

Searches for New Physics in the Top Quark Samples at CDF

15th International Conference on Supersymmetry and the Unification of Fundamental Interactions

Parallel session: "ALTERNATIVES"

Susana Cabrera

IFIC (CSIC - University of Valencia)

On behalf of the CDF Collaboration

MOTIVATION

Top is MASSIVE $M_{TOP} = 170.9 \pm 1.8 \text{ GeV/c}^2 \text{ (TEWG hep-ex/0703034)}$

Decays before hadronization $\Gamma_t = 1.4 \, GeV \Rightarrow \frac{\hbar}{\Gamma_t} \approx 5 \times 10^{-25} \, s << \frac{\hbar}{\Lambda_{QCD}} \approx 3 \times 10^{-24} \, s$

→Spin information transferred to decay products

Special role in EWSB?

- →Top Yukawa coupling to Higgs is "natural" (~1)
- $ightarrow M_{top}$ together with M_W constrains M $_{Higgs}$

New physics in the top quark samples?

THE EXPERIMENTAL SETUP

- The CDF II detector:
 - Excellent tracking system:
 - Drift chamber: Central Outer Tracker.
 - Inner silicon detector: → essencial for b-tagging and vertexing.
 - EM and HAD calorimeters.
 - MUON systems.

TEVATRON RUN II.

- Proton-Antiproton Synchrotron
- $-\sqrt{s}$ = 1.96 TeV
- Aim for 6-8 fb⁻¹ by 2009.
- Searches for new physics in ~1 fb⁻¹ top quark samples

TOP PHYSICS require a good understanding of the entire detector

TOP QUARK PRODUCTION & DECAY

Produce in pairs via strong interaction

At
$$\sqrt{s}$$
=1.96 (14) TeV:
85 (10) ±5% qq
15 (90) ±5% gg

Decay via electroweak interaction ~100% BR(t→W+b)

```
tt → W(→lv)bW(→lv)b (e+μ: 5%)
low background, low yield
→ DILEPTON SAMPLE

tt → W(→lv)bW(→qq)b (e+μ:35%)
background moderate, medium yield
→ LEPTON PLUS JETS SAMPLE

tt → W(→qq)bW(→qq)b all hadronic (45%)
high background, high yield
```

Top Pair Decay Channels

<u>s</u>	electron+jets	muon+jets	jets	all ha	dronic
ūd					uromo
ال	еτ	μτ	ST	tau+jets	
_u	eτ eμ	, QO	μτ	muon+jets	
Φ ^l	e &	еμ	еτ	electron+jets	
N decay	e^{+}	μ ⁺	τ+	ud	cs

σ(pp-bar→tt-bar) MEASUREMENTS

σ_{tt} measured in ALL final states:
 •Independent top quark samples
 with different non-SM sensitivities.

$$\sigma_{tt}$$
 (CDF) $\cong 7.3 \pm 0.9$ pb

Cacciari et al. JHEP 0404:068 (2004) Kidonakis & Vogt PRD 68 114014 (2003)

$$\sigma_{t\underline{t}} \; (\text{NLO-THEO}) \cong 6.7 \pm \, 0.8 \; \text{pb}$$

$$(M_{TOP}=175 GeV/c^2)$$

12% ACCURACY: THEORY & EXPERIMENT

THE ~1 fb⁻¹ TOP QUARK SAMPLES

- •2 high P $_{T}$ leptons (e, μ) P $_{T}$ > 20 GeV/c
- •2 high E_T jets.
- •High Missing E _T

Total Backgr.	25.6±5.5
tt-bar (σ=6.7pb)	55.9±4.3
Total SM	81.5±8.9
DATA	77

- •1 high P_T lepton (e,μ) P_T> 20 GeV/c
- •≥4 high E _T jets.
- \bullet High Missing E $_{\mathsf{T}}$
- •B-tagging with secondary vertex.

	4 jets	≥5 jets
Total Backgr.	16.7 ± 5.9	4.7 ± 1.7
tt-bar (σ=6.7pb)	153.5 ± 15.6	53.6 ± 5.5
Total SM	170 ± 17	58 ± 6
DATA	169	62

$\sigma(gg \rightarrow tt)/\sigma(pp \rightarrow tt)$: $< N_{TRK} > VS < N_{gluon} >$

Sensitive to new top production & decay mechanisms simultaneously.

