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Introduction

BPS solitons in supersymmetric gauge theory play 
essential roles to understand the non-perturbative 
dynamics and properties.

Solitons Codimensions

Instanton 4
Monopole 3

Voretex 2
Domain wall 1



It is very important to investigate the structure (topology, 
singularity, metric, etc.) of the moduli space of these 
solitons, but I would like to concentrate on calculus of the 
“volume” of the moduli space of solitons.

‣Why is the “volume” important?

Application 1
Thermodynamical partition function for the BPS solitons
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Application 2
Non-perturbative effects of BPS instantons on the 
prepotential of the N=2 supersymmetric gauge 
theory.

⇒

[Nekrasov (2002)]
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In this talk, I explain how to calculate the volume 
of the moduli space of BPS solitons, in particular 
vortices in 2d, or the thermodynamical partition 
function.

I present a novel and simple method by using a 
statistical model of gas in 1d.



The Model
We consider the BPS vortices in the 
supersymmetric gauge theory with 8 supercharges. 
(G=U(Nc) and Nf flavors)

Bosonic part of the Lagrangian

Aµ :gauge field
Σ :adjoint (hermite) scalar

H, H̃ :hypermultiplets



BPS Vortices on T2

From the static energy, we find the BPS equations 
for the vortices

Dz̄H = 0

F12 +
g2

2
(c1Nc −HH†) = 0

If we consider the vortices on a torus, there exists a 
bound for the vortex number
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D-brane Realization of 
Vortices

BPS solitons can be realized by using D-brane bound states in 
superstring theory.

e.g. 3-dim model

k×D0-branes + Nc×D2-branes + Nf×D6-branes in R1,2×C2/Z2×R3

T-duality in superstring theory maps the vortex configuration to a 
domain-wall (kinky D-brane) configuration.
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Vev of adjoint scalar
Wilson line of the gauge field



T-duality Mapping of 
Vortices

T-dual

g2c → ∞
1/R → ∞

k domain walls (k-times wrapping)

L

k vortices

1/R

d = 2/g2cR : fixed

R

L

Nc = Nf = 1



Gas of hard rods in 1D

=
L

d

(Volume of the vortex moduli space)
   = (Volume of dual domain-wall configuration space)
   = (Volume of the configuration space of hard rods with length d on S1)

   =
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Domain-wall kink configuration k hard rods with length d on S1



Partition Function

Zrods =
(

mT

2π

)k L (L− kd)k−1

k!

The partition function for the gas of identical hard rods with 
mass m on S1 with period L

where m=2πc and d=2/g2cR in terms of the gauge theory vortices

T-duality (c → 2πRc)

The partition function of k-vortex system on a torus T2 with area A
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Equation of State
Using the derived partition function, we obtain the van der 
Waals equation of state

P
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)
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Bradlow area

which agrees with [Manton-Nasir (1999), Manton-Sutcliffe (2004)]
without any knowledge of the vortex moduli space metric!
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•k semi-local vortices with Nc=1 and general Nf

• k local non-Abelian vortices with Nc=Nf=N

Other Examples
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Similarly, we can calculate
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Large Area Limit
For Nc=Nf=1, in the limit of A→∞

This result agrees with Nekrasov-like localization 
method (Ω-background, Equivariant cohomology, etc.) 
as follows...
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where the action is BRST exact

and                      , 
which obey the following BRST transformations

Reduced Matrix Model 
in Ω-background

Let us consider the following reduced matrix model 
partition function (from N=1 in 4d)

Zk =
∫

[d !B][d !F ][dΦ]e−S(!B, !F,Φ)

S =
1
g2

QΞ( !B, !F ,Φ)

!B = (X, I,H) !F = (λ, ψ,χ)

QX = λ, Qλ = [Φ, X] + εX

QI = ψ, Qψ = ΦI

QH = [Φ,χ], Qχ = H

QΦ = 0



Vortex Partition 
Function

The partition function reduces to the following residue 
integral with respect to eigenvalues of Φ.
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The poles exist at φi = ε(i− 1)

In the limit of            , this gives the “volume” of the 
moduli space of k vortices in      with an identification 
of                .
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F-term Contribution

Zk(!a, ε) =
∑
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In general, we can obtain the non-perturbative 
contribution of k-vortices to the twisted superpotential 
of 2d N=(2,2) supersymmetric gauge theory from the 
partition function (“volume” of the moduli space of k-
vortices) [Shadchin 2006]



Conclusion

• We find a novel and simple method to compute the 
volume (partition function) of the BPS vortex moduli 
space.

‣ It is equivalent to the configuration space of the 
hard rods system in 1-dimensional circle.

• This derivation does not need the detail structure of 
the moduli space like metric.

‣ This is due to the “localization” property of the 
supersymmetric gauge theories.



Further Application

• Landscape (counting BPS vacua)
• Counting BPS states in SUGRA
• Kähler potential of Calabi-Yau manifold
• Themodynamics of vortices in early 

universe


