Search for long-lived particles at CDF
 V. Krutelyov
 UCSB

for

-Premises
-Search for charged massive particles (CHAMPs)

- Analysis $\operatorname{DResults}$

-Search delayed photons in $\gamma+$ jet+MissingEnergy
ค Analysis ∂ Results
-Summary \rightarrow Steps to the future

Premises

- New heavy particles can have non-negligible lifetime
- [PUT YOUR FAVORITE MODEL IN HERE]
- more examples later
-Different signatures in collider experiments
- escape and noninteracting \rightarrow missing energy (MET or $⿻_{T}$)
- the least information
- if interacts with detector or decays to products that do
- delayed hits
- if slow or decays to visible
- displaced vertex
- if decays to charged
$-\rightarrow$ delayed hits too

Detector signatures: delayed hits

Muon Detectors : ~3 ns

-Most subdetectors at CDF can measure time of hit arrival

- Long-lived particles can show up in many ways. Only two topics in this talk.
- CHAMPS with TOF and COT timing
- delayed γ with central EM and COT timing

CHAMPS

-In theory

- SUSY: sleptons, chargino, stop, gluino
- stop or gluino hadronize \rightarrow charged
- something else?
-If slow ($\beta<1$) and crossing the detector
- delayed hit in TOF and COT
- with origin vertex t_{0} known can reconstruct β
- seen in muon chambers (trigger!)
-high ionization (dE/dX)
-reserved for cross-check
\rightarrow Reconstruct mass
from β and momentum

Analysis strategy

-Simulation:

- check that reconstruction is possible
-Background prediction method:
- β shape \oplus momentum histogram = background mass prediction
- Show this works for electrons from $W \rightarrow$ ev
- use β in $20<\mathrm{p}_{\mathrm{T}}<40 \mathrm{GeV}$ to predict mass in $\mathrm{p}_{\mathrm{T}}>40 \mathrm{GeV}$
- Muons:
- check: from $20<p_{T}<30 \rightarrow$ predict $\rightarrow 30<p_{T}<40$
- final: from $20<p_{T}<40 \rightarrow$ predict $\rightarrow p_{T}>40$
-Signal sample: muon-trigger sample
$-|n|<0.6, p_{T}>40 \mathrm{GeV}, 0.4<\beta<0.9$
- Set limits (if consistent with background)

Simulation

-For clean MC signal can reconstruct the input mass

CDF Run II Preliminary ($1.0 \mathrm{fb}^{-1}$)

 CDF Run II Preliminary ($1.0 \mathrm{fb}^{-1}$)

\bullet-Assume p and $\boldsymbol{\beta}$ are independent - Predict mass shape by convoluting p and β histograms
-Works!

- p and β are largely independent in the control sample

Step 2: Muon sample [control]

-Require central muons ($|\boldsymbol{\eta}|<0.6$)
-Verify background shape prediction

- use 20-30 GeV to predict 30-40 GeV region

Step 3: Signal region

CDF Run II Preliminary ($1.0 \mathrm{fb}^{-1}$)

 -No CHAMP candidates above $120 \mathrm{GeV} /$ c 2. -Signal-region events consistent with background prediction

CHAMPs: model limits

- Find cross section limit for CHAMPs with $|\eta|<0.6,0.4<\beta<0.9$ and $\mathrm{p}_{\mathrm{T}}>40 \mathrm{GeV}$
$-\rightarrow$ Model-dependent factors
- β and momentum shapes
- geometric acceptance
- weakly interacting
(sleptons, charginos)
- efficiency 20.0 $\pm 0.6 \%$
- 95\% C.L.: $\sigma<9.4 \mathrm{fb}$
-strongly interacting (stable stop)
- efficiency $4.6 \pm 0.5 \%$
- 95\% C.L.: $\sigma<41$ fb
- smaller due to hadronization

