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1 Introduction

D-branes: essential to study non-perturbative aspects of string theories

provide models for brane-world scenario

Domain walls ∼ D-branes : 1/2 BPS

Junctions of walls ∼ Junctions of branes : 1/4 BPS

Domain walls are expected to make a network-like webs

Our purpose: To construct all solutions of wall webs as 1/4 BPS states in

d = 4, N = 2 SUSY U(NC) gauge theories with NF(> NC)

hypermultiplets in the fundamental representation with complex masses

Results:

1. Webs of Domain Walls are constructed as 1/4 BPS states

2. Exact Solutions of Webs of Walls are obtained for g2 → ∞.

3. Normalizable moduli of web of walls = loops of walls

4. Metric of a single triangle loop of walls is explicitly worked out and can
be understood as kinetic energy of walls and junctions.
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SUSY U(NC) Gauge Theory with NF Flavors
N = 2 SUSY in 3+1 dim. µ, ν = 0, 1, 2, 3, α, β = 1, 2

Vector multiplets : Wµ Gauge field, Σα 2 Real Scalars (NC × NC matrix)

Gauge coupling g for U(NC), Fayet-Iliopoulos (FI) parameter c

Hypermultiplets : (Hi)rA ≡ HirA Complex Scalar (NC × NF matrix)

(i = 1, 2 ; Color r = 1, · · · , NC ; Flavor A = 1, · · · , NF)

Hypermultiplet Masses (M1)
A

B ≡ mAδA
B, (M2)

A
B ≡ nAδA

B

Non-degenerate masses: mA + inA ̸= mB + inB

Minimal kinetic terms

L = Tr

[
−

1

2g2
FµνF

µν +
1

g2

2∑
α=1

DµΣαDµΣα + DµHi
(
DµHi

)†
]

− V

V = Tr

[
2∑

α=1

(
HiMα − ΣαHi

) (
HiMα − ΣαHi

)† −
1

g2
[Σ1, Σ2]

2

]
+ Tr

[
(Y 3)2/g2 + g2H2H1†H1H2†

]
,

Y 3 ≡ g2
(
H1H1† − H2H2† − c1NC

)
/2
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Color-flavor locking vacua 〈A1A2 · · · ANC
〉

H1rA =
√

c δAr
A, H2rA = 0

Σ ≡ Σ1+iΣ2 = diag
(
mA1 + inA1, mA2 + inA2, · · · , mANC

+ inANC

)
NF

CNC
= NF!/(NC!(NF − NC)!) discrete SUSY vacua

Higgs Phase : Walls, Vortices are the only elementary solitons

Instantons, monopoles, junctions are composite solitons

2 1/4 BPS Equations

Dependence on x1, x2, 2 D Poincaré invariance → W0,3 = 0

Bogomol’nyi completion of Energy density (assuming H2 = 0, H1 ≡ H)

E = Tr

[
1

g2
(F12 − i [Σ1, Σ2])

2 +
1

g2
(D1Σ2 − D2Σ1)

2

+
∑

α=1,2

(DαH − HMα + ΣαH) (DαH − HMα + ΣαH)†

+
1

g2

(
D1Σ1 + D2Σ2 − Y 3

)2
]

+ Z1 + Z2 + Y +
∑

α=1,2

∂αJα
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Z1 ≡ c∂1TrΣ1, Z2 ≡ c∂2TrΣ2, Y ≡
2

