
Introduction Cancellations & Symmetries Colliders Conclusions

Can LHC Test the See-Saw Mechanism?

Jörn Kersten

The Abdus Salam ICTP, Trieste

Based on
J.K., A.Yu. Smirnov, arXiv:0705.3221 [hep-ph]



Introduction Cancellations & Symmetries Colliders Conclusions

Outline

1 Introduction

2 Cancellation of Neutrino Masses and Underlying Symmetries

3 Signals at Colliders

4 Conclusions



Introduction Cancellations & Symmetries Colliders Conclusions

1 Introduction

2 Cancellation of Neutrino Masses and Underlying Symmetries

3 Signals at Colliders

4 Conclusions



Introduction Cancellations & Symmetries Colliders Conclusions

The See-Saw Mechanism

Standard Model (or MSSM) + right-handed neutrinos νR

Singlets under all gauge groups
 Very large Majorana masses mR possible

Yukawa couplings to Higgs and lepton doublets
 Electroweak-scale Dirac masses mD



Introduction Cancellations & Symmetries Colliders Conclusions

The See-Saw Mechanism

Standard Model (or MSSM) + right-handed neutrinos νR

Singlets under all gauge groups
 Very large Majorana masses mR possible

Yukawa couplings to Higgs and lepton doublets
 Electroweak-scale Dirac masses mD

Mass eigenstates:

Very light Majorana neutrinos, mν = −mDmR
−1mD

T

Very heavy ones with masses ∼ mR



Introduction Cancellations & Symmetries Colliders Conclusions

The See-Saw Mechanism

Standard Model (or MSSM) + right-handed neutrinos νR

Singlets under all gauge groups
 Very large Majorana masses mR possible

Yukawa couplings to Higgs and lepton doublets
 Electroweak-scale Dirac masses mD

Mass eigenstates:

Very light Majorana neutrinos, mν = −mDmR
−1mD

T

Very heavy ones with masses ∼ mR

Experimental limit: mν . 0.1 eV

Common assumption: O(1) Yukawa couplings
⇒ mR & 1014 GeV
⇒ Mechanism not directly testable
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Electroweak-Scale Singlets

What if mR ∼ 100 GeV?
mD ∼ 10−4 GeV = 100 keV ∼ me

 Not totally unreasonable
⇒ RH neutrinos may be within reach of LHC and ILC

Yukawa couplings tiny ⇒ irrelevant for colliders

Gauge interactions via mixing, e.g.

N

l−

W
∝ V = mDmR

−1 ∼ 10−4 GeV
100 GeV = 10−6

Observation at colliders needs V & 0.01
Han, Zhang, PRL 97 (2006); del Aguila, Aguilar-Saavedra, Pittau, J. Phys. Conf.
Ser. 53 (2006); Bray, Lee, Pilaftsis, hep-ph/0702294

⇒ no way?
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Less Naive Point of View

Contributions from different singlets to mν can cancel
Buchmüller, Wyler, PLB 249 (1990); Pilaftsis, Z. Phys. C55 (1992)

3 singlets: mν = 0 if and only if

mD has rank 1, mD = m





y1 y2 y3

αy1 αy2 αy3

βy1 βy2 βy3





y2
1

M1
+

y2
2

M2
+

y2
3

M3
= 0

Buchmüller, Greub, NPB 363 (1991); Ingelman, Rathsman, Z. Phys. C60 (1993);
Heusch, Minkowski, NPB 416 (1994)
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Less Naive Point of View

Contributions from different singlets to mν can cancel
Buchmüller, Wyler, PLB 249 (1990); Pilaftsis, Z. Phys. C55 (1992)

3 singlets: mν = 0 if and only if

mD has rank 1, mD = m


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βy1 βy2 βy3





y2
1

M1
+

y2
2

M2
+

y2
3

M3
= 0

Buchmüller, Greub, NPB 363 (1991); Ingelman, Rathsman, Z. Phys. C60 (1993);
Heusch, Minkowski, NPB 416 (1994)

Size of Yukawa couplings arbitrary ⇒ large mixing allowed

Experimental limit: V . 0.1

Cancellation at least at the level 10−8 ⇒ severe fine-tuning
 Symmetry motivation?
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Lepton Number Conservation

Most straightforward: conserved lepton number
Wyler, Wolfenstein, NPB 218 (1983); Bernabéu, Santamaria, Vidal, Mendez, Valle,
PLB 187 (1987); Tommasini, Barenboim, Bernabéu, Jarlskog, NPB 444 (1995);
Pilaftsis, PRL 95 (2005); Pilaftsis, Underwood, PRD 72 (2005)

