Flavour Violating Interactions of Supersymmetric Particles

Andrew Box - University of Hawaii

Layout

Part 1:

Deriving RGEs with thresholds.

Part 2:

Illustrative Calculation: $\widetilde{t}_1 \to c\widetilde{Z}_1$.

Introduction of Thresholds

- Non-degenerate SUSY spectrum.
- Necessary for true two loop accuracy.
- Introduce step functions which alter RG running as particles are removed from effective theory.

Deriving the RGEs including Thresholds

- Use RGE for general theory from Machacek
 & Vaughn, and Luo et al.
- Converted to 4-component form with complex scalars and both Majorana and Dirac fermions ⇒ phenomenologist friendly.
- For correct decoupling must write Lagrangian in mass basis.

Additional couplings when SUSY is broken

Equal in the SUSY limit. RGE for g depends only on g.

Can conceptually be different when some SUSY particles have decoupled from the theory.

Additional couplings when SUSY is broken

Equal in the SUSY limit. RGE for g depends only on g.

Can conceptually be different when some SUSY particles have decoupled from the theory.

New squark-quark-gaugino coupling: $(\tilde{g}^{Q})_{ij}$.

Example: Case where $(\tilde{g}^Q)_{ij}$ is not equal to $g(1)_{ij}$.

These terms appear in the RGE as:

$$1 + 2 - 4 \times 3 + 2 \times 4 = zero$$

If one of the exchanged particles disappears from the theory, \tilde{g} can depend on f, \tilde{f} , g and \tilde{g} .

Sample RGE: fu

$$\begin{split} (4\pi)^2 \frac{d(s\mathbf{f}_u)}{dt} &= \frac{s}{2} \left\{ 3 \left[s^2 \theta_h + c^2 \theta_H \right] (\mathbf{f}_u) (\mathbf{f}_u)^\dagger + \left[c^2 \theta_h + s^2 \theta_H \right] (\mathbf{f}_d) (\mathbf{f}_d)^\dagger + 4c^2 \left[-\theta_h + \theta_H \right] (\mathbf{f}_d) (\mathbf{f}_d)^\dagger \right\} (\mathbf{f}_u) \\ &+ s(f_u)_{ik} \left[\theta_{\tilde{h}} \theta_{\tilde{Q}_l} (\tilde{f}_u^Q)_{kl}^\dagger (\tilde{f}_u^Q)_{lj} + \frac{4}{9} \theta_{\tilde{B}} \theta_{\tilde{u}_l} (\tilde{g}_{u_R})_{kl}^* (\tilde{g}_{u_R})_{lj}^T + \frac{4}{3} \theta_{\tilde{g}} \theta_{\tilde{u}_l} (\tilde{g}_{u_R})_{kl}^* (\tilde{g}_{u_R})_{lj}^T \right] \\ &+ \frac{s}{4} \left[2\theta_{\tilde{h}} \theta_{\tilde{u}_k} (\tilde{f}_u^{u_R})_{ik} (\tilde{f}_u^{u_R})_{kl}^\dagger + 2\theta_{\tilde{h}} \theta_{\tilde{d}_k} (\tilde{f}_d^{d_R})_{ik} (\tilde{f}_d^{d_R})_{kl}^\dagger + 3\theta_{\tilde{W}} \theta_{\tilde{Q}_k} (\tilde{g}_Q)_{ik}^T (\tilde{g}_Q)_{kl}^* \right] \\ &+ \frac{1}{9} \theta_{\tilde{B}} \theta_{\tilde{Q}_k} (\tilde{g}_Q')_{ik}^T (\tilde{g}_Q')_{kl}^* + \frac{16}{3} \theta_{\tilde{g}} \theta_{\tilde{Q}_k} (\tilde{g}_Q')_{ik}^T (\tilde{g}_Q')_{kl}^* \right] (f_u)_{lj} \\ &+ s\theta_{\tilde{h}} \theta_{\tilde{Q}_k} \left[-3\theta_{\tilde{W}} (\tilde{g}_{h_u})^* (\tilde{g}_Q)_{ik}^T + \frac{1}{3} \theta_{\tilde{B}} (\tilde{g}_{h_u}')^* (\tilde{g}_Q')_{ik}^T \right] (\tilde{f}_u^Q)_{kj} \\ &- \frac{4}{3} \theta_{\tilde{B}} \theta_{\tilde{h}} \theta_{\tilde{u}_k} s(\tilde{g}_{h_u}')^* (\tilde{\mathbf{f}}_u^{u_R})_{ik} (\tilde{g}_{u_R}')_{kj}^T + s(\mathbf{f}_u) \left[(s^2 \theta_h + c^2 \theta_H) \operatorname{Tr} \left\{ 3(\mathbf{f}_u)^\dagger (\mathbf{f}_u) \right\} \right. \\ &+ c^2 (\theta_h - \theta_H) \operatorname{Tr} \left\{ 3(\mathbf{f}_d)^\dagger (\mathbf{f}_d) + (\mathbf{f}_e)^\dagger (\mathbf{f}_e) \right\} \right] \\ &+ \frac{s}{2} \theta_{\tilde{h}} (\mathbf{f}_u) \left\{ 3\theta_{\tilde{W}} \left[(\tilde{g}_{h_u})^2 \left(s^2 \theta_h + c^2 \theta_H \right) + (\tilde{g}_{h_d})^2 \left(c^2 \theta_h - c^2 \theta_H \right) \right] \right\} - s(\mathbf{f}_u) \left[\frac{17}{12} g'^2 + \frac{9}{4} g_2^2 + 8g_3^2 \right] \end{split}$$

