Mixed-sneutrino dark matter at the LHC

David Tucker-Smith Williams College

Work in progress with Spencer Chang, Zachary Thomas, and Neal Weiner

	times mentioned in Atlas physics TDR	times mentioned in CMS physics TDR		
slepton	130	41		
squark	104	54		
gluino	89	54		
neutralino	46	48		
chargino	29	33		
sneutrino	1	0		

[&]quot;... these events and their rejection is more difficult. The rate of direct production of $\tilde{\chi}^0_2$ pairs is comparable with the H/ A $\to \tilde{\chi}^0_2 \, \tilde{\chi}^0_2$, also the background from the direct production of slepton/ sneutrino pairs is non-negligible. "

What's wrong with sneutrino dark matter?

Sneutrinos annihilate rapidly in the early universe.

- To get interesting abundance, need $M_{ ilde{v}} < ext{few GeV or} > 600 ext{ GeV}$
- Direct detection experiments rule out $M_{\tilde{v}} > 10~{
 m GeV}$
- Z-width constraint rules out $M_{\tilde{v}} < 45 \text{ GeV}$

One way to save sneutrino dark matter

Arkani-Hamed, Hall, Murayama, Smith, Weiner

- Introduce right-handed neutrinos with vanishing or small Majorana masses (so add chiral superfields N).
- Include a weak-scale A-term $A_v LNH_u$

$$M_{\tilde{v}}^2 = \begin{pmatrix} M_L^2 + \frac{1}{2}\cos 2\beta M_Z^2 & A_v v \sin \beta \\ A_v v \sin \beta & M_R^2 \end{pmatrix}$$

$$\tilde{\mathbf{v}}_1 = -\sin\theta \, \tilde{\mathbf{v}} + \cos\theta \, \tilde{n}^*$$

$$\tilde{\mathbf{v}}_2 = \cos\theta \, \tilde{\mathbf{v}} + \sin\theta \, \tilde{n}^*$$

(Other ideas: tiny A-terms and non-thermal production, tiny A-terms and thermalization via a Z')

Asaka, Ishiwata, and Moroi

Lee, Matchev, Nasri

Mass splittings and inelastic scattering

• A small lepton-violating mass term $\tilde{n}\tilde{n}$ will introduce a mass splitting between the CP-even and CP-odd parts of \tilde{v}_1

 If mass splitting is greater than ~100 keV, scattering is strongly suppressed at direct-detection experiments. Hall, Moroi, Murayama

Implications of mixing for dark matter

Z-width constraint:

$$\delta\Gamma = \frac{\sin^4\theta}{2} [1 - (2m_{\tilde{v}_1}/m_z)^2]^{3/2} \Gamma_{v} < 2 \text{ MeV}$$

 Without inelasticity, cross section for scattering via Z-exchange is

$$\sigma = \frac{G_F^2}{2\pi} \mu^2 \left((A - Z) - (1 - 4\sin^2 \theta_W) Z \right)^2 \times \sin^4 \theta$$

If $\sin \theta < 0.06$, no constraint on mass . . .

Alena Aprile, for the XENON collaboration, talk at APS 2007

Elastic scattering, annihilation from Higgs exchange

Even if elastic scattering by Z exchange is turned off, still have

• If A terms are sizeable, s-channel Higgs exchange can give efficient annihilation (especially if W+W- is kinematically accessible).

Belanger, Boudjema, Pukhov, Semenov

 Calculate relic abundance using Micromegas 2.0, see what comologically preferred regions are still allowed . . .

* K. Ni and L. Baudis, astro-ph/0611124

Dark matter summary

- Mixed sneutrino is a viable dark matter candidate -- encourages us to investigate collider pheno of mixed-sneutrino LSP.
- With lepton-# violation, elastic scattering through Z exchange can be suppressed, but scattering through Higgs exchange still places important constraints.
- Interesting regions: above threshold for annihilation into W pairs, near Z/higgs poles, small lsp masses with light gauginos.
- In lepton-# conserving case mixing angle must be small (≤ 0.06) to evade direct detection bounds, except for very small masses (≤ few GeV).
- Then to get interesting abundance, should be in Higgs funnel, or have heavy left-handed sleptons (masses ≳ TeV).

Implications for LHC physics

- Case with θ very tiny, and χ^0_1 NLSP: no change for collider physics. BUT new regions of MSSM parameter space become viable for cosmology
- With \tilde{l}_R NLSP, opposite-sign same-flavor (OSSF) dilepton signature from χ_1^0 decay.
- Case with larger θ (≥0.1)
 - Direct decays $\, \tilde{\nu}_2 \to \tilde{\nu}_1 Z \,, \,\,\, \tilde{\nu}_2 \to \tilde{\nu}_1 h \,$

X	1	\mathcal{L}_2
	_	$ ilde{e}_L$
		c_L
	R	
χ	0	
<i>/</i> C	1	
\tilde{v}	1	

 $\Delta \pm \Delta 0$

- Direct decays
$$\tilde{\chi}_1^\pm \to \tilde{\mathbf{v}}_1 l$$
 $=$ $\tilde{\mathbf{v}}_2 \, \tilde{e}_L$ $\chi_1^\pm \, \chi_2^0$ \tilde{e}_R \tilde{e}_R χ_1^0

Decays of a \tilde{l}_R NLSP

dominates in absence of LR slepton mixing (not for $\tilde{ au}_1$, typically)

Invariant mass distributions

2 body - 2 body

(assume constant amplitude for now)

