Probing the SUSY-QCD coupling identity at LHC

A. FreitasUniversity of Zürich

with P. Skands hep-ph/0606121 with P. Skands, M. Spira and P. Zerwas hep-ph/0703160

- 1. Introduction: Supersymmetry, gauge and Yukawa couplings
- 2. Some comments about ILC
- 3. Phenomenological analysis for LHC
- 4. Results for three cases:
 - Maximal model assumptions
 - Medium assumptions
 - (Almost) no assumptions

Supersymmetric couplings

Fundamental relation in supersymmetry:

Gauge coupling g = Yukawa coupling \hat{g}

→ not broken by SUSY breaking required to resolve hierarchy problem

Establish SUSY experimentally:

- Find new particles
- Measure their spin, masses, ...
- Test SUSY coupling relations
 - → compare precise cross-section measurements with theoretical predictions

SUSY couplings in the electroweak sector

Electroweak couplings can be probed at % level in

Neutralino production

Choi, Kalinowski, Moortgat-Pick, Zerwas '01

Slepton production

Freitas, v. Manteuffel, Zerwas '03

g' U(1) coupl.

g SU(2) coupl.

Testing SUSY-QCD couplings at ILC vs. LHC

Difficult at e^+e^- colliders:

Brandenburg, Maniatis, Weber '02

$$e^+e^- \rightarrow q\tilde{q}\tilde{g}$$

- Need large center-of-mass energy $\mathcal{O}(2 \text{ TeV})$
- Small cross-section $\mathcal{O}(\mathsf{fb})$ for $q\tilde{q}\tilde{g}$ production
 - → including BRs the statistics very low compared to background

Alternative: Measure QCD production process at LHC

$$pp \to \tilde{q}\tilde{q}^{(*)}, \ \tilde{q}^{(*)}\tilde{g}, \ \tilde{g}\tilde{g}$$

gauge coupling g_s Yukawa coupling \hat{g}_s

Signal processes at LHC

Maximal information when tracking squark charges

Tagging of squark charge through chargino decay chain:

$$\tilde{u}_{\perp} \to d \, \tilde{\chi}_{1}^{+} \to d \, l^{+} \, \nu_{l} \, \tilde{\chi}_{1}^{0}
\tilde{d}_{\perp} \to u \, \tilde{\chi}_{1}^{-} \to u \, l^{-} \, \bar{\nu}_{l} \, \tilde{\chi}_{1}^{0}$$

Signature: Two <u>same-sign</u> leptons, two hard jets, missing energy Reduces SM background

Contributing processes:

$$egin{aligned} pp &
ightarrow ilde{q} lacksquare & \ pp &
ightarrow ilde{q} lacksquare & \ pp &
ightarrow ilde{g} lacksquare & \ pp &
ightarrow ilde{g} ar{q} lacksquare & \end{aligned} egin{aligned} ilde{g} &
ightarrow q ar{q} lacksquare & \ pp &
ightarrow ilde{g} ar{q} lacksquare & \end{aligned}$$

Problem: Separate \tilde{q} from \tilde{g} production

ightarrow Gluinos produce extra (hard) jet: $ilde{g}
ightarrow q \, ilde{q}_{\mathsf{L}}$

Assume here that $m_{\tilde{g}} - m_{\tilde{q}_{L}}$ sufficiently large to cut on extra jet !!

Benchmark scenario

Scenario similar to SPS1a, but with larger gluino mass

$$M_1 = 99$$
 $m_L = 197$ $m_{Q1} = 540$
 $M_2 = 193$ $m_R = 136$ $m_{U1} = 522$
 $M_3 = 700$ $\tan \beta = 10$ $m_{D1} = 520$
 $\mu = 352$ $A_\tau = -254$ $m_{\tilde{\chi}_1} = 537$ $m_{\tilde{\chi}_1} = 96$
 $m_{\tilde{d}_L} = 543$ $m_{\tilde{\chi}_2} = 177$
 $m_{\tilde{\tau}_1} = 133$ $m_{\tilde{\chi}_1^{\pm}} = 176$
 $m_{\tilde{g}} = 700$ $m_{\tilde{\chi}_{3,4}^0} \sim 360$

Interesting decay chain:

$$\tilde{u}_{\perp} \xrightarrow{65\%} u \, \tilde{\chi}_{1}^{+} \xrightarrow{100\%} u \, \tau^{+} \, \nu_{\tau} \, \tilde{\chi}_{1}^{0} \xrightarrow{35\%} u \, l^{+} + \cancel{E}, \qquad l = e, \, \mu$$

