
ar
X

iv
:0

70
9.

39
83

v1
  [

he
p-

ph
] 

 2
5 

Se
p 

20
07

Inflation and Unification

Qaisar Shafi and V. Nefer Şenoğuza

Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA

Abstract. Two distinct classes of realistic inflationary models consistent with present observations
are reviewed. The first example relies on the Coleman-Weinberg potential and is readily realized
within the framework of spontaneously broken global symmetries (for instance, global U(1)B−L).
Depending on the parameters either new or large field inflation is possible. The second exam-
ple exploits supersymmetry which makes implementation of inflation within local gauge theories
much more accessible. An example based on spontaneously broken local U(1)B−L is discussed.
Leptogenesis is naturally realized in both cases.

PACS. 98.80.Cq Particle-theory and field-theory models of the early Universe

1 From new to large field inflation

An inflationary scenario [1,2] may be termed successful
if it satisfies the following criteria:

1) The total number of e-folds N during inflation is
large enough to resolve the horizon and flatness prob-
lems. Thus, N &50–60, but it can be somewhat smaller
for low scale inflation.

2) The predictions are consistent with observations
of the microwave background and large scale structure
formation. In particular, the predictions for ns, r and
α should be consistent with the most recent WMAP
results [3] (see also [4] for a brief survey of models).

3) Satisfactory resolution of the monopole problem
in grand unified theories (GUTs) is achieved.

4) Explanation of the origin of the observed baryon
asymmetry is provided.

In this section1 we review a class of inflation models
which appeared in the early eighties in the framework
of non-supersymmetric GUTs and employed a GUT
singlet scalar field φ [6,7,8]. These (Shafi-Vilenkin)
models satisfy, as we will see, the above criteria and
are based on a Coleman-Weinberg (CW) potential [9]

V (φ) = V0 + Aφ4

[

ln

(

φ2

M2
∗

)

+ C

]

(1)

where, following [6] the renormalization mass M∗ =

1018 GeV and V
1/4
0 will specify the vacuum energy.

The value of C is fixed to cancel the cosmological con-
stant at the minimum. It is convenient to choose a
physically equivalent parametrization for V (φ) [10,11],
namely

V (φ) = Aφ4

[

ln

(

φ

M

)

− 1

4

]

+
AM4

4
, (2)

a Present address: Department of Physics and Astron-
omy, University of Kansas, Lawrence, KS 66045, USA

1 Based on Ref. [5].

where M denotes the φ VEV at the minimum. Note
that V (φ = M) = 0, and the vacuum energy density
at the origin is given by V0 = AM4/4. For our dis-
cussion here one reasonable choice is to assume that
the global U(1)B−L symmetry of the standard model
is spontaneously broken by the VEV of φ (see later
when we briefly discuss leptogenesis).

The potential above is typical for the new infla-
tion scenario [2], where inflation takes place near the
maximum. However, as we discuss below, depending
on the value of V0, the inflaton can have small or large
values compared to the Planck scale during observable
inflation. In the latter case observable inflation takes
place near the minimum and the model mimics chaotic
inflation [12].

The original new inflation models attempted
to explain the initial value of the inflaton through
high-temperature corrections to the potential. This
mechanism does not work unless the inflaton is some-
what small compared to the Planck scale at the Planck
epoch [11]. However, the initial value of the inflaton
could also be suppressed by a pre-inflationary phase.
Here we will simply assume that the initial value
of the inflaton is sufficiently small to allow enough
e-folds.

The slow-roll parameters may be defined as [13]

ǫ =
1

2

(

V ′

V

)2

, η =

(

V ′′

V

)

, ξ2 =

(

V ′ V ′′′

V 2

)

.

(3)
(Here and below we use units mP = 1, where mP ≃
2.4 × 1018 GeV is the reduced Planck mass, although
sometimes we will write mP explicitly. The primes de-
note derivatives with respect to the inflaton φ.) The
slow-roll approximation is valid if the slow-roll condi-
tions ǫ ≪ 1 and η ≪ 1 hold. In this case the spectral
index ns, the tensor to scalar ratio r and the running
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Table 1. The inflationary parameters for the Shafi-Vilenkin model with the potential in Eq. (2) (mP = 1)

V
1/4

0
(GeV) A(10−14) M φe φ0 V (φ0)

1/4(GeV) ns α(−10−3) r

1013 1.0 0.018 0.010 3.0 × 10−6
≈ V

1/4

0
0.938 1.4 9 × 10−15

5 × 1013 1.2 0.088 0.050 7.5 × 10−5
≈ V

1/4

0
0.940 1.3 5 × 10−12

1014 1.3 0.17 0.10 3.0 × 10−4
≈ V

1/4

0
0.940 1.2 9 × 10−11

5 × 1014 1.9 0.79 0.51 7.5 × 10−3
≈ V

1/4

0
0.941 1.2 5 × 10−8

1015 2.3 1.5 1.1 0.030 ≈ V
1/4

0
0.941 1.2 9 × 10−7

5 × 1015 4.8 6.2 5.1 0.71 ≈ V
1/4

0
0.942 1.0 5 × 10−4

1016 5.2 12 10 3.2 9.9 × 1015 0.952 1.0 8 × 10−3

2 × 1016 1.1 36 35 23 1.7 × 1016 0.966 0.6 0.07

3 × 1016 .17 86 85 72 1.9 × 1016 0.967 0.6 0.11

1017 .001 1035 1034 1020 2.0 × 1016 0.966 0.6 0.14

of the spectral index α ≡ dns/d lnk are given by

ns≃1 − 6ǫ + 2η (4)

r≃16ǫ (5)

