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1 Introduction

D-branes: essential to study non-perturbative aspects of string theories
provide models for brane-world scenario

Domain walls ~ D-branes : 1/2 BPS

Junctions of walls ~ Junctions of branes : 1/4 BPS

Domain walls are expected to make a network-like webs

Our purpose: To construct all solutions of wall webs as 1/4 BPS states in
d =4, N = 2 SUSY U(Nc¢) gauge theories with Np(> N¢)
hypermultiplets in the fundamental representation with complex masses

Results:

1. Webs of Domain Walls are constructed as 1/4 BPS states
2. Exact Solutions of Webs of Walls are obtained for g2 — oo.

3. Normalizable moduli of web of walls = loops of walls

4. Metric of a single triangle loop of walls is explicitly worked out and can
be understood as kinetic energy of walls and junctions.



SUSY U(N¢) Gauge Theory with Ny Flavors
N = 2 SUSY in 3+1 dim. p,v =0,1,2,3, o, 3 =1,2
Vector multiplets : W, Gauge field, 3, 2 Real Scalars (IN¢ X N¢ matrix)
Gauge coupling g for U (N¢), Fayet-lliopoulos (FI) parameter ¢
- (HY)™ = H*"4 Complex Scalar (N¢ X Np matrix)
(¢=1,2;Colorr =1,-++ ,N¢; Flavor A =1,--. , Ny)
(M1)?p = mad?p, (M2)*p = nsé”p

Non-degenerate masses: m 4 + tng 7% mp + ing

Minimal kinetic terms
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Color-flavor locking vacua (A;Az--:Ang)
Hl’l“A — \/E(SATA, HZTA — 0
Y = 21—|—222 = dlag (mAl + inAla ma, + inAz’ R mANC + inANC)

NN, = Np!/(Nc!(INg — N¢)!) discrete SUSY vacua

Higgs Phase : Walls, Vortices are the only solitons
Instantons, monopoles, junctions are solitons

2 1/4 BPS Equations

Dependence on ', x?, 2 D Poincaré invariance — Wy 3 = 0

Bogomol'nyi completion of Energy density (assuming H? = 0, H' = H)
1 : 2, 1 2
E =Tr 2 (Fiz — 1 [X1,32])" + e (D1X; — D2X4)

+ Y (DoH — HM, + £,H) (D H — HM, + £,H)'

a=1,2
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1/4 BPS equations for domain wall webs
Fi; = 131,35, D13 =D3,
(D1 + 31)H = HM,, (D;+ X2)H = HM,
D13, + D3 = Y
Integrability condition
Fiy =1 [X,3], D13 = DY — D+ X1,Dy+ X3] =0
— N¢ X Ng¢ non-singular matrix S(x®) as simultaneous solution
W, —i¥, = —iS™ 198, Wy — i, = —iS™ 18,8
Hypermultiplet BPS equations are solved by S(ax®) as

H — S—IHOBlel-l—MQ:BZ
Moduli matrix Hy: N¢ X Ny constant complex matrix of rank N¢
Master equation in terms of a gauge invariant matrix Q2 = SST

1
oo 191 (007 + 8, (8:007)] = 1n, — Q0™
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QO — c—1HOe2(M1:C1—|—M2w2)Hg
Moduli matrix Hy contains all moduli parameters
(Ho, S) and (H|, S’) give the same configurations, if related by
Hy—> H,=VH,, S— S8 =VS, Vé&GL(Nc,C)

Independent moduli are equivalence class defined by (Hp, S) ~ (H{, S’)
The total moduli space: the complex Grassmann manifold
MY ~ G N, = {Hy | Hy ~ VHy, V € GL(N¢,C)}

Existence and uniqueness of solutions of the master equation to be proved
Exact Solution at g — oo : NLSM
Strong coupling limit g?e¢/Am > 1: BPS Eq. for @ — Algebraic equation

)9~ — QO — C—1H062(M1w1—|—M2w2)H(')"

Abelian gauge theory (N¢ = 1): configurations of scalar fields are
H646mAw1—|—nAw2
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3 Webs of Walls

Take U (1) gauge theory as a simple example
Moduli matrix: Hy = /c(e®t®1, ...  e*NeTONg)
log 2 ~ log €2 outside the core of the wall

Position of the domain wall: equal weights of the vacua 2,3

(m; — mj)xz' + (n; —nj)x* +a; —a; =0

K> =

y

Figure 1: The minimal model for 3-pronged wall junction. The left one is the grid diagram

<3

in the complex 3J plane and the right one is the web diagram in the configuration space.

