Search for Gauge-Mediated Supersymmetry

Yuri Gershtein

Tevatron Collider

1992-95

Run 1: 100 pb⁻¹, 1.8TeV

2001-2009 Run 2: major upgrades

higher $E_{CM} = 1.96 \text{ TeV}$

~3 fb⁻¹ recorded, expect ~8 fb⁻¹ in 2009

DØ Detector

Gauge-Mediated SUSY Breaking

- Alternative to gravity mediated SUSY breaking
 - SUSY breaking occurs at scale Λ much lower than GUT (10 100 TeV)
 - Mediated by new gauge fields "messengers"
 - Gravitino is very light (<keV) and is LSP
 - Dark Matter is a mix of the gravitino and the lightest "messenger"
- Lifetime of NLSP is a free parameter
 - All SUSY particles cascade to NLSP, so if R-parity is conserved all final states have two NLSPs
- NLSP can be neutralino or stau:

$$\chi_1^0 \rightarrow \gamma G \text{ or } \tau_1^+ \rightarrow \tau^+ G$$

- If neutralino is higgsino-like then it can also decay to hG and ZG
- Gravitino is weakly interacting and is registered as missing transverse energy (MET)

Typical Final States

	prompt decays	inside detector	outside detector
Stau	multiple τ + MET	tracks with kinks	muon-like highly ionising slow moving particles
Neutralino	γγ + ΜΕΤ	non-pointing photon(s)	mSUGRA-like
Higgsino	γ bb + MET, γ Z+MET	Non-pointing b-jets, detached Z	mSUGRA-like

 Many of the final states are predicted by other models (extra dimensions, 4th generation quarks, etc...)

mGMSB

- Model Parameters:
 - $-\Lambda$ mass parameter (effective scale of SUSY breaking)
 - M_m messenger mass scale
 - N₅ number of messenger fields
 - $\tan \beta = \langle \phi_1 \rangle / \langle \phi_2 \rangle$
 - sign μ =±1 sign of higgsino mass term
 - C_{grav} determines NLSP lifetime
- Gaugino masses proportional to N_5 , scalar masses proportional to $sqrt(N_5)$
- Snowmass slope E:

$$- \Lambda - varies$$

$$- M_m = 2 \cdot \Lambda$$

$$- N_5 = 1$$

$$- \tan \beta = 15$$

$$- sign \mu = +1$$
Neutralino
NLSP

Snowmass slope D:

$$-\Lambda - varies$$

$$-M_m = 2 \cdot \Lambda$$

$$-N_5 = 3$$

$$-tan \beta = 15$$

$$-sign \mu = +1$$
Stau
NLSP

Charged Massive "Stable" Particles

- "Old" analysis 0.35 fb⁻¹, update is in the works...
- Exist in many models in addition to GMSB: AMSB, stable stop, R-hadrons...
- Appear in the detector as a "slow muons"
- Study exclusive pair production of CMSP's
 - require two muons in event
 - measure muon speed with scintillator counters (counter resolution ~ 2 to 4 ns)

speed resolution depends on detector region and number of reconstructed hits -> construct "speed significance"
 DØ Run II Preliminary

- Main background: Drell-Yan
- Use low-mass di-muons (<120 GeV) to calibrate speed significance
- Look for excess in high mass di-muons

Data agrees with SM expectation...

Charged Massive "Stable" Particles

DØ Run II Preliminary No excess, set limits $L = 390 \text{ pb}^{-1}$ GMSB line (Snowmass slope D) (dd) ($^{1}_{7}$ $^{1}_{7}$ $^{1}_{7}$ $\leftarrow d$ d) \circ M=2 Λ , N₅=3, tan β =15, sign μ > 0 95% CL Cross Section Limi **LEP Excluded** NLO Cross Section Prediction **AMSB** Gauginos $M_1=3M_2$, $M_3=500$, $\mu=10$ TeV 10⁻⁴ $\tan \beta = 15$, M(squark) = 800 GeV 100 150 Stau Mass (GeV) **DØ** Run II Preliminary D∅ Run II Preliminary $L = 390 \text{ pb}^{-1}$ 0.05 σ (b $\overline{p} \rightarrow \chi_1^+ \chi_1^+$) (pb) 95% CL Cross Section Limit Acceptance 0.03 NLO Cross Section Prediction **LEP Excluded** Higgsino-like charginos Gaugino-like charginos 0.01

100

Gaugino-like Chargino Mass (GeV)

Lifetime (ns)