(assume constant amplitude for now)

$$tan \beta = 10$$
 $M_{1/2} = 450$
 $M_0 = 10$
 $M_{0} = 10$
 $\theta_{\tilde{v}} = 0.2$
 $A_{b,\tau} = 0$
 $A_t = -500$

A sample point

 $\int L \sim 30~{
m fb^{-1}}$ (80,000 events)

$$349 - \chi_1^{\pm} \chi_2^0$$

$$\sim 300$$
 $\tilde{v}_2 \tilde{e}_L$

$$184 - \chi_1^0$$

$$172 - \tilde{\tau}_1$$
 $162 - \tilde{\tau}_1$

$$107$$
 — \tilde{v}_1

$$Br(\chi_1^0 \rightarrow \tilde{l}_R l) = 40 \%$$

 $Br(\chi_1^0 \rightarrow \tilde{\tau}_R \tau) = 50 \%$
 $Br(\chi_1^0 \rightarrow \tilde{\nu}_1 \nu) = 10 \%$

$$Br(\tilde{l}_R \to l\tilde{v}_1 v) = 99 \%$$

Sjostrand, Mrenna, Skands Events generated with Pythia, detector simulation with PGS Conway et. al.

Decays of \tilde{V}_2

Need appreciable branching ratios for

$$\chi_1^+ o ilde{
u}_2 l^+$$
 and $ilde{
u}_2 o ilde{
u}_1 + h/Z$

$$\tilde{\mathsf{v}}_2 \to \tilde{\mathsf{v}}_1 + h/Z$$

A sample point (low-energy input):

$$tan \beta=10$$
 $\mu=600$
 $M_A=350$
 $M_1, M_2, M_3=200, 500, 700$
 $\tilde{m}_q=600$
 $\tilde{m}_L=300$
 $\tilde{m}_{l_R}=250$

$$Br(\chi_1^+ \rightarrow \tilde{\mathbf{v}}_2 l^+) = 32\%$$

 $Br(\tilde{\mathbf{v}}_2 \rightarrow \tilde{\mathbf{v}}_1 Z) = 37\%$
 $Br(\tilde{\mathbf{v}}_2 \rightarrow \tilde{\mathbf{v}}_1 h) = 37\%$

Higgs analysis

require invariant mass of b-jets to lie in peak, and look for edge in distribution of bbl invariant mass (at ~370 GeV for given parameters).

$$p_T > 200 \text{ GeV}$$

 $m_T > 200 \text{ GeV}$
 $M_{eff} > 800 \text{ GeV}$

	σ	events generated	two b-tags,one lepton	kinematic cuts	m_{bb} in peak
SUSY	22 pb	640k (~30/fb)	7,776	2,432	451
$t\bar{t}$	830 pb	18.9M (~23/fb)	440k	253	18

• 5,001 events with three leptons, two OSSF.

pair up Z candidates

with leptons from

different event, rescale

• 1,323 after requiring $M_{eff}>800~{
m GeV}$ and $|m_{l^+l^-}-m_Z|<10~{
m GeV}$

Direct decays of charginos/neutralinos

Can easily have ~100% branching ratios for

$$egin{aligned} egin{aligned} oldsymbol{\chi}_2^0 &
ightarrow ilde{f v}_1 {f v} \ oldsymbol{\chi}_1^0 &
ightarrow ilde{f v}_1 {f v} \ oldsymbol{\chi}_1^+ &
ightarrow ilde{f v}_1 l^+ \end{aligned}$$

signature: jet-lepton kinematic edge, without OSSF dilepton signal

a sample point:

$$tan \beta = 10$$
 $M_{1/2} = 300$
 $M_{0} = 200$
 $M_{H_{u}}, M_{H_{D}} = 0$
 $A_{\tau}, A_{b} = 0$
 $A_{t} = -500$

- Require
 - two jets with pt > 150 GeV
 - one lepton with pt > 10 GeV
 - $\not\!\!E_T > 250 \text{ GeV}$
 - $-m_T > 250 \text{ GeV}$
- Take invariant mass for both pairings.

τ signatures

• $\tilde{\tau}_1$ NLSP case: if $\chi^0_1 \to \tilde{\tau}_1 \tau$ dominates, have

or $\frac{\chi_1^0}{\chi_1^0} - \tilde{\tau}_1 - \tilde{\tau}_1 - \tilde{\tau}_1$

$$an \beta = 10$$
 $M_{1/2} = 350$
 $M_0 = 10$
 $M_0 = 10$
 $M_0 = 0.2$
 $A_{b,\tau} = 0$
 $A_t = -500$
 $Br(\tilde{\tau}_1 \rightarrow \tilde{v}_1 W) = 96\%$

• $\tilde{\nu}_2$ decays: if only $\,\tilde{\nu}_\tau\,$ mixes, have

take same parameters as before, but with only 3rd generation mixing:

τ signatures, continued

• χ_1^\pm decays: if only $\,\widetilde{\nu}_\tau\,$ mixes, have

take same parameters as before, but with only 3rd generation mixing:

Conclusions

- A mixed-sneutrino is a viable dark matter candidate.
- A mixed-sneutrino LSP impacts collider phenomenology.
 - e.g. likely to alter lepton multiplicity, missing energy distribution.
 - At the very least, invites us to reconsider parameter regions thought to be cosmologically disfavored in MSSM.
- Possible signals include
 - opposite-sign dileptons with invariant mass distribution shifted away from endpoint (right-handed slepton NSLP).
 - higgs-lepton, Z-lepton production.
 - lepton-jet kinetmatic edge from chargino decay straight to lsp sneutrino, without OSSF dilepton edge.