α≃16ǫη − 24ǫ2 − 2ξ2. (6)

The number of e-folds after the comoving scale l0 =
2π/k0 has crossed the horizon is given by

N0 =
1

2

∫ φ0

φe

H(φ)dφ

H ′(φ)
(7)

where φ0 is the value of the field when the scale cor-
responding to k0 exits the horizon and φe is the value
of the field at the end of inflation. This value is given
by the condition 2(H ′(φ)/H(φ))2 = 1, which can be
calculated from the Hamilton-Jacobi equation [14]

[H ′(φ)]2 − 3

2
H2(φ) = −1

2
V (φ) . (8)

The amplitude of the curvature perturbation P1/2
R

is
given by

P1/2
R

=
1

2
√

3πm3
P

V 3/2

|V ′| . (9)

To calculate the magnitude of A and the inflationary
parameters, we use these standard equations. We also
include the first order corrections in the slow roll ex-
pansion for P1/2

R
and the spectral index ns [15].2 The

WMAP value for P1/2
R

is 4.86 × 10−5 for k0 = 0.002
Mpc−1. N0 corresponding to the same scale is ≃ 53 +
(2/3) ln(V (φ0)

1/4/1015 GeV) + (1/3) ln(Tr/109 GeV).
(The expression for N0 assumes a standard thermal
history [16]. See [17] for reviews.) We assume reheating
is efficient enough such that the reheating temperature
Tr = mφ, where the mass of the inflaton mφ = 2

√
AM .

2 The fractional error in P
1/2

R
from the slow roll approx-

imation is of order ǫ and η (assuming these parameters re-
main ≪ 1). This leads to an error in ns of order ξ2, which
is ∼ 10−3 in the present model. Comparing to the WMAP
errors, this precision seems quite adequate. However, in
anticipation of the Planck mission, it may be desirable to
consider improvements.
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Fig. 1. 1 − ns and r vs. log[V
1/4

0
(GeV)] for the potential

in Eq. (2).

In practice, we expect Tr to be somewhat below mφ

[6].
In Table 1 and Fig. 1 we display the predictions for

ns, α and r, with the vacuum energy scale V
1/4
0 vary-

ing from 1013 GeV to 1017 GeV. The parameters have
a slight dependence on the reheating temperature, as
can be seen from the expression for N0. As an exam-
ple, if we assume instant reheating (Tr ≃ V (φ0)

1/4),

ns would increase to 0.941 and 0.943 for V
1/4
0 = 1013

GeV and V
1/4
0 = 1015 GeV respectively.

For V
1/4
0 . 1016 GeV, the inflaton field remains

smaller than the Planck scale, and the inflationary pa-
rameters are similar to those for new inflation mod-
els with V = V0(1 − (φ/µ)4): ns ≃ 1 − (3/N0), α ≃
(ns − 1)/N0. As the vacuum energy is lowered, N0

becomes smaller and ns deviates further from unity.
However, ns remains within 2σ of the WMAP best fit

value (for negligible r) 0.9510.015
−0.019 [3] even for V

1/4
0 as

low as 105 GeV. Inflation with CW potential at low
scales is discussed in Ref. [18].

For V
1/4
0 & 1016 GeV, the inflaton takes val-

ues larger than the Planck scale during observable
inflation. Observable inflation then occurs closer
to the minimum where the potential is effectively
V = (1/2)m2

φ∆φ2, ∆φ = M − φ denoting the devia-
tion of the field from the minimum. This well-known
monomial model [12] predicts mφ ≃ 2× 1013 GeV and
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Fig. 2. ns vs. log[V
1/4

0
(GeV)] for the potential in Eq. (2),

shown together with the WMAP contours (68% and 95%
confidence levels) [3].

Fig. 3. r vs. ns for the potential in Eq. (2), shown together
with the WMAP contours (68% and 95% confidence levels)
[3].

∆φ0 ≃ 2
√

N0, corresponding to V (φ0) ≃ (2 × 1016

GeV)4. For the φ2 potential to be a good approxima-
tion, V0 must be greater than this value. Then the
inflationary parameters no longer depend on V0 and
approach the predictions for the φ2 potential.

The spectral index ns and tensor to scalar ratio
r are displayed in Figs. 2, 3. The values are in very
good agreement with the recent WMAP results [3].
The running of the spectral index is negligible, as in
most inflation models (Fig. 4).

Note that the WMAP analysis suggests a running
spectral index, with |α| . 10−3 disfavored at the 2σ
level [19,3]. On the other hand, an analysis includ-
ing the constraints from the Sloan Digital Sky Sur-
vey (SDSS) finds no evidence for running [20]. Clearly,
more data is necessary to resolve this important issue.
Modifications of the models discussed here, generally
involving two stages of inflation, have been proposed
in Refs. [21,22] and elsewhere to generate a much more
significant variation of ns with k.