Delayed photons

- A rare event in RunI prompted lots of theory development at the time \rightarrow GMSB
- Not seen in Runll © (yet?)
- GMSB -specific
- NLSP decays: $\tilde{\chi}_{1}^{0} \rightarrow \gamma+\widetilde{G}$
- long life-time of $\tilde{\chi}_{1}^{0}$
- can be ~ns range
- preferred from cosmological observations
- This makes delayed photons and MET
- Signature "delayed $\gamma^{\prime \prime}+$ MET is generic
- selectron $\rightarrow \mathrm{e}+$ Neutral
- stau $\rightarrow \mathrm{T}(\rightarrow \rho \rightarrow \mathrm{\gamma})+\mathrm{X}$
- something totally new
- Here: search for $\gamma+j e t s+M E T$
- GMSB as benchmark
- $570 \mathrm{pb}^{-1}$ of data
- Based on "Prospects" study
- Phys. Rev. D 70, 114032 (2004)

eerrt \mathbb{T}_{T} Candidate Event

$$
\mathrm{Z}_{\mathrm{T}}=55 \mathrm{GeV}
$$

Very unexpected: $\sim 1 \times 10^{-6}$

Delayed photon signature

-Path difference \leftrightarrow different times of arrival

- All SM signals are prompt
$\bullet \rightarrow$ Use EMTiming to discriminate
- Arrival @ EM-cal with 0.6 ns resolution
- Can "see" decay vtx @ ~0.3-1.5 m
- \rightarrow Strategy
- Predict timing shapes for signal and background \rightarrow look at data and set a limit
- deal with SM(collision) and non-collision backgrounds

Background from data: non-collision

- From outer space - cosmic (muons)
- From the beam - beam halo (muons)
- Look different in calorimeter
- long traces for BH (mostly at $\phi=0$)
- a few hits for Cosmics
- Separate and get the shapes

CDF Run II Preliminary

Background from data: collision [SM]

- Multiple collisions are an issue
- don't know where γ is coming from
- assume it's the vertex with the maximal $\Sigma p_{T}{ }^{\text {tracks }}$
- not always right :
- Model from W \rightarrow ev sample
- hide e-track $\rightarrow \gamma+$ MET sample
- one Gaussian for right vertex
- $\sigma=0.64 \mathrm{~ns}$
- one Gaussian for wrong vertex

- $\sigma=2.05 \mathrm{~ns}$
- let the Gaussian-heights float in the signal shape fit

Signal MC

-Generate with Pythia

- ("Snowmass" slope 8) choice of GMSB parameters
-Simulate with standard detector simulation
- EMTiming response using parameterized simulation
-Acceptance ~ 24\%
- with pre-selections only
- m=100 GeV, $\mathbf{x}=5 \mathrm{~ns}$
-Acceptance \times efficiency $\boldsymbol{\sim} \mathbf{< 6 \%}$
- with final selections

Optimization: Approach

-Minimize expected 95\% CL upper limit -Optimize on
$-\mathrm{t}_{\mathrm{c}}, \mathrm{MET}, \mathrm{E}_{\mathrm{T}} \gamma, \mathrm{E}_{T}^{\text {jet }}$, vertex $\Sigma \mathrm{p}_{\mathrm{T}}, \Delta \phi(\mathrm{MET}$, jet $)$
-Grid search for a minimum

- find \sim best (m, T) reach point
$-\rightarrow$ use it's cuts for all sample
$\Phi_{T}>40 \mathrm{GeV}, E_{T}^{\text {jet }}>35 \mathrm{GeV}$
$\Delta \phi\left(\Phi_{T}\right.$, jet $)>1 \mathrm{rad}$
$2 \mathrm{~ns}<t_{c}^{\gamma}<10 \mathrm{~ns}$

Optimization: Expectation \rightarrow Results

-With optimal cuts

$$
\begin{aligned}
& \Phi_{T}>40 \mathrm{GeV}, E_{T}^{\mathrm{jet}}>35 \mathrm{GeV} \\
& \Delta \phi\left(\Phi_{T}, \mathrm{jet}\right)>1 \mathrm{rad} \\
& 2 \mathrm{~ns}<t_{c}^{?}<10 \mathrm{~ns} \\
& \hline
\end{aligned}
$$

- Expect
- 1.3 ± 0.7 background events
- 0.7 ± 0.6 collision-SM
- 0.5 ± 0.3 cosmics
- 0.1 ± 0.1 beam halo
-Observe
- 2 events

