Complementarity of LHC and ILC

S.Y. Choi (Chonbuk, Korea)

Standard Model

B

SUSY/Extra Dimensions/Strong Dynamics

Targets of LHC and ILC (for SUSY)
LHC/ILC Complementarity ⊕ Implications

Summary

LHC/LC Study WG, Weiglein ea Zerwas' LCWS07 talk ILC RDR document M Complement
: to provide what
the partner lacks
and lack what the
partner provides

Central Problems in Particle Physics

Electroweak symmetry breaking
Unification of forces
Microscopic spacetime structure
Connection with cosmology

<u>Supersymmetry = SUSY</u>

Impact across all microscopic scales ⊕ **cosmology**

Generating and stabilizing light Higgs boson at Terascale
Leading to unification of gauge couplings and paving path to gravity
Providing candidate particle for cold dark matter
M

Targets of LHC and ILC on SUSY

Model- independent and high- resolution SUSY picture at Terascale

Unification of matter and interactions

ILC = International e⁺e[−] linear collider ⊕ LHC

[http://www.linearcollider.org/]

Characteristics

0.5 to 1 TeV to CLIC w/ 3 TeV 300 fb $^{-1}$ /y) 1 ab $^{-1}$ in total 90/60% e $^{-}$ /+ polarization

Satellite modes

GigaZ: 10⁹ Z bosons e⁻ e⁻ w/ same E / reduced L ge/gg via Compton backscattering

[ILC RDR]

Measure the masses and mixings of the newly produced particles, their decay widths and branching ratios, their production cross sections, etc.

Verify that there are indeed the super-partners of the SM particles by determining their spin and parity, gauge quantum #'s and their couplings.

Reconstruct the low-E Lagrangian parameters with the smallest number of assumptions, i.e. as model-independently as possible.

Unravel the fundamental SUSY breaking mechanism and shed light on the physics at the very high energy (GUT or Planck) scale.

SUSY Mass Scale

[no firm prediction]

[Elis ea]) Weiglein's talk on 31.7

[SPS1a⁰]

Н

S

A favorable scenario: all non-colored SUSY particles produced at ILC1000

ILC1000

MSSM Higgs Bosons

[Djouadi and Jacobs' talks]

2 doublets) 5 physical states h light ≤ 140 GeV H, A, H± typically ∨ to 1 TeV

LHC coverage

7

ILC1000 PLC800

completely covered!

ILC

Pairs with mass up to $E_{cm}/2$ e^+e^- ! AH, H^+H^-

[Kivoura ea

Photon Linear Collider

gg! H/A + 50%

[Mühlleitner ea] [Gunion ea] [Niezurawski ea]

Higgs Couplings and Masses

Model-independent and precise "coupling" and "mass" measurements

[ECFA/DESY LC Physics WG]

Precision) ILC reach far beyond LHC reach

[Heinemeyer, Hollik, Weiglein]

Reduced theoretical uncertainty

⊕ precise m_t measurement at ILC

) reliable A_t determination

Higgs Boson in SUSY or Extra-D?) Model-independent analysis!

Only ILC

Coupling measurements

Same branching fractions as SM, but different widths

MSSM Higgs Sector with CP Violation

Loop corrections) h, H are mixed with A) H₁, H₂, H₃

Masses and couplings

Large effects in decoupling regime due to degenerate H and A

- shift in complex masses w/widths
- $gg ! H_2$, H_3 with polarized photons

Circular asymmetry [(++) - (--)]

[SYC ea]

[Сагела еа]

Codes: CPsuperH [J.S. Lee ea]
FeynHiggs [Heinemeyer ea]) Hahn's talk
CPnSH report) Kraml's talk

Extended Higgs Sector: NMSSM, USSM etc

Two doublets H_1 , $H_2 \oplus$ one isosinglet S

NMSSM

 $\begin{array}{ccccccccc} h,\; H \oplus H^{\emptyset} \;) & H_1,\; H_2,\; H_3 \\ & A \oplus A^{\emptyset} \;) & A_1,\; A_2 \\ & H^{\pm} \end{array}$

H₁ ! A₁A₁ ! bbbb [difficult to observe at LHC]

Higgs Search in NMSSM) Gunion ea

USSM: SM⊗U(1)

One CP- odd state eaten by U(1) Z^{\parallel} boson) H_1 , H_2 , $H_3 \oplus A \oplus H^{\pm}$

typical mass spectrum

[Miller, Nevzorov, Zerwas]

Distinct **Z**⁰ couplings to fermions

SUSY Particle Masses at LHC

[Dutta, Spiropulu and Ozturk's talks]

SUSY mass reach at LHC

Discovery of colored gluino/squarks with mass up to 2.5 to 3 TeV

> "Precise" differences, but "Crude" absolute masses

Cascade decays

[CMS] **Invariant masses**

[Gjelsten, Miller, Osland]