LHC backgrounds:

$$t\bar{t}$$

$$W^{\pm}W^{\pm}jj$$

$$(W^{\pm}Z)$$

Cuts:

veto on bottom jets 2 jets with $p_{\rm T,jets} > 200~{\rm GeV}$ $\not\!\! E > 300~{\rm GeV}$

Analysis I: Total cross-section

Cross-sections after cuts:

$ ilde{q}_{L} ilde{q}_{L}$	$ ilde{q}_{L} ilde{q}_{L}^*$	$ ilde{q}$ L $ ilde{g}$	$ ilde{g} ilde{g}$	SM	with 300 fb $^{-1}$:
6.1 fb	3.1 fb	5.8 fb	0.8 fb	0.6 fb	\sim 5000 signal events

Interpretation in terms of Yukawa coupling \hat{g}_{S} :

Use cross-section formulae with \hat{g}_{S} as variable parameter

	$\delta[\widehat{g}_{S}/g_{S}]$
Statistics for 300 ${\rm fb^{-1}}$	0.6%
PDF uncertainty	1.4%
NNLO corrections*	2.0%
Mass measurements $\Delta m_{\tilde{q}} =$ 10 GeV	2.0%
$\Delta m_{\widetilde{g}} =$ 12 GeV	1.0%
	3.4%

^{*} NLO corrections available Beenakker, Höpker, Spira, Zerwas '96

Measure not absolute cross-section, but ratio of cross-sections

Use all processes that can lead to same-sign lepton signal

$$\tilde{g} \to q \, \tilde{q}_{\rm L}$$

gauge coupling g_S Yukawa coupling \hat{g}_S

$$\begin{array}{c|c} \sigma[\tilde{q}\tilde{q}] \sim \hat{g}_{\mathsf{S}}^{\mathsf{4}} & \sigma[\tilde{q}\tilde{g}] \sim \hat{g}_{\mathsf{S}}^{\mathsf{2}} g_{\mathsf{S}}^{\mathsf{2}} & \sigma[\tilde{g}\tilde{g}] \sim \\ \sigma[\tilde{q}\tilde{q}^*] \sim A\hat{g}_{\mathsf{S}}^{\mathsf{4}} + Bg_{\mathsf{S}}^{\mathsf{4}} & A'\hat{g}_{\mathsf{S}}^{\mathsf{4}} + B'g_{\mathsf{S}}^{\mathsf{4}} \end{array}$$

Can distinguish processes by dependence on extra jets

CP and weak isospin invariance:

$$\Rightarrow$$
 BR $[\tilde{u}_{L} \to d\tilde{\chi}_{1}^{+}] \approx$ BR $[\tilde{d}_{L} \to u\tilde{\chi}_{1}^{-}]$ in SPS1a: 65% \approx 61%

But: Large bino-wino mixing in neutralino sector can cause

$$\Gamma_{\text{tot}}[\tilde{u}_{\mathsf{L}}] \neq \Gamma_{\text{tot}}[\tilde{d}_{\mathsf{L}}]$$

 $\tilde{\chi}^0$ mixing is small for large hierarchy $m_{\tilde{\chi}_1^\pm}, m_{\tilde{\chi}_2^0} \gg m_{\tilde{\chi}_1^0}$ (Can be tested at LHC/ILC)

Note: Signal selection depends on $m_{\tilde g}\gg m_{\tilde q}\gg m_{\tilde\chi_1^\pm}\gg m_{\tilde\chi_1^0}$

■ Can also allow new electroweak singlets (e.g. NMSSM), since they modify $\Gamma_{tot}[\tilde{u}_L]$ and $\Gamma_{tot}[\tilde{d}_L]$ identically

■ Need to know $BR[\tilde{g} \rightarrow q \, \tilde{q}_L]$

$$BR[\tilde{g} \to q \, \tilde{q}_{L}] = \text{const.} \times \hat{\alpha}_{S} \, \frac{(m_{\tilde{g}}^{2} - m_{\tilde{q}_{L}}^{2})^{2}}{m_{\tilde{g}}^{3}}$$

Depends only on squark and gluino masses

- lacktriangle Decays into heavy flavour, $ilde{g} o b ilde{b}$, $ilde{g} o t ilde{t}$ are difficult due to mixings
 - → Reject with b veto

3rd jet radiation

Dependence on $p_{T,j3}$:

Cuts to remove SM bkgd.:

