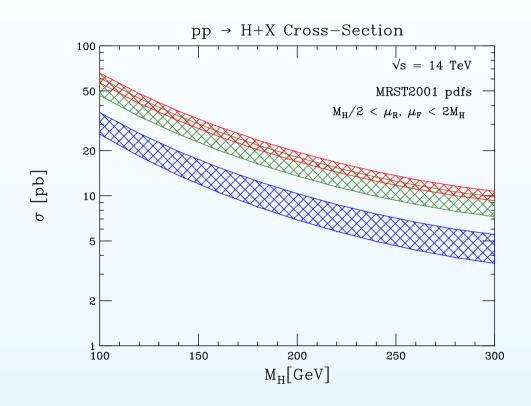
NNLO computation for *SM* $gg \rightarrow H \rightarrow WW \rightarrow l^+l^-\nu\nu$

Heavy top-quark approximation



- A very good approximation for a light Higgs boson
- Simplifies QCD corrections at NNLO (3 \rightarrow 2 loops).
- NNLO effective theory Chetyrkin, Kniehl, Steinhauser

Higgs boson total cross-section through NNLO



Harlander, Kilgore; CA, Melnikov; Ravindran, Smith, van Neerven

- Slowly converging perturbative series: large NLO (70%) and smaller NNLO (30%) corrections,
- Scale variation ($\sim 15\%$ at NNLO)

Effect of experimental cuts

- NNLO for fully differential cross-sections are not trivial
- $pp \rightarrow h$, $pp \rightarrow h \rightarrow \gamma \gamma$: First such computations for a hadron collider process CA, Melnikov, Petriello
- Extended the NNLO calculation to $pp \to htoWW \to ll\nu\nu$ CA, Dissertori,Stöckli
- For $m_h \sim 160-180 {\rm GeV}$ almost exclusive decay to Ws.
- No narrow peak reconstruction; large backgrounds from top and W pairs.
- Aggressive cuts (jet-veto, large missing energy, small lepton angle, restricted lepton p_t) to isolate a signal.
- What is the cross-section after cuts?

Accepted cross-section

Loose preselection cuts

$\sigma(\mathrm{fb})$	LO	NLO	NNLO
$\mu = \frac{m_h}{2}$	71.63 ± 0.07	126.95 ± 0.13	140.73 ± 0.45

$$M_{ll} < 80 \text{GeV}, \ p_t^l > 20 \text{GeV}, \ \left| \eta^l \right| < 2, \ \Delta \phi < 135^{\circ}, ; E_t^{miss} > 20 \text{GeV}$$

Signal selection cuts

$\sigma(\mathrm{fb})$	LO	NLO	NNLO
$\mu = \frac{m_h}{2}$	21.002 ± 0.021	22.47 ± 0.11	18.45 ± 0.54
$\mu = 2m_h$	14.529 ± 0.014	19.50 ± 0.10	19.01 ± 0.27

$$\begin{split} &12 \text{GeV} < M_{ll} < 40 \text{GeV}, \ p_t^l > 25 \text{GeV}, \ 30 \text{GeV} < p_t^{l,max} < 55 \text{GeV}, \ \left| \eta^l \right| < \\ &2, \ \Delta \phi < 45^\circ, ; E_t^{miss} > 50 \text{GeV}, ; \text{isolation}, \ p_t^{\text{jet}} < 25 \text{GeV} \end{split}$$

Conclusions

- Two-loop amplitude for $gg \rightarrow h$ in SUSY QCD:
 - Complete analytic and numerical calculation of single quark and squark loops
 - Last checks on the full amplitude including gluino and mixed squark diagrams
- NLO Monte-Carlo is also under completion
- A new numerical method for computing multi-loop divergent integrals with thresholds automatically
- Brief report on the NNLO cross-section for the SM $pp \to H \to WW \to ll\nu\nu$ at the LHC. Dramatic change of K-factors with cuts!