In the context of non-supersymmetric GUTs, V
1/4
0

is related to the unification scale, and is typically a
factor of 3–4 smaller than the superheavy gauge boson
masses due to the loop factor in the CW potential.
The unification scale for non-supersymmetric GUTs
is typically 1014–1015 GeV, although it is possible to

0.94 0.945 0.95 0.955 0.96 0.965
ns

-0.0012

-0.001

-0.0008

-0.0006

Α

Fig. 4. α vs. ns for the potential in Eq. (2).

have higher scales, for instance associating inflation
with SO(10) breaking via SU(5).

The reader may worry about proton decay with
gauge boson masses of order 1014–1015 GeV. In the
SU(5) model [23], in particular, a two-loop renormal-
ization group analysis of the standard model gauge
couplings yields masses for the superheavy gauge
bosons of order 1 × 1014–5 × 1014 GeV [24]. This is
consistent with the SuperK proton lifetime limits [25],
provided one assumes strong flavor suppression of the
relevant dimension six gauge mediated proton decay
coefficients. If no suppression is assumed the gauge
boson masses should have masses close to 1015 GeV
or higher [26].

For the Shafi-Vilenkin model in SU(5), the tree
level scalar potential contains the term (1/2)λφ2TrΦ2

with Φ being the Higgs adjoint, and A ≃ 1.5× 10−2λ2

[6,11]. Inflation requires A ∼ 10−14, corresponding to
λ ∼ 10−6.

This model has been extended to SO(10) in Ref.
[8]. The breaking of SO(10) to the standard model pro-
ceeds, for example, via the subgroup G422 = SU(4)c×
SU(2)L×SU(2)R [27]. A renormalization group analy-
sis shows that the symmetry breaking scale for SO(10)
is of order 1015 GeV, while G422 breaks at an interme-
diate scale MI ∼ 1012 GeV [28]. (This is intriguingly
close to the scale needed to resolve the strong CP prob-
lem and produce cold dark matter axions.) The pre-
dictions for ns, α and r are essentially identical to the
SU(5) case. There is one amusing consequence though
which may be worth mentioning here. The monopoles
associated with the breaking of SO(10) to G422 are
inflated away. However, the breaking of G422 to the
SM gauge symmetry yields doubly charged monopoles
[29], whose mass is of order 1013 GeV. These may be
present in our galaxy at a flux level of 10−16 cm−2 s−1

sr−1 [8].
As stated earlier, before an inflationary model can

be deemed successful, it must contain a mechanism
for generating the observed baryon asymmetry in the
universe. In the SU(5) case the color Higgs triplets
produced by inflaton decay can generate the baryon
asymmetry, provided the Higgs sector of the model
has the required amount of CP violation [6].

The discovery of neutrino oscillations requires that
we introduce SU(5) singlet right handed neutrinos,
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presumably three of them, to implement the seesaw
mechanism and generate the desired masses for the
light neutrinos. In this case it is natural to generate
the observed baryon asymmetry via leptogenesis [30]
by introducing the couplings NiNjφ

2/mP , where Ni

(i=1,2,3) denote the right handed neutrinos, and the
renormalizable coupling to φ is absent because of the
assumed discrete symmetry. By suitably adjusting the
Yukawa coefficients one can arrange that the φ field
decays into the right handed neutrinos. Note that the
presence of the above Yukawa couplings then allows
one to make the color triplets heavier, of order 1014

GeV, thereby avoiding any potential conflict with pro-
ton decay. In the SO(10) model, leptogenesis is almost
automatic [8].

2 U(1)B−L: Neutrino Physics and Inflation

Physics beyond the Standard Model (SM) is required
by the following experimental observations:

– Neutrino Oscillations: ∆m2
SM . 10−10 eV2 ≪

(mass difference)2 needed to understand atmo-
spheric and solar neutrino observations;

– CMB Anisotropy (δT/T ): requires inflation which
cannot be realized in the SM;

– Non-Baryonic Dark Matter (ΩCDM = 0.25): SM
has no plausible candidate;

– Baryon Asymmetry (nb/s ∼ 10−10): Not possible
to achieve in the SM.

Recall that at the renormalizable level the SM pos-
sesses a global U(1)B−L symmetry. If the symmetry is
gauged, anomaly cancellation requires the existence of
three right handed neutrinos. An important question
therefore is the symmetry breaking scale of U(1)B−L.
Note that this scale is not fixed by the evolution of
the three SM gauge couplings. Remarkably, we will
be able to determine the MB−L by implementing in-
flation. With MB−L well below the Planck scale the
seesaw mechanism enables us to realize light neutrino
masses in the desired range. Furthermore, it will turn
out that leptogenesis is a natural outcome after infla-
tion is over.

The introduction of a gauge U(1)B−L symmetry
broken at a scale well below the Planck scale exacer-
bates the well known gauge hierarchy problem. There
are at least four potential hierarchy problems one could
consider:

– MW ≪ MP ;
– MB−L ≪ MP (required by neutrino oscillations);
– mχ ≪ MP (where mχ denotes the inflaton mass);
– fa ∼ 1010 − 1012 GeV (≪ MP ), where fa denotes

the axion decay constant.

