SUSY Searches in All-Hadronic States with Large MET at the LHC

Michael Tytgat
(on behalf of CMS & ATLAS)
CERN
SUSY07
Karlsruhe, Germany
July 26, 2007

SUSY Signature

- Most SUSY studies in CMS & ATLAS done in the context of :
 - <u>Minimal Supersymmetric SM</u> (MSSM) with R-parity conservation
 - <u>minimal SuperGravity</u> (mSUGRA) SUSY breaking scenario
- Large cross sections expected at the LHC for squarks/gluinos
- In most cases generic SUSY signature is :
 - multiple jets, often high P_T
 - missing E_T
 - possibly some leptons

mSUGRA Test Points

High mass points for ultimate LHC reach

running, outside Tevatron reach

Similar points used by ATLAS

Inclusive SUSY Searches

- Inclusive SUSY searches especially important for early LHC data :
 - Jets + MET + (0,1,2) leptons (e,μ)
- Robust background estimates are crucial:
 - ttbar, QCD multi-jets, W/Z + jets
 - Data-driven background estimates are essential!
- Typical selection cuts :
 - Missing E_T > 100 GeV
 - $ho \ge 4 \text{ jets, } P_T^{1st} > 100 \text{ GeV, } P_T^{4th} > 50 \text{ GeV}$

ATLAS

- 0 leptons
- Transverse sphericity > 0.2
- Missing E_T > 200 GeV + cleanup
- ≥ 3 jets, E_T > 180, 110, 30 GeV
- CMS
- Indirect lepton veto
- Cuts on ΔΦ between jets and MET
- $H_T = E_{T(2)} + E_{T(3)} + E_{T(4)} + MET > 500 \text{ GeV}$

Missing E_T

- MET is a very powerful tool for SUSY discovery, but also a complex object
- MET will include contributions from :
 - Non-collisional background : beam halo, cosmic muons
 - Detector effects: instrumental noise, hot/dead channels, cracks

Jet leakage through Hadronic Calorimeter
Central Barrel / Extended Barrel crack:

MET = 271 GeV

Missing E_T Performance

• Missing Transverse Energy resolution for QCD events :

■ Missing E_T performance dominated by calorimeter resolution

Missing E_T Cleaning

- CMS : Apply MET clean up cuts for cosmics and beam halo :
 - ≥1 central jet (|η| < 1.7) with ≥4 tracks
 - ≥1 vertex
 - F_{em} > 0.1 (Event Electromagn. Fr.)

$$\text{EEMF} = \frac{\sum_{j=1}^{N_{jet}} P_{\text{T}j} \times \text{EMF}_{j}}{\sum_{j=1}^{N_{jet}} P_{\text{T}j}}$$

• $F_{ch} > 0.175$ (Event Charged Frac.)

ECHF =
$$<\frac{(\sum_{i}^{tracks} P_{Ti})_{j}}{P_{Ti}} > |_{N_{jet}}$$

Effect of cleanup on SUSY sample :

Sample/Requirement	$F_{em} > 0.1$	$F_{ch} > 0.175$	Both(%)
LM1	99.88%	91.32%	91.24%

QCD Cleanup

- SM background in large MET + jets data dominated by QCD
- MET for QCD jets mostly due to jet mis-measurements and detector resolution

$$\begin{split} \delta \, \phi_1 &= |\phi_{j(1)} - \phi \left(E_T^{\textit{miss}} \right)| \\ \delta \, \phi_2 &= |\phi_{j(2)} - \phi \left(E_T^{\textit{miss}} \right)| \\ & \text{with} \quad \frac{R_1 = \sqrt{\delta \, \phi_2^2 + (\pi - \delta \, \phi_1)^2}}{R_2 = \sqrt{\delta \, \phi_1^2 + (\pi - \delta \, \phi_2)^2}} \end{split}$$

CMS Cuts : $R_{1,2} > 0.5$ rad $\delta \phi(\phi_{j(2)}, \phi(E_T^{miss})) > 20$ deg $\delta \phi_{min}(\phi_j, \phi(E_T^{miss})) > 0.3$ rad July 26, 2007

QCD suppression using topological requirements

Efficiency: SUSY LM1 ~ 90 %, QCD ~ 15 %
 M. Tytgat, SUSY07, Karlsruhe

W/Z+jets Background

- Large E_T^{miss} and ≥ 3 jets expected from :
 - Z(→vv) + ≥ 3 jets
 - W($\rightarrow \mu(e)v$) + \geq 3 jets
 - W($\rightarrow \tau v$) + \geq 2 jets (+1 τ -had decay jet)
- $\sigma(Z+N jets) \propto \alpha_s^N$
- Measure from the ≥ 2 jets data
 - $Z(\rightarrow ee) + \ge 2 \text{ jets}$
 - $Z(\rightarrow \mu\mu) + \ge 2$ jets
- Z(→vv) + N jets can be estimated from
 Z(→µµ(ee)) + N jets
- W + N Jets can be estimated from :

$$\rho \equiv \frac{\sigma(pp \rightarrow W(\rightarrow \mu \nu) + jets)}{\sigma(pp \rightarrow Z(\rightarrow \mu^+\mu^-) + jets)}$$

W/Z+jets Background

 MC to data normalization avoids systematics due to QCD scale, PDFs, ISR/FSR, jet energy scale ...