 $p_{\mathrm{T,j}} > 200 \; \mathrm{GeV}$ $\cancel{E} > 300 \; \mathrm{GeV}$ b-tagging

 $(for 300 fb^{-1})$

4th jet radiation

Dependence on $p_{T,j4}$:

$$p_{\mathsf{T,j3}} > 50 \; \mathsf{GeV}$$

Cuts to remove SM bkgd.:

$$p_{\mathrm{T,j}} > 200~\mathrm{GeV}$$
 $E > 300~\mathrm{GeV}$ b-tagging

 $(for 300 fb^{-1})$

Analysis II: Results

Fit independently \hat{g}_{S}/g_{S} and BR $[\tilde{q}_{L}->q\,l^{\pm}E]$

error on	$\delta[\widehat{g}_{S}/g_{S}]$
Statistics for 300 fb^{-1}	3.3%
PDF uncertainty	2.9%
NNLO corrections	3.1%
$\Delta m_{\widetilde{q}} =$ 10 GeV	1.1%
$\Delta m_{\widetilde{g}} =$ 12 GeV	2.0%
	5.9%

Analysis III: Generalized picture

- lacktriangle Allow arbritary $\tilde{\chi}^0$ mixing
 - \to $BR(\tilde{u}_L \to \tilde{\chi}_1^+)$ and $BR(\tilde{d}_L \to \tilde{\chi}_1^-)$ undetermined
- \blacksquare Use in addition to $p_{\rm T}$ spectra also ratio of l^+l^+/l^-l^- in signal
 - \bullet $\tilde{\chi}_i^0$ give equal contribution to l^+l^+ and l^-l^-
 - lacktriangle Only $\tilde{\chi}_1^{\pm}$ create difference between l^+l^+ and l^-l^-
- Separate determination of $BR(\tilde{u}_L \to \tilde{\chi}_1^+)$ and $BR(\tilde{d}_L \to \tilde{\chi}_1^-)$ difficult
 - → Small sensitivity to squark flavour from PDF effects

Analysis III: Results

Analysis III: Results

Conclusions

Quest for SUSY involves the test of SUSY coupling relations:

Fundamental identity

gauge coupling = Yukawa coupling

Using a dedicated LHC analysis, the strong SUSY coupling identity can be tested to the % level

I: Full knowledge about model spectrum: $\delta \hat{g}_{S} \sim 3.4\%$

II: Assuming only $\tilde{\chi}^0$ mass hierarchy: $\delta \hat{g}_{\rm S} \sim 5.9\%$

III: Allowing (almost) general NⁿMSSM: $\delta \hat{g}_{S} \sim 7.5\%$

Encouraging prospects, but depends strongly on SUSY scenario!

Backup slides

Analysis I: Total cross-section

Assume that all squark BRs known (or from e^+e^- collider)

Selection of same-sign squark signal

- 1. at least 2 jets with $p_{\rm T,j} > 200 {\rm ~GeV}$ 2 same-sign leptons, $p_{\rm T,l} > 7 {\rm ~GeV}$
- 2. b-tagging to reduce $t\overline{t}$ efficiecy 90%, u,d mistag 25% ATLAS TDR '99
- 3. $\not\!\! E > 300$ GeV to cut SM background

Analysis I: Total cross-section

- 4. $p_{T,j1} > 200$ GeV to cut SM background
- 5. $p_{T,j3} < 50$ GeV to reduce \tilde{g} background

Remaining cross-sections:

$ ilde{q}_{L} ilde{q}_{L}$	6.1 fb	
$\tilde{q} \llcorner \tilde{q}^*_{L}$	3.1 fb	with 300 fb $^{-1}$:
$ ilde{q} lgcup ilde{g}^-$	5.8 fb	\sim 5000 signal events
$ ilde{g} ilde{g}$	0.8 fb	$\Delta_{\rm stat} = 1.5\%$ on total

Interpretation in terms of Yukawa coupling \hat{g}_{S} :

Use cross-section formulae with \hat{g}_{S} as variable parameter

 $\Delta_{\rm stat} = 1.5\%$ on total cross-section

$$\rightarrow \Delta \hat{g}_{S} = 0.6\%$$

0.6 fb

SM

Input from linear collider

Branching ratios in LHC decay chain:

$$\tilde{u}_{\perp} \rightarrow d \, \tilde{\chi}_{1}^{+}, \ \tilde{d}_{\perp} \rightarrow u \, \tilde{\chi}_{1}^{-}, \ \tilde{\chi}_{1}^{+} \rightarrow \tau^{+} \nu_{\tau}$$