L(νL) = 1, L(ν1
R) = 1, L(ν2

R) = −1, L(ν3
R) = 0

⇒ mR =





0 M 0
M 0 0
0 0 M3



 , mD = m





a 0 0
b 0 0
c 0 0





ν1
R, ν2

R form a Dirac neutrino with mass M

ν3
R is decoupled
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Most straightforward: conserved lepton number
Wyler, Wolfenstein, NPB 218 (1983); Bernabéu, Santamaria, Vidal, Mendez, Valle,
PLB 187 (1987); Tommasini, Barenboim, Bernabéu, Jarlskog, NPB 444 (1995);
Pilaftsis, PRL 95 (2005); Pilaftsis, Underwood, PRD 72 (2005)

L(νL) = 1, L(ν1
R) = 1, L(ν2

R) = −1, L(ν3
R) = 0

⇒ mR =





0 M 0
M 0 0
0 0 M3



 , mD = m





a 0 0
b 0 0
c 0 0





ν1
R, ν2

R form a Dirac neutrino with mass M

ν3
R is decoupled

Are there symmetries realizing the cancellation without L
conservation?
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Cancellation Without L Conservation?

2 or 3 singlets with equal masses involved in cancellation
⇒ L conservation try M1 6= M2

Suppose singlets ν1
R and ν2

R participate in cancellation

Some symmetry mν = 0 at scale M2

Symmetry broken below M2

Running of contributions from ν1
R and ν2

R different
Antusch, J.K., Lindner, Ratz, PLB 538 (2002); Antusch, J.K., Lindner, Ratz,
Schmidt, JHEP 03 (2005)

⇒ Cancellation unstable

mν ∼ 100 keV ln
M2

M1
at M1

⇒ Singlets must be degenerate
⇒ Lepton number must be conserved
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Perturbations Leading to Non-Zero Neutrino Masses

mR =


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

a δa ǫa

b δb ǫb

c δc ǫc




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Perturbations Leading to Non-Zero Neutrino Masses

mR =





ǫ1M M ǫ13M
M ǫ2M ǫ23M

ǫ13M ǫ23M M3



 , mD = m





a δa ǫa

b δb ǫb

c δc ǫc



≡ m (v vδ vǫ)

ǫ2, δa,b,c . 10−10 for max(a, b, c) ∼ 1, m
M ∼ 0.1

Most general case: more parameters than observables

Restricted cases, e.g. assuming similar size for all ǫ, δ:

mν ≈
m2

M

[

ǫ2 vvT − (vvT
δ + vδvT )

]

Strong mass hierarchy
Leading-order Yukawa couplings determined by observables
Examples studied in leptogenesis context
Raidal, Strumia, Turzyński, PLB 609 (2005); Pilaftsis, Underwood, PRD 72 (2005)
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Lepton Number Violation

W

Ni

W

q1

q2

q3

q4

lα

lβ

qq̄ → l−α l−β + jets

mν = 0 due to symmetry ⇒ L conservation
⇒ leading-order cross-section vanishes

L-violating perturbations ⇒ mν 6= 0 ⇒ tiny

⇒ Unobservable without fine-tuning
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Lepton Flavour Violation

W

Ni

W

q1

q2

q3

q4

lα

lβ

qq̄ → l−α l+β + jets (α 6= β)

L conservation ⇒ no cancellation possible

Strong constraints from searches for LFV decays,
especially µ → eγ ⇒ best candidate: µ−τ+

⇒ Observable in principle

Probably not at LHC
del Aguila, Aguilar-Saavedra, Pittau, hep-ph/0703261
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mν small due to cancellation, not due to see-saw

Colliders probe leading-order Yukawa couplings,
not perturbations giving mν 6= 0

General case: no relation to neutrino masses and mixings

 Decoupling of collider physics and neutrino mass generation
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Testing the See-Saw Mechanism

mν small due to cancellation, not due to see-saw

Colliders probe leading-order Yukawa couplings,
not perturbations giving mν 6= 0

General case: no relation to neutrino masses and mixings

 Decoupling of collider physics and neutrino mass generation

Restricted cases:

Strong neutrino mass hierarchy

Leading-order Yukawas related to mν

Correlations between LFV amplitudes

Possible verification: measure V directly at e+e− collider
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Conclusions

Considered type-I see-saw scenario with light singlets

Not considered: Right-handed neutrinos with additional
interactions

Naive expectation: Yukawa couplings tiny ⇒ unobservable

Sizable couplings ⇒ cancellation needed for small mν

Requires either fine-tuning or lepton number conservation

Small neutrino masses due to tiny perturbations

Colliders: lepton number violation not observable
in untuned scenario

Lepton flavour violation possibly observable

Neutrino mass generation and collider physics decoupled
in general

Connection possible in constrained setups
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