SUSY Particle Masses at ILC

filling voids accuracy increased by one to two orders

Threshold excitations

Decay edges

[Martyn]

"Absolute" mass determination

[LHC/ILC Study WG, Weiglein ea]

	Mass, ideal	"LHC"	"ILC"	"LHC+ILC"
$\tilde{\chi}_1^{\pm}$	179.7		0.55	0.55
$\tilde{\chi}_2^{\pm}$	382.3	_	3.0	3.0
$\tilde{\chi}_1^0$	97.2	4.8	$\left(\begin{array}{c} 0.05 \end{array}\right)$	0.05
$ ilde{\chi}^0_2$	180.7	4.7	1.2	0.08
\tilde{e}_R	143.9	4.8	0.05	0.05
\tilde{e}_L	207.1	5.0	0.2	0.2
$ ilde{ u}_e$	191.3	_	1.2	1.2
$ ilde{\mu}_R$	143.9	4.8	0.2	0.2
$ ilde{ au}_1$	134.8	5-8	0.3	0.3
$ ilde{ au}_2$	210.7	_	1.1	1.1
$ ilde{q}_L$	570.6	8.7	_	4.9
\tilde{t}_1	399.5		2.0	2.0
\tilde{t}_2	586.3		_	
\tilde{g}	604.0	8.0	_	6.5
h^0	110.8	0.25	0.05	0.05
A^0	399.4		1.5	1.5

voids in spectrum percent accuracy mass diff permille

Coherent LHC \otimes ILC) comprehensive and high resolution SUSY picture

Mixing Parameter Determination

Gaugino-higgsino mixing

R/G for $L^{\pm}[11]$ and B for $R^{\pm}[11]$

Similar studies at LHC??

Top squark mixing

[Finch, Nowak, Sopczak]
) Sopczak's talk

Analogously for staus and sbottoms

LHC

$$|\tilde{q}_L \to q\tilde{\chi}_2^0 \to q\ell^+\tilde{\ell}^- \to q\ell^+\ell^-\tilde{\chi}_1^0 \to q\ell^+\ell^-E_{miss}|$$

[q, |+, |-] invariant masses affected by Intermediate spins

Charge asymmetry in [ql+] and [ql-]

[Barr]) Ozturk's talk

ILC) various methods

Thres. excitation

events

100

Ang distr

0.5

 $\cos\Theta_{\mu_{n}^{m}}$

Yukawa=Gauge

LHC) $SU(3)_C$

$$\hat{g}_{\rm s}(q\tilde{q}\tilde{g}) = g_{\rm s}(qqg)$$

Test in cross section for like-sign di-lepton pairs) accuracy ~ 5%

[Freitas ea]) Freitas' talk

ILC) $U(2)_L$ and $U(1)_Y$

[Freitas, von Manteuffel, Zerwas

Extracting SUSY Parameters at Terascale

Gaugino, higgsino, scalar mass parameters, trilinear couplings, etc

SPA Project

[http://spa .desy.de/spa/]

Well- defined theoretical scheme and conventions for multi- loop LHC and ILC analyses

SFitter [Lafaye, Plehn, D. Zerwas]
) Rauch's talk
Fittino [Kechtle, Desch, Weinemann]
) Bechtle's talk
[Albarach's talk]

	1			
EXC	LHC	LC	LHC+LC	SPS1a
M_1	102.5±5.3	102.3 ± 0.1	102.2±0.1	102.2
M_2	191.8±7.3	192.5 ± 0.7	191.8±0.2	191.8
M_3	$578.\pm15.$	\rightarrow	588.±11.	589.4
$M_{\tilde{e}_L}$	198.7±5.1	198.7 ± 0.2	198.7 ± 0.2	198.7
$M_{\tilde{e}_R}$	138.2 ± 5.0	138.2 ± 0.05	138.2±0.05	138.2
$M_{ ilde{q}_L}$	$550.\pm13.$	\rightarrow	553.3 ± 6.5	553.7
$M_{\tilde{u}_R}$	$529.\pm 20.$	\rightarrow	$532.\pm15.$	532.1
$M_{ ilde{d}_R}$	$526.\pm 20.$	\rightarrow	$529.\pm15.$	529.3
A_t	-507.±91.	-501.9 ± 2.7	-505.2±3.3	-504.9
$\mid \mu \mid$	345.2 ± 7.3	344.3 ± 2.3	344.4±1.0	344.3
$\tan \beta$	10.2±9.1	10.3 ± 0.3	10.06 ± 0.2	10

Extended SUSY Models: USSM = MSSM \otimes U(1) etc

6 neutralinos: 4 MSSM states ⊕ singlino and U(1) gaugino [identical chargino spectrum]

Mass

Neutralino Masses 10⁴ 2' 2' 2' 4' 3' 10² 0 1000 2000 3000 4000 5000 M'₁ [GeV]

Production

Patterns very different from MSSM

Crucial to have high-precision data for model identification

RGE Extrapolation to GUT/Planck Scale

Reconstruction of fundamental theory ~ L

Exploration of microscopic SUSY breaking

Symmetries/universal behavior at L?