G.L Kane and S. Mrenna Phys. Rev. Lett.77: 3502-3505 (1996)

Top quark from gluino decays and top quark decays to stops

PRINCIPLE: gg→tt tends to have more underlying event activity w.r.t qq→tt

Calibrate $< N_{TRK} > (low P_T tracks) vs. < N_g > correlation with W+jets and dijet data. Fit W+jets (b-tagged) data to <math>< N_{TRK} > templates$: gluon-rich (DIJET 80-100 GeV) no-gluon (W+0 jets)

$$\sigma(gg \to t\bar{t})/\sigma(p\bar{p} \to t\bar{t}) = 0.07 \pm 0.14(stat) \pm 0.07(syst)$$

$\sigma(gg \rightarrow tt)/\sigma(pp \rightarrow tt)$:neural network

- PRINCIPLE: gg (qq-bar) tt-bar events tend to be produced with unlike (like) spin.
- Use NN with 8 input variables:
 - 2 in the tt-bar reference frame: β and angle top quark-incoming parton.
 - kinematic information from the production.
 - 6 angles between decay products in the "off-diagonal" bases
 - spin correlation information from the decay.
- Fit data to templates built from the NN output shapes.

$$\sigma(gg \to t\bar{t})/\sigma(p\bar{p} \to t\bar{t}) < 0.61 @ 95\% CL$$

Search for resonant top pair production

- Sensitive to new resonant t-tbar production mechanisms:
 - Extended Gauge Theories
 - (A. Leike, Phys. Rep. 317, 143, 1999. hep-ph/9805494)
 - KK states of the gluon , Z
 - (J. Rosner, CERN-TH/96-169, 1996, B. Lillie, hep-ph/0701166)
 - Topcolor
 - (C. Hill, S. Park, PRD49, 4454, 1994)

- no resonant interference with the s channel gluon production.
- Reconstruct Mtt-bar with kinematic fitter.
- Binned likelihood fit of data to 3 templates:
 - SM tt-bar, Z'→tt-bar,non tt-bar
 - Range of Z' masses (450-900 GeV/c²)

Search for a Heavy Top t'→Wb

- •Hypothesis: t' is pair-produced strongly, heavier than SM top quark, decay to Wb.
 - •2HD models and N=2 SUSY models can accomodate a heavier 4th fermion generation with m $_{\rm Z/2}$ < m $_{\rm f}$ < m $_{\rm Higgs}$ (hep-ph/0102144,hep-ph/0111028)
 - Other models: "Beautiful mirrows" (hep-ph/0109097)
- •Data fitted to templates (t', top, background) with 2D binned likelihood (H_T and M_{RECO})

Event Displays: high H_T high M_{REC} candidates

Top quark charge: +2/3 or -4/3 ?

- Hypothesis: Top quark charge = -4e/3
 - New exotic quark part of a fourth generation. D.Chang et al. PRD 59, 09153(99)
- A challenging experimental method:

$$Q_{bjet} = \frac{\sum_{i} q_{i}^{track} \left(\vec{p}_{i}^{track} . \hat{a}_{jet}\right)^{0.5}}{\sum_{i} \left(\vec{p}_{i}^{track} . \hat{a}_{jet}\right)^{0.5}}$$

- Calibration with dijet data bb-bar enriched
- "Purity":= probability of correctly pairing Wb and getting the correct flavor of b-jet
- Counting experiment:

Result:

- 62 Standard Model-like (SM)
- 48 Exotic Model-like (XM)
- Likelihood versus f+= Fraction of pairs with charge 2e/3 in data.