Results: Limits

- Set cross-section limits @95\% CL
- ~model-independent

- Combine with expected GMSB cross-section \rightarrow set exclusion regions

- Result is better than LEP @~5 ns

V.Krutelyov Long-lived heavy particles at CDF

Summary/prospects for $\gamma+j e t+M E T$

-First direct delayed photon search

- EMTiming performs well -Fruitful physics results
- PRL (accepted) [hepex/0704.0760]
- PhD thesis - Peter Wagner
-Good start for more searches with delayed photons (electrons, jets too)
- Update with more data to come

Can be here
by the end of the year

What's next?

Track Timing
 Calorimeter Timing
 Non-Collision rejection

CHAMPs $\beta>0.4$ Delayed photons
CHAMPs $\beta<0.4$ Delayed jets

Displaced Vertices (Hidden valley ...)

Exclusive $\gamma+$ MET (KK states ...)

BACKUP SIIDES

Analysis strategy

-Simulation:

- check that reconstruction is possible
- Bgd prediction method:
- β shape \oplus momentum histogram = background mass prediction
- Show this works for electrons from W \rightarrow ev
- check w electrons with 20 < PT < 40 GeV
- predict mass shape for electrons with PT > 40 GeV using β shape from $20<$ pt<40
- Muons:
- two control regions: $20<$ PT < 30 and $30<$ PT < 40
- show that can predict 2 from 1
- use β shape for 20 < PT < 40 to make prediction for PT > 40 GeV , compare with data in the signal region
-Signal sample: muon-trigger sample
$-|\eta|<0.6, p t>40,0.4<\beta<1$
-Set limits (if consistent w bgd)

New tools: EMTiming

- Part of Run IIb upgrade
- Analog pulse 2000 phototubes \rightarrow TBoard \rightarrow discriminator \rightarrow TDC in 1ns bins
- Cover most EM cal ($|\boldsymbol{\eta}|<2$)
- for CEM use passive inductive pick-off (a.k.a. splitter) to get PMT pulse
- ~100\% Efficient above thresholds
- CEM-5 GeV, PEM-2.5 GeV
- System resolution ~0.6 ns
- Very uniform, Negligible Noise
- Finished installation October 2004.
- Begin data-taking in Nov. 04
- Commissioned in 1 week
- By now have ~ $\mathbf{2} \mathrm{fb}^{-1}$ w EMTiming

Signal MC

-Generate w Pythia ("Snowmass" slope 8)

 -Simulate with standard sim- EMTiming response using parameterized simulation
-Acceptance ~ 24\%
- with pre-selections only
- $\mathrm{m}=100 \mathrm{GeV}, \mathrm{T}=5 \mathrm{~ns}$

Preselection Requirements	Cumulative (individual) Efficiency (\%)
$E_{T}^{\gamma}>30 \mathrm{GeV}, \not \oplus_{T}>30 \mathrm{GeV}$	$54(54)$
Photon ID and fiducial, $\|\eta\|<1.0$	$39(74)^{*}$
Good vertex, $\sum_{\text {tracks }} p_{T}>15 \mathrm{GeV} / c$	$31(79)$
$\left\|\eta^{\text {jet }}\right\|<2.0, E_{T}^{\text {jet }}>30 \mathrm{GeV}$	$24(77)$
Cosmic ray rejection	$23(98)^{*}$

New tools: space-time vertexing

- Use z and t_{0} of COT tracks
-Apply expectation minimization algorithm
- Use resolution in z and t_{0}
$\cdot \sigma_{z} \sim 1 \mathrm{~cm} \quad \sigma_{\mathrm{t}} \sim 0.4 \mathrm{~ns}$
- Result:
- high efficiency, resolution and separation of vertices overlapping in time

Can now separate these two

Beam Halo Time Shape

Bkg from data: non-collision

- From outer space - cosmic (muons)
- From the beam - beam halo (muons)
- Look different in cal
- long traces for BH (mostly at $\phi=0$)
- a few towers for Cosmics
- Separate and get the shapes

V.Krutelyov Long-lived heavy particles at CDF

Optimization

Kinematics of 2 events