BRs of squarks can be studied in $\tilde{q}\tilde{q}^*$ production at e^+e^- collider

- ightarrow Need $\sqrt{s} > 1$ TeV in our scenario
- \rightarrow Assume $\sqrt{s} = 1.5$ TeV

$$|P(e^+)| = 50\%, |P(e^-)| = 80\%$$

Identify different decay products of squarks by characteristic signature:

$$\tilde{\chi}_{1}^{+} \to \tau^{+} \nu_{\tau} \tilde{\chi}_{1}^{0}$$
 (100%)

 $\tilde{\chi}_{2}^{+} \to Z \tilde{\chi}_{1}^{+} \to Z \tau^{+} \nu_{\tau} \tilde{\chi}_{1}^{0}$ (24%) Assume 80% τ ID eff. for hadronic decay (100%)

 $\tilde{\chi}_{2}^{0} \to \tau \tau \tilde{\chi}_{1}^{0}$ (BR = 65%)

 $\tilde{\chi}_{3,4}^{0} \to W^{\pm} \tilde{\chi}_{1}^{\mp} \to W^{\pm} \tau^{\mp} \nu_{\tau} \tilde{\chi}_{1}^{0}$ (59%,52%)

Use c-tagging (eff. 40%, purity 90%) to differentiate u- and d-squarks

Input from linear collider

Dominant SM background from $t\bar{t}$ and VV or VVV production Can be reduced by cuts on $\not\!\! E_{\rm j}$ and $m_{\rm jj}$

From generator-level analysis of signal and background:

$$(\sqrt{s}=1.5 \text{ TeV and } \mathcal{L}=500 \text{ fb}^{-1})$$

$$\tilde{u}_{\perp} \to d\tilde{\chi}_{1}^{+}$$
 67.7 ± 3.2 % $\tilde{d}_{\perp} \to u\tilde{\chi}_{1}^{-}$ 63.9 ± 5.2 %

Input from linear collider

Need also information about BRs of charginos and neutralinos.

New technique to obtain absolute BRs:

Measure near threshold: unique signal of monoenergetic paricles from two-body decays

```
\tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0} threshold , \mathcal{L}=50~{\rm fb^{-1}}: {\rm BR}[\tilde{\chi}_{3}^{0}\to W^{\pm}\tilde{\chi}_{1}^{\mp}]=(59\pm6.5)~\% \tilde{\chi}_{3}^{0}\tilde{\chi}_{4}^{0} threshold , \mathcal{L}=50~{\rm fb^{-1}}: {\rm BR}[\tilde{\chi}_{4}^{0}\to W^{\pm}\tilde{\chi}_{1}^{\mp}]=(52\pm2.5)~\% \tilde{\chi}_{2}^{\pm}\tilde{\chi}_{2}^{\mp} threshold, \mathcal{L}=50~{\rm fb^{-1}}: {\rm BR}[\tilde{\chi}_{2}^{+}\to Z\,\tilde{\chi}_{1}^{\mp}]=(24\pm1.3)~\%
```

Together with squark production at $\sqrt{s}=1.5$ TeV and $\mathcal{L}=500$ fb⁻¹:

$$\tilde{u}_{\mathsf{L}} \to u \tilde{\chi}_{1}^{0} \quad 0.9 \pm 0.5 \; \% \quad \tilde{d}_{\mathsf{L}} \to d \tilde{\chi}_{1}^{0} \quad 1.9 \pm 0.8 \; \% \\ u \tilde{\chi}_{2}^{0} \quad 29.0 \pm 3.0 \; \% \qquad d \tilde{\chi}_{2}^{0} \quad 28.3 \pm 4.8 \; \% \\ u \tilde{\chi}_{3}^{0} \qquad < 1 \; \% \qquad d \tilde{\chi}_{3}^{0} \qquad < 0.2 \; \% \\ u \tilde{\chi}_{4}^{0} \qquad < 1 \; \% \qquad d \tilde{\chi}_{4}^{0} \quad 1.9 \pm 0.8 \; \% \\ d \tilde{\chi}_{1}^{+} \quad 67.7 \pm 3.2 \; \% \qquad u \tilde{\chi}_{1}^{-} \quad 63.9 \pm 5.2 \; \% \\ d \tilde{\chi}_{2}^{+} \qquad 1.4 \pm 0.7 \qquad u \tilde{\chi}_{2}^{-} \quad 4.0 \pm 1.4 \; \%$$