CMS: Systematic uncertainty dominated by luminosity,
 measured ratio R and ρ; 5% precision expected with ~1.5 fb-1

ttbar Background Estimation

- Estimating top background from data has a high priority
- Find a variable uncorrelated to MET to make a control sample at low MET and to extrapolate to high MET
- Top mass reasonably uncorrelated to MET
- Use semi-leptonic top candidates
- Assume no b-tagging available for early data Combinatorial background estimated from the sideband (200-260 GeV) is subtracted from signal region (140-200 GeV)
- Control sample (ttbar signal sideband) is normalized to data in low MET region where SUSY contribution is small

ttbar Background Estimation

 Apply top background estimation to a high P_T (> 500 GeV) event sample (ttbar + SUSY) corresponding to 10 fb-1, ie. 1 year of statistics at low lumi

- In high MET region (> 500 GeV) :
 - N_{obs} (with SUSY) = 503 ± 22
 - N_{est} (with SUSY) = 7 ± 35
- \rightarrow Clear excess (13 σ)!

Method proves to be valid

12

200

400

Analysis Result @ LM1

Efficiency is 13% with S/B ratio ~ 26

Point	m_0	$m_{1/2}$	$\tan \beta$	$\operatorname{sgn}(\mu)$	A_0
LM1	60	250	10	+	0

Number of events for 1 fb-1 :

 $m(\tilde{g}) \approx 600 \text{ GeV}$ $m(\tilde{g}) \approx 550 \text{ GeV}$

~6 pb-1 for 5σ discovery (including

1000

1200

syst. uncert. in estimation)

800

600

200

300

1400 16 E_T^{miss} (GeV)

1600

Analysis Result @ HM1

Point	m_0	$m_{1/2}$	$\tan \beta$	$sgn(\mu)$	A_0
HM1	180	850	10	+	0

 $m(\tilde{g}) \approx 1890 \text{ GeV}$ $m(\tilde{q}) \approx 1700 \text{ GeV}$

 Analysis is repeated (1 fb-1) on high mass test point 1 (by using fast simulation FAMOS for signal) with parameters :

Overall signal efficiency ~28%; claiming excess signal events is not easy

mSUGRA Discovery Potential

Best reach is obtained with most inclusive channels

- 1 fb-1 reach $tan\beta = 10$, $A_0 = 0$, $\mu > 0$
- Systematics do not degrade reach very much up to 10 fb-1

Wish You Were Real ...

Summary and Conclusions

- Inclusive Jets + Missing E_T searches are important discovery tools for SUSY
- Low mass SUSY should be visible almost immediately
- MET is a powerful SUSY discriminator tool, but needs a thorough understanding
- Background estimates (ttbar, QCD, W/Z) from data-driven methods are crucial and are presently under study in both ATLAS & CMS

Thanks to S. Asai and D. Tovey for ATLAS plots

Backup Slides

The CMS Detector

The ATLAS Detector

D712/mb-26/06/9

CMS Inclusive Jets + MET Analysis Path

Requirement	Remark	
Level 1	Level-1 trigger eff. parameter.	
HLT , $E_T^{miss} > 200\mathrm{GeV}$	trigger/signal signature	
primary vertex ≥ 1	primary cleanup	
$F_{em} \geq 0.175, F_{ch} \geq 0.1$	primary cleanup	
$N_j \ge 3, \eta_d^{1j} < 1.7$	signal signature	
$\delta \phi_{min}(E_T^{miss} - jet) \ge 0.3 \text{ rad}, R1, R2 > 0.5 \text{ rad},$		
$\delta\phi(E_T^{miss} - j(2)) > 20^{\circ}$	QCD rejection	
$Iso^{ltrk} = 0$	ILV (I) $W/Z/t\bar{t}$ rejection	
$f_{em(j(1))}, f_{em(j(2))} < 0.9$	ILV (II), $W/Z/t\bar{t}$ rejection	
$E_{T,j(1)} > 180 \text{GeV}, E_{T,j(2)} > 110 \text{GeV}$	signal/background optimisation	
$H_T > 500 \mathrm{GeV}$	signal/background optimisation	
SUSY LM1 signal efficiency 13%		

Indirect Lepton Veto

- No explicit lepton identification in inclusive analysis, use Indirect Lepton Veto (ILV)
- It uses two parts of the detector: Calorimeter and Tracker

Calorimeter:

Tracker:

- 1st Jet 2nd Je
- When both requirements are applied :
 - ~80% signal efficiency
 - ~50% to ~90% rejection efficiency in W/Z + jets depending on lepton flavour

Systematic Uncertainties

- MET shape :
 - Effect of non-Gaussian tails in the jet E_T resolution to MET due to energy mis-measurements by using a bootstrap method; three scenarios :
 - a) 3 jets are under measured simultaneously
 - b) 2 jets are under measured simultaneously
 - oc) 1 jet is under measured

Overall MET shape systematic uncertainty is ~7%

- Jet Energy Scale (JES):
 absolute jet energy corrections, calorimeter stability,
 underlying event, relative jet energy corrections
 7% JES uncertainty is taken into account for 1 fb-1
- Luminosity: ±5% uncertainty (candle norm. to data)
- ALPGEN-PYTHIA :

5% positive uncertainty due to the variation in efficiency of the ILV requirement between ALPGEN and PYTHIA

Total basicans a

$$p_{scaled}^{\mu,jet} = (1 \pm \alpha) \cdot p_{meas}^{\mu,jet}$$

= $(1 \pm \alpha) \cdot (p_x, p_y, p_z, E)$

Analysis Result @ LM1

Inclusive Jets + MET, 1 fb-1 :