Supersymmetry (SUSY) can certainly help here, espe-
cially if the SUSY breaking scale in the observable sec-
tor is of order TeV. Thus, it seems that a good starting
point, instead of SM×U(1)B−L, could be MSSM×
U(1)B−L. The Z2 ‘matter’ parity associated with the
MSSM has two important consequences. It eliminates

rapid (dimension four) proton decay, and it delivers a
respectable cold dark matter candidate in the form of
LSP. However, Planck scale suppressed dimension five
proton decay is still present and one simple solution is
to embed Z2 in a U(1)R symmetry. It turns out that
the R symmetry also plays an essential role in realizing
a compelling inflationary scenario and in the resolution
of the MSSM µ problem. Finally it seems natural to
extend the above discussion to larger groups, especially
to SO(10) and its various subgroups.

2.1 Supersymmetric Hybrid Inflation Models

In this section3 we review a class of supersymmet-
ric hybrid inflation models [32] where inflation can be
linked to the breaking of U(1)B−L. We compute the
allowed range of the dimensionless coupling in the su-
perpotential and the dependence of the spectral index
on this coupling, in the presence of canonical super-
gravity (SUGRA) corrections.

The simplest supersymmetric hybrid inflation
model [33] is realized by the renormalizable superpo-
tential [34]

W1 = κS(ΦΦ − M2) (10)

where Φ(Φ) denote a conjugate pair of superfields
transforming as nontrivial representations of some
gauge group G, S is a gauge singlet superfield, and
κ (> 0) is a dimensionless coupling. A suitable U(1)
R-symmetry, under which W1 and S transform the
same way, ensures the uniqueness of this superpoten-
tial at the renormalizable level [33]. In the absence of
supersymmetry breaking, the potential energy min-
imum corresponds to non-zero vacuum expectation
values (VEVs) (= M) in the scalar right handed
neutrino components

∣

∣〈νc
H〉
∣

∣ =
∣

∣〈νc
H〉
∣

∣ for Φ and Φ,
while the VEV of S is zero. (We use the same notation
for superfields and their scalar components.) Thus,
G is broken to some subgroup H which, in many
interesting models, coincides with the MSSM gauge
group.

In order to realize inflation, the scalar fields Φ, Φ,
S must be displayed from their present minima. For
|S| > M , the Φ, Φ VEVs both vanish so that the gauge
symmetry is restored, and the tree level potential en-
ergy density κ2M4 dominates the universe, as in the
originally proposed hybrid inflation scenario [35,34].
With supersymmetry thus broken, there are radiative
corrections from the Φ−Φ supermultiplets that provide
logarithmic corrections to the potential which drives
inflation.

In one loop approximation the inflationary effective
potential is given by [33]

VLOOP = κ2M4

[

1 +
κ2N
32π2

(

2 ln
κ2|S|2

Λ2
+

(z + 1)2 ln(1 + z−1) + (z − 1)2 ln(1 − z−1)
)

]

, (11)

3 Based on [31].
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where z ≡ x2 ≡ |S|2/M2, N is the dimensionality of
the Φ, Φ representations, and Λ is a renormalization
mass scale.

The scalar spectral index ns is given by Eq. (4),
where primes denote derivatives with respect to the
normalized real scalar field σ ≡

√
2|S|. For relevant

values of the parameters (κ ≪ 1), the slow roll condi-
tions (ǫ, η ≪ 1) are violated only ‘infinitesimally’ close
to the critical point at x = 1 (|S| = M) [32]. So infla-
tion continues practically until this point is reached,
where it abruptly ends.

The number of e-folds after the comoving scale l0
has crossed the horizon is given by Eq. (7), which in
the slow roll approximation can also be written as

N0 =
1

m2
P

∫ σ0

σe

V dσ

V ′
. (12)

Using Eqs. (11, 12), we obtain

κ ≈ 2
√

2π√NN0

y0
M

mP
. (13)

(The subscript 0 implies that the values correspond to
k0 ≡ 0.002 Mpc−1.) N0 ≈ 55 is the number of e-folds
and

y2
0 =

∫ x2

0

1

dz

zf(z)
, y0 ≥ 0 , (14)

with

f(z) = (z + 1) ln
(

1 + z−1
)

+ (z − 1) ln
(

1 − z−1
)

.
(15)

Using Eqs. (11, 13, 9), P1/2
R

is found to be [33,32,36]

P1/2
R

≈ 2

(

N0

3N

)1/2(
M

mP

)2

x−1
0 y−1

0 f(x2
0)

−1 . (16)

Up to now, we ignored supergravity (SUGRA) cor-
rections to the potential. More often than not, SUGRA
corrections tend to derail an otherwise succesful infla-
tionary scenario by giving rise to scalar (mass)2 terms
of order H2, where H denotes the Hubble constant.
Remarkably, it turns out that for a canonical SUGRA
potential (with minimal Kähler potential |S|2 + |Φ|2 +
|Φ|2), the problematic (mass)2 term cancels out for the
superpotential W1 in Eq. (10) [34]. This property also
persists when non-renormalizable terms that are per-
mitted by the U(1)R symmetry are included in the
superpotential.