g2
∂αTr

(
ϵαβΣ2DβΣ1

)
1/4 BPS equations for domain wall webs

F12 = i [Σ1, Σ2] , D1Σ2 = D2Σ1

(D1 + Σ1)H = HM1, (D2 + Σ2)H = HM2

D1Σ1 + D2Σ2 = Y 3

Integrability condition

F12 = i [Σ1, Σ2], D1Σ2 = D2Σ1 → [D1 + Σ1, D2 + Σ2] = 0

→ NC × NC non-singular matrix S(xα) as simultaneous solution

W1 − iΣ1 = −iS−1∂1S, W2 − iΣ2 = −iS−1∂2S

Hypermultiplet BPS equations are solved by S(xα) as

H = S−1H0e
M1x1+M2x2

Moduli matrix H0: NC × NF constant complex matrix of rank NC

Master equation in terms of a gauge invariant matrix Ω ≡ SS†

1

cg2

[
∂1

(
∂1ΩΩ−1

)
+ ∂2

(
∂2ΩΩ−1

)]
= 1NC

− Ω0Ω
−1
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Ω0 ≡ c−1H0e
2(M1x1+M2x2)H†

0

Moduli matrix H0 contains all moduli parameters

(H0, S) and (H ′
0, S′) give the same configurations, if related by

H0 → H ′
0 = V H0, S → S′ = V S, V ∈ GL(NC, C)

Independent moduli are equivalence class defined by (H0, S) ∼ (H ′
0, S′)

The total moduli space: the complex Grassmann manifold

Mwebs
tot ≅ GNF,NC

= {H0 | H0 ∼ V H0, V ∈ GL(NC, C)}

Existence and uniqueness of solutions of the master equation to be proved

Exact Solution at g → ∞ : NLSM

Strong coupling limit g2c/∆m ≫ 1: BPS Eq. for Ω → Algebraic equation

Ωg→∞ = Ω0 = c−1H0e
2(M1x1+M2x2)H†

0

Abelian gauge theory (NC = 1): configurations of scalar fields are

HA =
√

c
HA

0 emAx1+nAx2√∑NF
B=1 |HB

0 |2e2(mBx1+nBx2)
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3 Webs of Walls

Take U(1) gauge theory as a simple example

Moduli matrix: H0 =
√

c(ea1+ib1, · · · , eaNF
+ibNF)

log Ω ∼ log Ω0 outside the core of the wall

Position of the domain wall: equal weights of the vacua i, j

(mi − mj)x
1 + (ni − nj)x

2 + ai − aj = 0

Figure 1: The minimal model for 3-pronged wall junction. The left one is the grid diagram

in the complex Σ plane and the right one is the web diagram in the configuration space.

Wall Junction
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NF = 3 with 3 discrete vacua labeled by 〈A〉 (A = 1, 2, 3)

1/4 BPS wall junction: a triangle with 3 vertices at mA + inA in Σ

Polygons in the Σ plane = grid diagrams ((p, q) string/5-brane webs)
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Figure 2: Binding energy at the junction point: The energy density is numerically evaluated

for the moduli matrix H0e
m·x =

(
ex2

, e
√

3x1/2−x2/2, e−
√

3x1/2−x2/2
)
, gauge coupling

g = 1 and FI parameter c = 1.

Boundary conditions for 1/4 BPS webs: → walls at x1, x2 → ∞
Walls with tension T AB = (ZAB

2 , −ZAB
1 ) pull junction along the wall

Central charge: (ZAB
1 , ZAB

2 ) ≡ c(mB − mA, nB − nA)

Junction configuration: web diagram dual to the grid diagram
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Edges of grid diagram ↔ x1, x2 → ∞ (Walls)

Area of triangle ↔ junction charge Y : contributes to the energy

negatively (Y < 0) in U(1) gauge theories (binding energy)

positively (Y > 0) in nonAbelian junctions
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(a) grid diagram (b) energy density (g2 → ∞)

Figure 3: Wall web with 4 external legs of walls. Grid diagram:(a), and energy density:(b).

([mA, nA] = {[1, 0], [1, 1], [0, 1], [0, 0]})

Web of Walls
U(1) gauge theories with NF flavors (Web diagrams with NF faces)

Two kinds of web diagrams: tree diagram, and diagram with loops

NF = 4 model: Moduli matrix: H0 =
√

c
(
ea1+ib1, ea2+ib2, ea3+ib3, ea4+ib4

)
Homogeneous coordinates of the total moduli space CP 3
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Figure 4: Web with 1 loop in the NF = 4 model. Grid diagram:(a), and energy density:(b).

