New Tests of Sub-gravitational Forces

Jay Wacker SLAC

SUSY 2007 July 26, 2007

with

Savas Dimopoulos Peter Graham Mark Kasevich

New Era in Fundamental Physics

LHC

Energy Frontier

Nature of EWSB

(Higgs, Naturalness, New Symmetries/Dimensions)

Atom Interferometry

Precision Frontier

Strong CP Solution, Nature of CC/DM (PQ Axion, Naturalness, New Forces, Violations of GR)

Space-time Interferometry

Mach-Zehnder Inteferometer

Time is a big lever-arm in area

Raman Transitions

Two photon transition

Principle Split $\omega \sim \alpha^2 m_e$ 1 eV

$$\Delta p \sim 1 \text{ eV}$$

$$\Delta E \sim 0$$

Rabi Oscillations Effectively 2 state oscillations

$$i\frac{d}{dt} \begin{pmatrix} |1\rangle \\ |2\rangle \end{pmatrix} = \begin{pmatrix} 0 & \Omega_{\text{Rabi}}/2 \\ \Omega_{\text{Rabi}}/2 & 0 \end{pmatrix} \begin{pmatrix} |1\rangle \\ |2\rangle \end{pmatrix}$$

Sources of Relative Phase

$$\Delta \Phi = \Phi_{\text{Path 1}} - \Phi_{\text{Path 2}}$$

3 Sources

Propagation Phase

Separation Phase

Laser Phase

Interferometers are accelerometers

Sub-gravitational Forces

Many suggestions for fifth forces Moduli

Extra Dimensions
The Cosmological Constant

Parameterization of new force

$$\delta V(r) = \alpha \frac{G_N Mm}{r} \exp(-r/\lambda)$$

 α Strength relative to gravity

 λ Range (i.e. Compton wavelength)

Axion mediated Scalar Forces

Experimental Set-up

First measure "null"

Experimental Set-up

Interferometer set horizontally displaced test mass Move test mass in and out and measure gravity

Experimental Set-up

Interferometer set horizontally displaced test mass Move test mass in and out and measure gravity

Precision

$$\Phi = kaT^2$$

Dimensions of experiment

$$k \sim 10 \text{ nm}$$

$$a \sim G_N \rho w \sim 10^{-6} \text{m/s}^2$$
 $T \sim 0.1 \text{ s}$

$$T \sim 0.1 \text{ s}$$

Signal Size

$$\Phi \sim 1$$

Resolution

$$\delta\Phi \sim 10^{-1}$$

Precision

$$\Phi = kaT^2$$

Dimensions of experiment

$$k \sim 10 \text{ nm}$$

$$a \sim G_N \rho w \sim 10^{-6} \text{m/s}^2$$
 $T \sim 0.1 \text{ s}$

$$T \sim 0.1 \text{ s}$$

Signal Size

$$\Phi \sim 1$$

Resolution

$$\delta\Phi \sim 10^{-1}$$

$$N_{\rm atoms} \sim 10^6$$

$$N_{\rm bunches} \sim 10^6$$

Ultimate Resolution

$$\delta\Phi/\Phi \sim 10^{-7}$$

Backgrounds

Main background is the source's Newtonian gravity!

Coriolis is not a problem

Uncontrolled gravitational sources are not a problem

Casimir is important at 0.1 mm

Probable Limits

Improvements

Consider the phase

$$\Phi \sim p a T^2 N_{\text{atom}}^{\frac{1}{2}} N_{\text{bunch}}^{\frac{1}{2}}$$

Can't make signal bigger

Big cost to make taller drop towers

Number of bunches sets length of experiment

Large Momentum Transfer

$$\Phi \sim pa T^2 N_{\text{atom}}^{\frac{1}{2}} N_{\text{bunch}}^{\frac{1}{2}}$$

changing the frequency to walk up momentum

$$\Delta p \sim 10^2 \text{ eV}$$

2 orders of magnitude improvement

Improvements

$$\Phi \sim p \, a \, T^2 N_{\text{atom}}^{\frac{1}{2}} N_{\text{bunch}}^{\frac{1}{2}}$$

Could do more atoms...

$$|\psi\rangle \sim (|1\rangle + |2\rangle)^{N_{\rm Atom}}$$

Resolution goes as $N_{\text{Atom}}^{-\frac{1}{2}}$

GHZ state

Improvements

$$\Phi \sim p \, a \, T^2 N_{\text{atom}}^{\frac{1}{2}} N_{\text{bunch}}^{\frac{1}{2}}$$

Could do more atoms...

$$|\psi\rangle \sim (|1\rangle + |2\rangle)^{N_{\rm Atom}}$$

Resolution goes as $N_{\text{Atom}}^{-\frac{1}{2}}$

$$|\psi\rangle \sim (|1\rangle)^{N_{\rm Atom}} + (|2\rangle)^{N_{\rm Atom}}$$
 GHZ state

Resolution goes as N_{Atom}^{-1}

known as Heisenberg Statistics

$$10^3$$
 Gain!

Other experiments

Equivalence Principle

Hogan, Kasevich

Precision GR

Dimopoulos, Graham, Hogan, Kasevich gr-qc/0610047

Gravity Waves

Dimopoulos, Graham, Hogan, Kasevich, Rajendran

Electric Neutrality of Atoms

Arvanitaki, Dimopoulos, Geraci, Hogan, Kasevich

Atom Interferometry

New method for searching for beyond the SM physics

Many possibilities for future improvements

Need creativity for new methods of searching