In general, K can be expanded as

K = |S|2 + |Φ|2 + |Φ|2 + κS
|S|4
4m2

P

+ . . . , (17)

and only the |S|4 term in K generates a (mass)2 for
S, which would spoil inflation for κS ∼ 1 [37].4

4 We should note that, since the superpotential is linear
in the inflaton, the presence of other fields with Planck
scale VEVs would also induce an inflaton mass of order H .
Some ways to suppress the inflaton mass are discussed in
[38].

The scalar potential is given by

V = eK





(

∂2K

∂zi∂z∗j

)−1

Dzi
WDz∗

j
W ∗ − 3|W |2



+VD ,

(18)
with

Dzi
W =

∂W

∂zi
+

∂K

∂zi
W , (19)

where the sum extends over all fields zi, and K =
∑

i |zi|2 is the minimal Kähler potential. The D-term

VD vanishes in the D-flat direction |Φ| = |Φ|. From Eq.
(18), with a minimal Kähler potential one contribution
to the inflationary potential is given by [34,39,40,21]

VSUGRA = κ2M4

[ |S|4
2

+ . . .

]

. (20)

There are additional contributions to the poten-
tial arising from the soft SUSY breaking terms. In
N = 1 SUGRA these include the universal scalar
masses equal to m3/2 (∼ TeV), the gravitino mass.
However, their effect on the inflationary scenario is
negligible, as discussed below. The more important
term is the A term (2 − A)m3/2κM2S(+h.c.). For

convenience, we write this as a m3/2κM2|S|, where
a ≡ 2|2 − A| cos(arg S + arg(2 − A)). The effective
potential is approximately given by Eq. (11) plus the
leading SUGRA correction κ2M4|S|4/2 and the A
term:

V1 = κ2M4

[

1 +
κ2N
32π2

(

2 ln
κ2|S|2

Λ2

+ (z + 1)2 ln(1 + z−1) + (z − 1)2 ln(1 − z−1)
)

+
|S|4
2

]

+ a m3/2κM2|S| . (21)

We perform our numerical calculations using this po-
tential, taking |a m3/2|=1 TeV. It is, however, instruc-
tive to discuss small and large κ limits of Eq. (21). For

κ ≫ 10−3, 1 ≫ σ ≫
√

2M , and Eq. (21) becomes

V1 ≃ κ2M4

[

1 +
κ2N
32π2

2 ln
κ2σ2

2Λ2
+

σ4

8

]

(22)

to a good approximation. Comparing the derivatives
of the radiative and SUGRA corrections one sees that
the radiative term dominates for σ2 . κ

√
N/2π. From

3Hσ̇ = −V ′, σ2
0 ≃ κ2NN0/4π2 for the one-loop effec-

tive potential, so that SUGRA effects are negligible
only for κ ≪ 2π/

√
NN0 ≃ 0.1/

√
N . (For N = 1, this

essentially agrees with [40]).

P1/2
R

is found from Eq. (22) to be

P1/2
R

≃ 1√
3π

κ M2

σ3
0

. (23)

In the absence of the SUGRA correction, the gauge
symmetry breaking scale M is given by Eq. (16). For

κ ≫ 10−3, x0 ≫ 1 and x0 y0 f(x2
0) → 1−. P1/2

R
in this
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case turns out to be proportional to (M/mP )2[33,32].

Using the WMAP best fit P1/2
R

≃ 4.7 × 10−5 [19], M

approaches the value N 1/4 ·6×1015 GeV. The presence
of the SUGRA term leads to larger values of σ0 and
hence larger values of M for κ & 0.06/

√
N .

For κ ≪ 10−3, |S0| ≃ M where S0 is the value of
the field at k0, i.e. z ≃ 1. (Note that due to the extreme
flatness of the potential the last 55 or so e-folds occur
with |S| close to M .) From Eqs. (9, 21), as z → 1

P1/2
R

=
2
√

2π√
3

κ2M4

ln(2)κ3MN + 8π2κM5 + 4π2a m3/2
.

(24)
The denominator of Eq. (24) contains the radiative,
SUGRA and the A terms respectively. Comparing
them, we see that the radiative term can be ignored
for κ . 10−4. There is also a soft mass term m2

3/2|S|2
in the potential, corresponding to an additional term
8π2m2

3/2/κM in the denominator. We have omitted

this term, since it is insignificant for κ & 10−5.
For a positive A term (a > 0), the maximum value

of P1/2
R

as a function of M is found to be

P1/2
R max =

1

27/10 53/2 3π

(

κ6

a m3/2

)1/5

. (25)

Setting P1/2
R

≃ 4.7 × 10−5, we find a lower bound on
κ (≃ 10−5). For larger values of κ, there are two sep-
arate solutions of M for a given κ. The solution with
larger M is not valid if the symmetry breaking pattern
produces cosmic strings. For example, strings are pro-
duced when Φ, Φ break U(1)R ×U(1)B−L to U(1)Y ×
Z2 matter parity, but not when Φ, Φ are SU(2)R ×
U(1)B−L doublets. For a < 0, there are again two so-
lutions, but for the solution with a lower value of M ,
the slope changes sign as the inflaton rolls for κ . 10−4

and the inflaton gets trapped in a false vacuum.
Note that the A term depends on argS, so it should

be checked whether arg S changes significantly during
inflation. Numerically, we find that it does not, except
for a range of κ around 10−4 [31]. For this range, if the
initial value of the S field is greater than M by at least
a factor of two or so, the A term and the slope become
negative even if they were initially positive, before in-
flation can suitably end. However, larger values of the
A term, or the mass term coming from a non-minimal
Kähler potential (or from a hidden sector VEV) would
drive the value of M in that region up, allowing the
slope to stay positive (see Ref. [41] for the effect of
varying the A term and the mass).