([mA, nA] = [1, 0], [0, 1], [−1, −1], [0, 0])

Wall Loops
Different choices of mass in the NF = 4 model → wall web with a loop

4 Effective Action of Wall Loops

Size of the Loop (and associated phase) is the normalizable moduli

H0 =
√

c(1, 1, 1, φ) with φ = er+iθ

Leff = Kij∗(φ, φ∗)∂µφi∂µφj∗, K(φ, φ∗) = Kw(φ, φ∗)+Kg(φ, φ∗)

Kw(φ, φ∗) ≡
∫

d2x c logdetΩ, Kg(φ, φ∗) ≡
∫

d2x
1

2g2
Tr(Ω−1∂αΩ)2
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Figure 5: Honeycomb web of domain walls which divides 37 vacua (CP 36) with 18 external

walls and 19 internal loops of walls.

Take U(1) gauge theory with NNF
= 4, [m4, n4] = [0, 0]

Metric at Small Loops in strong coupling limit g2 → ∞

Kw ≡ c

∫
d2x

[
log Ω0 − log Ω̃0

]
= c

∫
d2x log

(
1 +

|φ|2

Ω̃0

)
Ω0 = e2m1·x + e2m2·x + e2m3·x + |φ|2

Ω̃0 ≡ e2m1·x + e2m2·x + e2m3·x, mA · x ≡ mAx1 + nAx2

Areas of triangles in field space ∆[123]
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Figure 6: The moduli space of single triangle loop around φ = 0 where the loop shrinks.

U(1) isometry is the phase modulus. The other direction is the size modulus of the loop.

For |φ|2 ≤ exp (−
∑

αi log αi), (αi ≡ (mj × mk)/∆[123])

Kw =
c

4∆[123]

∞∑
n=1

(−1)n+1

n

Γ(α1n)Γ(α2n)Γ(α3n)

Γ(n)
|φ|2n

Scalar curvature is finite (nonsingular) even at φ = 0 (vanishing loop)

R =
16∆[123]

c

Γ(2α1)Γ(2α2)Γ(2α3)

(Γ(α1)Γ(α2)Γ(α3))
2 + O(|φ|2)

Metric at Large Loops (arbitrary gauge coupling g)

Tropical limit: Retaining the largest term in each region
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Figure 7: (a) plot of log Ω0, (b) tropical limit of log Ω0, (c) tropical limit of log Ω̃0

Kw is given by c times volume of the tetrahedron

Ktrop
w =

c

24∆[123]

1

α1α2α3

(log |φ|2)3

Total Kähler metric

ds2 =
c

∆[123]

[
r

α1α2α3

−
1

g2c

(|m12|2

α3

+
|m23|2

α1

+
|m31|2

α2

)]
(m2dr2+dθ2)

Kinetic energies of walls and junctions due to the moduli motion
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5 Conclusion

1. Webs of Domain Walls are constructed as 1/4 BPS states in N =
2 SUSY U(NC) Non-Abelian Gauge Theories in 4 dimensions
with NF hypermultiplets in the fundamental representation.

2. Total moduli space of the webs of walls is given by a complex
Grassmann manifold described by the moduli matrix H0

GNF,NC
≅ SU(NF)/[SU(NF − NC) × SU(NC) × U(1)]

3. Exact Solutions of Webs of Walls are obtained for g2 → ∞.

4. A General Formula for the Effective Lagrangian is obtained.

5. Abelian junction has negative junction charge (binding energy). Non-
Abelian Junction has positive junction charge (Hitchin system).

6. Normalizable moduli of web of walls = loops of walls

7. Metric of a single triangle loop of walls is explicitly worked out and can
be understood as kinetic energy of walls and junctions.
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