Search for the FCNC decay t→Zq

- SM: Top quark FCNC highly suppressed (GIM mechanism and CKM suppression)
- Beyond SM scenarios enhance top FCN decays providing observable BR's
- Acta Phys. Polon. B35 (2004) 2695-2710, hep-ph/0409342

Model	SM	Q=2/3 quark singlets	2HDM	MSSM	RPV-SUSY
$BR(t\rightarrow qZ)$	~10-14	~ 10-4	~ 10-7	~ 10-6	~ 10 ⁻⁵

- Z \rightarrow e⁺e⁻, μ ⁺ μ ⁻ (clean signature)
- 4 jets (larger BR of hadronic W → qq')
- Two separate signal regions: zero b-tags one or more b-tag
- Backgrounds: from data-driven and MC methods
 - Dominant background: Z+Jets production
 - Smaller backgrounds: tt and diboson (WZ, ZZ)

Search for the FCNC decay t→Zq (Cont')

- Optimize event selection for best expected limit
 - Strongest discriminator: Mass χ²: reconstructed W, SM Top and NON-SM FCNC Top masses

$$\chi^{2} = \left(\frac{m_{W,rec} - m_{W,PDG}}{\sigma_{W,rec}}\right)^{2} + \left(\frac{m_{l \to Wb,rec} - m_{l,PDG}}{\sigma_{l \to Wb}}\right)^{2} + \left(\frac{m_{l \to Zq,rec} - m_{l,PDG}}{\sigma_{l \to Zq}}\right)^{2}$$

Mass χ^2 (95% C.L. Upper Limit)

 Unblinding after optimization: observed numbers events consistent with background

Selection	Observed	Expected
Base Selection	141	130±28
Base Selection (Tagged)	17	20⊥6
Anti-Tagged Selection	12	7.7 + 1.8
Tagged Selection	4	3.2 ± 1.1

$$B(t \to Zq) < 10.6\% \ @.95\% \ C.L$$

 New world's best limit: improves previous limit by 25% (13.7% from nonobservation of e⁺e⁻ → tq at LEP,L3)

W Helicity in Top Quark Decays

SM: Top quark decays via weak interaction to spin-1 W⁺ boson and spin-1/2 b quark → V-A coupling like all other fermions:

V+A is Suppressed

In general, t-W-b coupling can have form-factors of type: V-A (standard model), V+A and Magnetic-moment G.L. Kane, G.A. Ladinsky, C.P. Yuan Phys. Rev. D 45, 124 (1992)

The presence of V+A could signal new physics: Left-right symmetric models? Mirror fermions?

Beg, Mohapatra et al. Phys.Rev.Lett.38:1252, 1977

Triantaphyllou: J.Phys.G26:99,2000

Tait, Yuan, He et al.: Phys.Rev.D62:011702,2000, Phys.Rev.D65:053002,2002

W-helicity: cosθ*method

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} = \frac{3}{4} (1 - \cos^2\theta^*) F^0 + \frac{3}{8} (1 - \cos\theta^*)^2 F^- + \frac{3}{8} (1 + \cos\theta^*)^2 F^+$$

- L+JETS sample with N_{JETS} ≥4 and ≥ 1 btag.
- •tt-bar kinematics fully reconstructed.
- •Extract cosθ* by boosting lepton and top into W rest frame.
- •Two methods to extract F₀ and F₊ (next two slides)
- ·3 set of results:
- ·1-Parameter-fit: F_0 fixed to 0.7 \rightarrow Test possible V+A contribution in weak interactions
- •1-Parameter-fit: F₊ fixed to 0. → Test possible anomalous couplings (non zero-magnetic moment couplings)
- •2-Parameter-fit → MODEL INDEPENDENT

W-helicity: cosθ*method (I) 1.73 fb⁻¹

FIRST METHOD TO EXTRACT F₀ AND F₊

- •Binned likelihood fitter:
 - •Fits data to signal and background templates.
- •Signal Templates: from theoretical principles corrected for detector efficiency and resolution

Unfolding of measured distribution:
Correct for efficiency and resolution effects.

$$\begin{split} f_0 = &0.38 \pm 0.22_{stat} \pm 0.07_{syst} \text{ and } f_+ = 0.15 \pm 0.10_{stat} \pm 0.04_{syst} \\ f_0 = &0.65 \pm 0.10_{stat} \pm 0.06_{syst} \text{ with } f_+ = 0 \\ f_+ = &-0.01 \pm 0.05_{stat} \pm 0.03_{syst} \text{ with } f_0 = 0.7 \quad f_+ < 0.12 @95\% \text{ CL} \end{split}$$