The dependence of M on κ is shown in Fig. 5. Note
that with inflation linked to the breaking of MSSM×
U(1)B−L, M corresponds to the U(1)B−L breaking
scale, which is not fixed by the evolution of the three
SM gauge couplings. The amplitude of the curvature
perturbation (or, equivalently, δT/T ) determines this
scale to be close to the SUSY GUT scale, suggesting
that U(1)B−L could be embedded in SO(10) or its sub-
groups. For example, M can be determined in flipped
SU(5) from the renormalization group evolution of the
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Fig. 5. The value of the symmetry breaking scale M vs.
κ, for SUSY hybrid inflation with N = 1 (solid), and for
shifted hybrid inflation (dot-dashed for MS = mP , dotted
for MS = 5× 1017 GeV). Light grey portions of the curves
are for a < 0, where only the segments that do not overlap
with the solutions for a > 0 are shown. The grey segments
denote the range of κ for which the change in arg S is
significant.

SU(3) and SU(2) gauge couplings. The values are re-
markably consistent with the ones fixed from δT/T
considerations [42].

Here, some remarks concerning the allowed range
of κ is in order. As discussed above, a lower bound
on κ is obtained from the inflationary dynamics and
the amplitude of the curvature perturbation. An upper
bound on κ is obtained from the value of the spectral
index, which we discuss next. The gravitino constraint
provides a more stringent upper bound (κ . 10−2),
as discussed in the next section. If cosmic strings form
(as would be the case for N = 1), the range of κ is
also restricted by the limits on the cosmic string con-

tribution to P1/2
R

, however most of the range may still
be allowed [41].

In the absence of SUGRA corrections, the scalar
spectral index ns for κ ≫ 10−3 is given by [33]

ns ≃ 1 + 2η ≃ 1 − 1

N0
≃ 0.98 , (26)

while it approaches unity for small κ. When the
SUGRA correction is taken into account, from Eq.
(22),

ns ≃ 1 + 2η ≃ 1 + 2

(

3σ2 − κ2N
8π2σ2

)

, (27)

which exceeds unity for σ2 & κ
√
N/2

√
3π. For x0 ≫ 1,

Eq. (12) yields

N0 ≈ π

2σ2
0

κ

κc
tan

(

π

2

κ

κc

)

, (28)

where κc = π2/
√
NN0 ≃ 0.16/

√
N . Using Eq. (28),

one finds that the spectral index ns exceeds unity for
κ ≃ 2π/

√
3NN0 ≃ 0.06/

√
N . The dependence of ns

on κ is displayed in Fig. 6. α is small and the tensor
to scalar ratio r is negligible, as shown in Fig. 7.
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Fig. 6. The spectral index ns vs. κ, for SUSY hybrid
inflation with N = 1 (solid), and for shifted hybrid inflation
with MS = mP (dot-dashed). The grey segments denote
the range of κ for which the change in arg S is significant.
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Fig. 7. α vs. κ (top) and tensor to scalar ratio r vs. κ (bot-
tom), for SUSY hybrid inflation with N = 1 (solid), and
for shifted hybrid inflation with MS = mP (dot-dashed).

For negligible r, the WMAP three year central
value for the spectral index is ns ≈ 0.95, and SUSY
hybrid inflation with a minimal Kähler potential is
disfavoured at a 2σ level [3]. It was recently shown
that the spectral index for SUSY hybrid inflation can
be in better agreement with the WMAP3 results in
the presence of a small negative mass term in the
potential. This can result from a non-minimal Kähler
potential, in particular from the term proportional to
the dimensionless coupling κS referred to in Eq. (17)
[43,44]. The spectral index ns for different values of
κS is displayed in Fig. 8.

The inflationary scenario based on the superpo-
tential W1 in Eq. (10) has the characteristic feature
that the end of inflation essentially coincides with the
gauge symmetry breaking. Thus, modifications should
be made to W1 if the breaking of G to H leads to the
appearance of topological defects such as monopoles
or domain walls. For instance, the breaking of GPS ≡
SU(4)c×SU(2)L×SU(2)R [27] to the MSSM by fields
belonging to Φ(4, 1, 2), Φ(4, 1, 2) produces magnetic
monopoles that carry two quanta of Dirac magnetic
charge [29]. As shown in [45], one simple resolution of
the topological defects problem is achieved by supple-
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Fig. 8. The spectral index ns vs. κ, for SUSY hybrid in-
flation with N = 1 and different values of κS [44].

menting W1 with a non-renormalizable term:

W2 = κS(ΦΦ − v2) − S(ΦΦ)2

M2
S

, (29)

where v is comparable to the SUSY GUT scale
MGUT ≃ 2 × 1016 GeV and MS is an effective
cutoff scale. The dimensionless coefficient of the non-
renormalizable term is absorbed in MS . The presence
of the non-renormalizable term enables an inflationary
trajectory along which the gauge symmetry is broken.
Thus, in this ‘shifted’ hybrid inflation model the
topological defects are inflated away.