Impact of high-scale physics?

Crucial to have reliable RGE programs

Gauge couplings

LHC ⊕ **ILC** era

[Amaldi, de Boer, Fürstenau] [Ellis, Kelly, Nanopoulos] [Giunti, C. W. Kim, U. Lee] [Langacker, Luo]

	Present/"LHC"	GigaZ/"LHC+LC"
M_U	$(2.36 \pm 0.06) \cdot 10^{16} \mathrm{GeV}$	$(2.360 \pm 0.016) \cdot 10^{16} \mathrm{GeV}$
α_U^{-1}	24.19 ± 0.10	24.19 ± 0.05
$\alpha_3^{-1} - \alpha_U^{-1}$	0.97 ± 0.45	0.95 ± 0.12

RGE Extrapolation to GUT/Planck Scale

[Blair, Porod, Zerwas]

mSUGRA
Universal gaugino
and scalar masses

[Freitas, Porod, Zerwas

Leptogenesis: heavy $n_R \oplus CP$ violation in n sector) See- saw scale $M[n_R] \sim 10^{10}$ to 15 GeV

See- saw affects evolution of t slepton and sneutrino masses, but not of 1st/2nd generation masses

LHC ⊕ ILC **ó** Neutralino CDM

$$[WMAP]: \Omega h^2 = 0.104^{+0.007}_{-0.013} \sim 10\% \Rightarrow 1.4\% [PLANCK]$$

	character	channel	sensitivity	LHC	(500)	(1000)
SPS1a'	buck/co-an	$\tilde{\chi}\tilde{\chi} \to \tau\tau, bb$ / co-an	$ ilde{ au}, \widetilde{b}$	10%	3%	2%
LCC2	focus point	$\tilde{\chi}\tilde{\chi} \to WW, ZZ$	$\tilde{V}\tilde{H}$ mix	80%	14%	8%
LCC3	$\tilde{\tau}\tilde{\chi}$ co-ann.	$\tilde{\tau}\tilde{\chi} \to \tau\gamma$	$M[\tilde{\tau} - \tilde{\chi}_1^0]$	176%	50%	18%
LCC4	A funnel	$\tilde{\chi}\tilde{\chi} \to A$	M_A, Γ_A	405%	85%	19%

4

[Battaglia]

Similar to SPS1a⁰

Significant improvement if over- all picture under better control

Summary

LHC and ILC can contribute coherently and complementarily to solutions of key questions in particle physics and cosmology.

Need to be demonstrated!

Comprehensive and high-resolution picture of (not only) SUSY (but also <u>alternatives</u>)

Telescope to unification of interactions and connection of particle physics to cosmology

LHC

LHC

ILC

Back- up Slides

EW Baryogenesis 6 CDM

Can we get two rabbits with one stone?

Alternative: Strong EWSB

[Cheng's talk]

Little Higgs Models

[Reuter ea]) Reuter's talk

Large global symmetry group Rich spectrum of TeV particles ⊕ light Higgs sector

Pseudoscalar h: $e^+e^- \rightarrow t\bar{t}\,\eta \mid \eta \rightarrow b\bar{b}$

Parameters almost completely covered.

Minimal Strong Theory

No light states but [WW] with mass ~ 1 TeV in 0+, 1-... observed In WW scattering

$$e^+e^- \to \bar{\nu}\nu WW$$

 $e^+e^- \to WWZ$

Sensitivity: $L_* < 4pv'$ 3 TeV

Extra Space Dimensions

Gravity extends to higher flat/warped dimensions.

ADD

e+e-! S GKK g

[Wilson]

RS

Excitation of KK graviton towers

[Hewett ea]

Intermediate Scale: Z⁰

Heavy Z' motivated by TeV scale remnants of GUTs and string theories, extended Higgs and extra-dim models, etc

Riemann1

Virtual extension to 15 TeV

[Godfrey ea]

Z⁰ couplings distinguishing models

Which are/is most reliable?

From Spiropulu's talk

Summary

LHC and ILC can contribute coherently and complementarily to solutions of key questions in particle physics and cosmology.

Need to be demonstrated!

Comprehensive and high-resolution picture of not only SUSY but also <u>alternatives</u>

Telescope to unification of interactions and connection of particle physics to cosmology

LHC

LHC ⊕ ILC