W-helicity: cosθ*method (II) 1 fb⁻¹

SECOND METHOD TO EXTRACT F₀ AND F₊

- Unbinned likelihood fitter.
- •Fits data to signal and MC shapes:
 - •3rd order polinomial times exponent parameterizations from templates.

$$\begin{split} f_0 &= 0.74 \pm 0.25_{stat} \pm 0.06_{syst} \text{ and } f_+ = -0.06 \pm 0.10_{stat} \pm 0.03_{syst} \\ f_0 &= 0.61 \pm 0.12_{stat} \pm 0.06_{syst} \text{ with } f_+ = 0 \\ f_+ &= -0.06 \pm 0.06_{stat} \pm 0.03_{syst} \text{ with } f_0 = 0.7 \quad f_+ < 0.11 @95\% \text{ CL} \end{split}$$

CONCLUSIONS AND PROSPECTS

- The CDF top quark samples with L = 1.1 1.2 fb⁻¹ have been reestablished:
 - Top pair production cross section has been measured and found in good agreement with QCD-NLO predictions.
- A lot of challenging and creative "ALTERNATIVE" searches have been performed on the CDF top quark samples in order to find NEW PHYSICS.
 - New production mechanisms: resonances, t', etc
 - New decay mechanisms: FCNC t→Zq
 - Search for deviations in SM values of measured top properties: charge, W helicity.
 - For the time being are very statistical limitted, but the methodology is in place.
 - 2fb⁻¹ analyses coming by the end of summer.

NO EVIDENCE OF NEW PHYSICS IN THE 1 fb-1 CDF TOP QUARK SAMPLES

- All the ongoing CDF analysis techniques described can be applied to search for new physics in the TEVATRON PHASE OF THE LHC (early LHC data 0.1-1 fb⁻¹)
 - Background methods for total rates and shapes.
 - Determination of systematic uncertainties.
 - Statistical machinery to extract limits.

Backup slides.

Charged Higgs from Top quark decays

Branching ratio for t→H⁺b significant (>10%) for small and large tanβ
H⁺ decays differently than W⁺:

- $H^+ \rightarrow \tau^+ \nu_{\tau}$ enhanced if high tanβ:
 - Excess of taus
- H⁺→t*b→W+bb for high m(H⁺) if low tanβ:
 - Mimics SM signature but observe more b-tags
- H⁺→cs: defect all channels.

Compare number of observed events in 4 ttbar final states:

dilepton, $e\tau_h + \mu\tau_h$

lepton+jets with single b-tag, and lepton+jets with double b-tags

(Phys. Rev. Lett 96,042003)

Limits on $BR(t->H^+b)$

W'-like resonances in the tb-bar decay channel.

- Beyond SM models predict massive W-like bosons describing resonant to production:
 - Extra dimensions, PL B538, 406 (2002)
 - Top Color PL B385,304 (1996)
- Single Top analysis methods applied to search for a narrow peak in M_{W,J,J}
- Set limits on W' production and it's coupling to fermion.

A COMMON TOOL: THE "TOP MASS" KINEMATIC FITTER

Reconstruction of kinematics:

Constrain jet-jet mass to W mass.

Constrain lepton-neutrino mass to W mass

•Constrain b-lepton-neutrino and b-jet-jet to Top masses.

Top mass equal to anti-top mass

•Lowest $\chi 2$ gives correct combination in 70% of the cases

$$\chi^{2} = \sum_{i=\ell,4jets} \frac{(p_{T}^{i,fit} - p_{I}^{i,meas})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{j}^{UE,fit} - p_{j}^{UE,meas})^{2}}{\sigma_{UE}^{2}} + \frac{(M_{lv} - M_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(M_{jj} - M_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(M_{blv} - m_{t}^{reco})^{2}}{\Gamma_{t}^{2}} + \frac{(M_{blv} - m_{t}^{reco})^{2}}{\Gamma_{t}^{2}}$$