The inflationary potential is similar to Eq. (21):

V2 = κ2m4

[

1 +
κ2

16π2

(

2 ln
κ2|S|2

Λ2
(30)

+ (z + 1)2 ln(1 + z−1) + (z − 1)2 ln(1 − z−1)
)

+
|S|4
2

]

+ a m3/2κv2|S| + κ3m4M2
S |S|2 .

Here m2 = v2(1/4ξ−1) where ξ = v2/κM2
S, z ≡ x2 ≡

σ2/m2, and 2 − A is replaced by 2 − A + A/2ξ in the
expression for a. Note that the potential also contains
a mass term even for minimal Kähler potential, due to
the nonvanishing VEVs of Φ, Φ.

The VEV M =
∣

∣〈νc
H〉
∣

∣ =
∣

∣〈νc
H〉
∣

∣ at the SUSY min-
imum is given by [45]

(

M

v

)2

=
1

2ξ

(

1 −
√

1 − 4ξ
)

, (31)

and is ∼ 1016−1017 GeV depending on κ and MS . The
system follows the inflationary trajectory for 1/7.2 <
ξ < 1/4, which is satisfied for κ & 10−5 if the effec-
tive cutoff scale MS = mP . For lower values of MS ,
the inflationary trajectory is followed only for higher
values of κ, and M is lower for a given κ (Fig. 5). The
spectral index is displayed in Fig. 6.
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2.2 Leptogenesis In Supersymmetric Hybrid
Inflation Models

An important constraint on SUSY hybrid inflation
models arises from considering the reheating tem-
perature Tr after inflation, taking into account the
gravitino problem which requires that Tr . 106–1011

GeV [46]. This constraint on Tr depends on the
SUSY breaking mechanism and the gravitino mass
m3/2. For gravity mediated SUSY breaking models
with unstable gravitinos of mass m3/2 ≃ 0.1–1 TeV,

Tr . 106–109 GeV [47], while Tr . 1010 GeV for
stable gravitinos [48]. In gauge mediated models the
reheating temperature is generally more severely
constrained, although Tr ∼ 109–1010 GeV is possible
for m3/2 ≃ 5–100 GeV [49]. Finally, the anomaly
mediated symmetry breaking (AMSB) scenario may
allow gravitino masses much heavier than a TeV, thus
accommodating a reheating temperature as high as
1011 GeV [50].

After the end of inflation in the models discussed
in section 2.1, the fields fall toward the SUSY vacuum
and perform damped oscillations about it. The vevs of
Φ, Φ along their right handed neutrino components νc

H ,
νc

H break the gauge symmetry. The oscillating system,
which we collectively denote as χ, consists of the two
complex scalar fields (δνc

H+δνc
H)/

√
2 (where δνc

H , δνc
H

are the deviations of νc
H , νc

H from M) and S, with
equal mass mχ.

We assume here that the inflaton χ decays pre-
dominantly into right handed neutrino superfields Ni,
via the superpotential coupling (1/mP )γijφφNiNj or

γijφNiNj , where i, j are family indices (see below for
a different scenario connected to the resolution of the
MSSM µ problem). Their subsequent out of equilib-
rium decay to lepton and Higgs superfields generates
lepton asymmetry, which is then partially converted
into the observed baryon asymmetry by sphaleron ef-
fects [30].

The right handed neutrinos, as shown below, can
be heavy compared to the reheating temperature Tr.
Unlike thermal leptogenesis, there is then no supres-
sion factor in the lepton asymmetry, since the washout
is proportional to the Boltzmann factor e−z (where
z = M1/Tr) and can be neglected for z & 10 [51].5

Without this assumption, generating sufficient lepton
asymmetry would require a reheat temperature & 2×
109 GeV [53].

GUTs typically relate the Dirac neutrino masses to
that of the quarks or charged leptons. It is therefore
reasonable to assume the Dirac masses are hierarchi-
cal. The low-energy neutrino data indicates that the
right handed neutrinos will then also be hierarchical
in general. As discussed in Ref. [54], setting the Dirac
masses strictly equal to the up-type quark masses and
fitting to the neutrino oscillation parameters gener-
ally yields strongly hierarchical right handed neutrino
masses (M1 ≪ M2 ≪ M3), with M1 ∼ 105 GeV. How-
ever, it is plausible that there are large radiative cor-

5 Lepton number violating 2-body scatterings mediated
by right handed neutrinos are also out of equilibrium [52].
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Fig. 9. The inflaton mass mχ vs. κ, for SUSY hybrid inflation
with N = 1 (solid), and for shifted hybrid inflation (dot-
dashed for MS = mP , dotted for MS = 5 × 1017 GeV). The
grey segments denote the range of κ for which the change in
arg S is significant.

rections to the first two family Dirac masses, so that
M1 remains heavy compared to Tr.