Wall Junction




Ny = 3 with 3 discrete vacua labeled by (A) (A = 1,2, 3)
1/4 BPS wall junction: a triangle with 3 vertices at m 4 + tn4 in X
Polygons in the 3 plane = grid diagrams ((p, q) string/5-brane webs)

Figure 2: Binding energy at the junction point: The energy density is numerically evaluated
for the moduli matrix Hye"¥ = (e"”’z, e\/g"’l/2_‘”2/2, 6_\/5331/2_;32/2)’ gauge coupling

g = 1 and FI parameter ¢ = 1.

Boundary conditions for 1/4 BPS webs: — walls at !, 2% — oo

Walls with tension T48 = (Z{lB, —Zf‘B ) pull junction along the wall
Central charge: (Zf‘B, Z;‘B) = c(mp — ma,ng —Ny)

Junction configuration: web diagram dual to the grid diagram



Edges of grid diagram « x!, 2% — oo (Walls)

Area of triangle <— junction charge Y : contributes to the energy
negatively (Y < 0) in U(1) gauge theories (binding energy)
positively (Y > 0) in nonAbelian junctions

(a) grid diagram (b) energy density (g% — oo)

Figure 3: Wall web with 4 external legs of walls. Grid diagram:(a), and energy density:(b).
([ma, na] = {[1,0],[1,1],[0,1], [0, 0]})

Web of Walls
U (1) gauge theories with INg flavors (Web diagrams with Ny faces)
Two kinds of web diagrams: tree diagram, and diagram with loops
Ny = 4 model: Moduli matrix: Hy = /c (e®11%01, gt2ttb2 gastibs gastibs)

Homogeneous coordinates of the total moduli space CP3
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<3
(a) grid diagram (b) energy density (g% — oo)

Figure 4 Web with 1 loop in the Ny = 4 model. Grid diagram:(a), and energy density:(b).
(lma, na4] = [1,0], [0,1}, [-1,—1], [0,0])

Wall Loops

Different choices of mass in the Ny = 4 model — wall web with a loop

4 Effective Action of Wall Loops

Size of the Loop (and associated phase) is the normalizable moduli

Hy = +/c(1,1,1,¢) with ¢ = "%
LN = Kij (¢, ¢")0"9'0,¢"", K (¢, 9*) = Ku(d, ¢*)+Ky(¢, ")
Ky (¢, ¢*) = / d’z clogdetQ, K,(¢p,¢p*) = / d*x zig2Tr(Q‘18aQ)2
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Figure 5: Honeycomb web of domain walls which divides 37 vacua (CP3%) with 18 external
walls and 19 internal loops of walls.

Take U (1) gauge theory with Ny, = 4, [my4, n4] = [0, O]
Metric at Small Loops in strong coupling limit g2 — oo
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Areas of triangles in field space A[lzg]
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Figure 6: 'The moduli space of single triangle loop around ¢ = 0 where the loop shrinks.
U (1) isometry is the phase modulus. The other direction is the size modulus of the loop.

For || < exp (— > aslogay), (o = (mj X my)/Apas)

¢ (1) T (ain)T(an)T(asn)
- 4A[123] Z n F(n)

w

o™

n=1
Scalar curvature is finite (nonsingular) even at ¢ = 0 (vanishing loop)

_ 16A[123]F(2a1)F(2a2)F(2a3) 5

Metric at Large Loops (arbitrary gauge coupling g)

Tropical limit: Retaining the largest term in each region
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Figure 7: (a) plot of log Qg, (b) tropical limit of log g, (c) tropical limit of log Qg

K, is given by ¢ times volume of the tetrahedron

c
trop = (log [¢[*)*
v 24 A3 12003
Total Kahler metric
C r 1 Mo |? Mos|? M |2
ds? = - mazl” | Imesl” | ImalT gy e
A[123] 1023 g=cC as aq 8%,

Kinetic energies of walls and junctions due to the moduli motion
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5 Conclusion

1. Webs of Domain Walls are constructed as 1/4 BPS states in N' =

2 SUSY U(N¢) Non-Abelian Gauge Theories in 4 dimensions
with INg hypermultiplets in the fundamental representation.

2. Total moduli space of the webs of walls is given by a complex
Grassmann manifold described by the moduli matrix H

GeNe = SU(Ng)/[SU(Ny — N¢) x SU(N) x U(1)]

3. Exact Solutions of Webs of Walls are obtained for g? — oo.
4. A General Formula for the Effective Lagrangian is obtained.

5. Abelian junction has negative junction charge (binding energy). Non-
Abelian Junction has positive junction charge (Hitchin system).

6. Normalizable moduli of web of walls = loops of walls

7. Metric of a single triangle loop of walls is explicitly worked out and can
be understood as kinetic energy of walls and junctions.
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