10²

10

10³

Di-photon Data Analysis

- Data collected in the Run IIa: 1.1 fb⁻¹
- Photon and electron identification:
 - Calorimeter cluster with > 95% energy in EM calorimeter
 - Isolated in calorimeter $(E_{TOT}^{R=0.4} E_{EM}^{R=0.2})/E_{EM}^{R=0.2} < 0.07$
 - Scalar sum of track p_T in 0.05<R<0.4 annulus around the direction of the cluster is less than 2 GeV
 - Shower shape is consistent with photon
 - Cluster is electron if there is a central track match (or an electron-like hit pattern in the tracker) and is a photon otherwise
- Event selection
 - Two photons, $E_T > 25$ GeV and $|\eta| < 1.1$
 - $\Delta \phi$ (jet, MET) < 2.5 for leading jet (if present) to remove events with mismeasured missing E_T
 - use photon pointing to eliminate mis-vertexing

Photon Pointing & Vertex Selection

- There can be several interactions per event
- Vertex distribution RMS ~ 28 cm
- MET is significantly affected if the vertex is shifted by >10 cm
- Which vertex did the photons come from?
- DØ has four longitudinal EM layers and a preshower
- Fit a straight line through the five Preshower (CPS)
 points (obtain resolution of each layer using Z→ee events)
- Z_{VTX} resolution ~ 2 cm (verified with Z→II_γ events)
- In the analysis require at least one photon to have CPS cluster

Backgrounds

- Physics backgrounds are small: Wγγ, Zγγ COMPHEP MC
- All instrumental backgrounds can be determined from data

without true MET -fake MET

- QCD: $\gamma\gamma$, $\gamma+j$, j+j (jet is faking γ)
- Drell-Yan (lost tracks)

largest

with true MET -fake γ

- $W\gamma \rightarrow e\nu\gamma$ (lost track) $Wj \rightarrow e\nu j$ (lost track, fake γ)
- $Z \rightarrow \tau \tau \rightarrow ee + X$ (lost tracks)
- $tt \rightarrow ee + X$ (lost tracks)
- WW, WZ, ... (lost tracks)

Backgrounds with No Genuine MET

- Need to know the shape of MET distribution for them
 - and normalize to data with low MET
- MET resolution is dominated by the energy resolution of the photons
 - to first order, the shape does not depend on whether the photons are real or faked by jets
 - still, there is a small difference due to the fact that when jet fakes a photon, the photon's energy is less than original parton;s energy
- Take $\gamma\gamma$ shape from Z \rightarrow ee
- Take fake shape from a sample that is the same as signal sample except both photons fail shower shape cut (hh sample)
- Take relative contribution that fits data best
 - 60±20% of real γγ
 - agrees with MC expectation for γγ
 - purity cross-checked by looking at shower shape in the preshower (not used for photon ID)

fluctuated jet: most energy is carried by π^0

Backgrounds with Genuine MET

- Always involve electron photon mis-identification
 - can determine using eγ events and known mis-identification rate
- Select e_γ events using the same kinematical cuts as γγ
 - Contributions from
 - Z→ee (one lost track) get contribution from di-EM mass fit
 - QCD (jets faking electron and photon) subtract using shape of hh sample
 - the processes we want to measure (W_Y, W_j, WZ, tt, etc)

also serves as a cross-check of QCD subtraction method:

grey area is Z+QCD+Wγ MC + Wj obtained from data

error is dominated by $j \rightarrow \gamma$ fake rate (correlated between bins)

MET in γγ Sample

 Signal MC: ISAJET for masses and branchings, PYTHIA for event generation, full detector simulation plus real zero-bias events overlay to simulate multiple interactions per crossing

Two Highest MET Events

 $ME_T=63$ GeV, $E_T(\gamma)=69$, 27 GeV plus electron with $E_T=23$ GeV

Run 187800 Evt 82968527 Sat Jan 3 16:42:02 2004

Expect ~0.15 events from W_{γγ} with $E_T(\gamma)$ >25 GeV

 $ME_{T}=105 \text{ GeV}, E_{T}(\gamma) = 82, 33 \text{ GeV}$

Run 175918 Evt 28681786 Mon Apr 21 22:37:15 2003

Expect ~0.1 event from $Z_{\gamma\gamma}$ with $E_T(\gamma) > 25$ GeV

Limit Setting

- Since data agrees with the MC proceed to limit-setting
- Use CLS method takes into acount shape of the distributions

$$\Lambda > 92 \text{ TeV}$$

$$m(\chi_1^0) > 126 \text{ GeV}$$

$$m(\chi_1^+) > 230 \text{ GeV}$$

Summary and Outlook

- Still no sign of SUSY, although some interesting events are showing up...
- Not the end of the story have more than twice the data on tape, will get ~8 fb⁻¹ by the end of 2009

Stay tuned!