- Full threshold RGE must reduce to:
 - SM RGE with SUSY (and extra Higgs) thetas = o.
 - MSSM RGE with all thetas = 1.

Unexpected Dependences

• Gaugino mass RGEs display possible dependence on μ when $\theta_H \rightarrow o$, for example:

$$(4\pi)^2 \frac{dM_2}{dt} \ni 4sc\left(-\theta_h + \theta_H\right) \theta_{\tilde{h}}(\tilde{g}_{h_u}) \mu^*(\tilde{g}_{h_d})$$

Have obtained full system of g, \tilde{g} , $f \& \tilde{f} RGEs$.

Soft parameters are under control but not completed.

- Since threshold effects can be similar in magnitude to two-loop effects
 - Must be included for true two-loop accuracy.
- Lagrangian now contains g and f for SUSY couplings
 - Important implications for phenomenology of sparticles.

Consider $\tilde{t}_1 \to c \widetilde{Z}_1$.

- ullet $\widetilde{\mathsf{t}}_1$ is mass eigenstate not flavour eigenstate.
- Contains \widetilde{c}_L , \widetilde{c}_R , ... \Rightarrow can decay to $c\widetilde{Z}_1$.
- Previously estimated by Hikasa & Kobayashi using single step approximation:

$$f(WEAK) = f(GUT) - \ln\left(\frac{M_{GUT}}{M_{WEAK}}\right) [RGE(Q)]$$

 With RGE solution the result changes significantly.

General Comparison of RGE Result With One-Step Approx.

Method	Width (x10 ⁻¹¹ GeV)
Hikasa-Kobayashi	~55
1-100P (all thresholds at m _H)	2.72
2-100P (all thresholds at m _H)	3.11
2-loop (general thresholds)	2.93
2-loop (general thresholds with ~ terms)	3.21

For mSUGRA point:

 m_o =150 $m_{1/2}$ =250 A_o =-850 $tan\beta$ =4 $sign(\mu)$ =+1 M_t =172

$$\Rightarrow$$
 $m_{Z_1}=99$ $m_{t_1}=190$

- The Hikasa-Kobayashi approximation underestimates the width by more than a factor of 15.
- Using ~-terms to calculate decay is as important as two loop vs one loop.
- Will have a large effect on the branching ratio in the case that a number of decay rates are of similar order.