A reasonable mass pattern is therefore M1 <
M2 ≪ M3, which can result from either the dimen-
sionless couplings γij or additional symmetries (see
e.g. [22]). The dominant contribution to the lepton
asymmetry is still from the decays with N3 in the loop,
as long as the first two family right handed neutrinos
are not quasi degenerate. Under these assumptions,
the lepton asymmetry is given by [55]

nL

s
. 3 × 10−10 Tr

mχ

(

Mi

106 GeV

)

( mν3

0.05 eV

)

, (32)

where Mi denotes the mass of the heaviest right
handed neutrino the inflaton can decay into. The
decay rate Γχ = (1/8π)(M2

i /M2)mχ [36], and the
reheating temperature Tr is given by

Tr =

(

45

2π2g∗

)1/4

(Γχ mP )1/2 ≃ 0.063
(mP mχ)1/2

M
Mi .

(33)
From the experimental value of the baryon to photon
ratio ηB ≃ 6.1× 10−10 [19], the required lepton asym-
metry is found to be nL/s ≃ 2.5 × 10−10 [56]. Using
this value, along with Eqs. (32, 33), we can express Tr

in terms of the symmetry breaking scale M and the
inflaton mass mχ:

Tr &

(

1016 GeV

M

)1/2
( mχ

1011 GeV

)3/4

×
(

0.05 eV

mν3

)1/2

1.6 × 107 GeV . (34)

Here mχ is given by
√

2κM and
√

2κM
√

1 − 4ξ re-
spectively for hybrid and shifted hybrid inflation. The
value of mχ is shown in Fig. 9. We show the lower
bound on Tr calculated using this equation (taking
mν3 = 0.05 eV) in Fig. 10.

Eq. (33) also yields the result that the heaviest
right handed neutrino the inflaton can decay into is
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Fig. 10. The lower bound on the reheating temperature Tr

vs. κ, for SUSY hybrid inflation with N = 1 (solid) and for
shifted hybrid inflation (dot-dashed for MS = mP , dotted for
MS = 5 × 1017 GeV). The segments in the top left part of
the figure correspond to the bounds in the presence of a λSh2

coupling. The grey segments denote the range of κ for which
the change in arg S is significant.

about 400 (6) times heavier than Tr, for hybrid in-
flation with κ = 10−5 (10−2). For shifted hybrid infla-
tion, this ratio does not depend on κ as strongly and is
∼ 102. This is consistent with ignoring washout effects
as long as the lightest right handed neutrino mass M1

is also ≫ Tr.
6

Both the gravitino constraint and the constraint
M1 ≫ Tr favor smaller values of κ for hybrid inflation,
with Tr & 2 × 107 GeV for κ ∼ 10−5. Similarly, the
gravitino constraint favors κ values as small as the in-
flationary trajectory allows for shifted hybrid inflation,
and Tr & 5 × 107 GeV for MS = mP .

So far we have not addressed the µ problem and the
relationship to Tr in the present context. The MSSM µ
problem can naturally be resolved in SUSY hybrid in-
flation models in the presence of the term λSh2 in the
superpotential, where h contains the two Higgs dou-
blets [58]. (The ‘bare’ term h2 is not allowed by the
U(1) R-symmetry.) After inflation the VEV of S gen-
erates a µ term with µ = λ〈S〉 = −m3/2λ/κ, where
λ > κ is required for the proper vacuum. The inflaton
in this case predominantly decays into higgses (and
higgsinos) with Γh = (1/16π)λ2mχ. As a consequence
the presence of this term significantly increases the
reheating temperature Tr. Following Ref. [59], we cal-
culate Tr for the best case scenario λ = κ. We find a
lower bound on Tr of 4× 108 GeV in hybrid inflation,
see Fig. 10. Tr & 4× 109 GeV for shifted hybrid infla-
tion with MS = mP . An alternative resolution of the
µ problem in SUSY hybrid inflation involves a Peccei-
Quinn (PQ) symmetry U(1)PQ [60,45].

The lower bounds on Tr are summarized in Table 2.
There is some tension between the gravitino constraint
and the reheating temperature required to generate
sufficient lepton asymmetry, particularly for gravity

6 If M1 < Tr, part of the asymmetry created by decays of
the next-to-lightest right handed neutrino will be washed
out. However, the asymmetry that survives the washout
can still be sufficient to account for the observed baryon
asymmetry [57].

Table 2. Lower bounds on the reheating temperature
(GeV)

without λSh2 with λSh2

SUSY hybrid inflation 2 × 107 4 × 108

Shifted hybrid inflation 5 × 107 4 × 109

mediated SUSY breaking models, and if hadronic de-
cays of gravitinos are not suppressed. However, we
should note that having quasi degenerate neutrinos
would increase the lepton asymmetry per neutrino de-
cay ǫ [61] and thus allow lower values of Tr correspond-
ing to lighter right handed neutrinos. Provided that
the neutrino mass splittings are comparable to their
decay widths, ǫ can be as large as 1/2 [62]. The lep-
ton asymmetry in this case is of order Tr/mχ where
mχ ∼ 1011 GeV for κ ∼ 10−5, and sufficient lepton
asymmetry can be generated with Tr close to the elec-
troweak scale.

Finally, it is worth noting that new inflation mod-
els have also been considered in the framework of su-
persymmetric GUTs, taking account of supergravity
corrections. In Ref. [22], for instance, it is shown that
the spectral index ns is less than 0.98. Furthermore,
reheating temperatures as low as 104–106 GeV can be
realized to satisfy the gravitino constraint.
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