Plan to incorporate code into Isajet.

- Generally, flavour effects may depend on more than Yukawa sources - i.e. Soft Masses and A-parameters.
- In mSUGRA, all flavour violation comes from the Yukawas and is determined solely by KM matrix.
- Even if the Yukawas are the only source of flavour violation, non-universal soft parameters may result in flavour violation which is not solely determined by the KM matrix.

Rotation Dependence

As example, take all mSUGRA inputs except for m_U^2 In diagonal quark basis, use GUT scale condition:

$$m_U^2 = m_0^2 \mathbb{1} + m_0^2 \times diag(a, b, c)$$

In this basis there is no explicit flavour mixing for squarks

Choice of rotation	Width (x10 ⁻¹¹ GeV)
$V_L(u)=KM^{\dagger};V_R(u)=V_R(d)=1$.	3.21
$V_L(u)=V_R(u)=KM^{\dagger}; V_R(d)=KM$	6.43

Summary

- To correctly include thresholds, new SUSY couplings, g̃ and f̃ must be introduced.
- The new couplings must be used when calculating flavour violating effects.
- This has significant phenomenologial results as evidenced by stop decay.

RGE boundary conditions

- Weak scale Yukawa couplings:
 - Related to weak scale quark masses.
 - Rotated to current basis by V_L, V_R.
- GUT scale soft SUSY-breaking parameters:
 - mSUGRA or non-universal inputs.

Fixed General RGE

Using 2-component fermions, with:

$$\mathcal{L} \ni -\left(rac{1}{2}Y_{pq}^a\psi_p^T\zeta\psi_q\phi_a + \mathrm{hc}
ight)$$
 ,

the RGE is:

$$(4\pi)^{2} \left. \boldsymbol{\beta}_{Y}^{a} \right|_{1-loop} = \frac{1}{2} \left[\mathbf{Y}_{2}^{T}(F) \mathbf{Y}^{a} + \mathbf{Y}^{a} \mathbf{Y}_{2}(F) \right] + 2\mathbf{Y}^{b} \mathbf{Y}^{\dagger a} \mathbf{Y}^{b}$$
$$+ \mathbf{Y}^{b} \operatorname{Tr} \left\{ \frac{1}{2} \left(\mathbf{Y}^{\dagger b} \mathbf{Y}^{a} + \mathbf{Y}^{\dagger a} \mathbf{Y}^{b} \right) \right\} - 3g^{2} \left\{ \mathbf{C}_{2}(F), \mathbf{Y}^{a} \right\}$$

Transition from MSSM to SM running

- Can remove $sin\beta$ ($cos\beta$) from f_u (f_d) RGE for MSSM and define $\lambda = sin\beta$ f_u at the point that the Heavy Higgs particles decouple from the theory.
- Some terms are not proportional to $sin\beta f_u$. These are so-called ~-terms.

By how much does \tilde{f} differ from f?

RGE for \tilde{f} contains terms like ff^2 and $f\tilde{f}^2$ so the difference between f and \tilde{f} is roughly (with RGE $\sim f^3$):

$$f_2\left(f_2 - \tilde{f}_2\right) \sim 2f^2 \Delta f \sim 2f^2 \frac{t}{16\pi^2} \text{RGE}$$

Similarly, the difference between two-loop and one-loop running is:

$$f_2 (f_2 - f_1) \sim \frac{1}{16\pi^2} f^5 T$$

Since $t \sim 1$ and $T \sim 35$, the ratio between these two is roughly:

$$\frac{f_2\left(f_2 - \tilde{f}_2\right)}{f_2\left(f_2 - f_1\right)} \sim \frac{16\pi^2}{35} \sim 4.5$$

Various mSUGRA points with light stop

