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Abstract. We propose a novel and simple method of computing the volume of the moduli space
of BPS solitons in supersymmetric gauge theory. We use a D-brane realization of vortices and
T-duality relation to domain walls. We there use a special limit where domain walls reduce to gas
of hard (soft) one-dimensional rods for the Abelian (non-Abelian) cases. In the simpler cases of
the Abelian-Higgs model on a torus, our results agree with exact results which are geometrically
derived by an explicit integration over the moduli space of the vortices. On the other side of the
limit, we can compute the volume of the moduli space in the combinatorial way, where the problem
on the random (plane) partition appears as well as the four dimensional instanton calculus. A part
of this talk is based on collaboration with M. Eto, T. Fujimori, M. Nitta, K. Ohashi and N. Sakai
[hep-th/0703197].

PACS. 11.30.Pb Supersymmetry – 11.25.-w Strings and branes – 11.27.+d Extended classical
solutions; cosmic strings, domain walls, texture

1 Introduction

BPS solitons play essential roles to understand the
non-perturbative dynamics and properties in super-
symmetric gauge theory. It is an important task to
evaluate the non-perturbative effects from various kinds
of BPS solitons, like instantons, monopoles, vortices
and domain-walls, which are classified by their codi-
mensions. To carry out this, we need to investigate
the whole detail structure (topology, metric, singular-
ity, etc.) of the moduli space of the solitons, but I
would like to concentrate on calculations of the “vol-
ume” of their moduli space in this talk. In general,
the moduli space of the solitons is non-compact and
the volume of the moduli space diverges. So we need
a regularization in the calculation of the volume. The
volume in double-quotes means it is evaluated with a
suitable regularization.

There are important and interesting applications
of the “volume” of the moduli space of the BPS soli-
tons. One of them appears in a thermodynamical par-
tition function of diluted BPS soliton gas. If we as-
sume the BPS solitons do not interact with each other
and behave as free particles, integration over phase
space, which is a cotangent bundle over the moduli
space, reduces to integration over the moduli space
with suitable metric. Then the thermodynamical par-
tition function is proportional to the “volume” of the
moduli space

Z =
(

T

2π~2

)N

Vol(MN ),
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where T is temperature of the system and Vol(MN )
stands for the “volume” of the moduli space of N BPS
solitons.

Another application is proposed by Nekrasov [1].
He has shown that the prepotential of N=2 supersym-
metric gauge theory, which includes all non-perturbative
instanton corrections, can be obtained from a statisti-
cal partition function summing over Young tableaux.
The partition function measures a regularized “vol-
ume” of the moduli space of k instantons with gauge
group U(r) and the prepotential is given by a lead-
ing term of free energy in an asymptotic expansion
with respect to a regularization parameter, which cor-
responds to the so-called Ω-background.

In this talk, we propose a novel and simple deriva-
tion of the “volume” of the moduli space of the BPS
solitons, in particular BPS vortices, by evaluating or
counting a pictorial configuration space of solitons.
The configuration space is realized by a D-brane con-
figuration. First, we consider the configuration space
of vortices on a compact torus. In this case, effective
size of vortices affects the entire volume of the moduli
space, since the vortices can not overlap with each over
due to their size. We naively expect that the vortices
behave like finite size disks on the two-dimensional
torus, but the D-brane picture shows us that a con-
figuration space of domain-walls, which is T-dual to
the vortices, is equivalent to a configuration of finite
size hard rods on a one-dimensional circle in a special
limit of parameters [2]. This limit is an approximation,
but surprisingly the result is exact because of the lo-
calization.

Secondary, we also consider a large area limit of
the base space where the vortices exist. In this limit,
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the effective size of the vortices can be ignored. So the
configuration space of the vortices or T-dual domain-
walls reduces to a configuration of rectangular kinks.
We can identify the kink configurations with three-
dimensional (3d) Young diagrams (plane partitions).
So the evaluation of the volume of the moduli space
reduces to a counting of the skew Young tableaux as-
sociated with the kink configurations. This is also an
approximation, but we expect that this gives an exact
answer. We can compare with a non-perturbative F-
term of two-dimensional supersymmetric gauge theory
in evidence [3].

2 Thermodynamics of vortices on T 2

We consider BPS vortices in supersymmetric SU(Nc)
gauge theory with 8 supercharges, which has Nf flavor
hypermultiplets. The theory possesses gauge fields Aµ,
adjoint scalar fields Σ in the vector multiplet and the
hypermultiplets H which are expressed by an Nc×Nf

matrix. After Bogomol’nyi completion of energy den-
sity, we find BPS equation for the vortices

Dz̄H = 0, Fzz̄ +
g2

2
(c1Nc − HH†) = 0,

where g is a gauge coupling constant and c is a Fayet-
Iliopoulos parameter. If we consider solutions of the
above BPS equations on a compact two-dimensional
surface, like a torus T 2, there exists a bound between
the number of vortices k and the area of the torus A

k
1

Nc

4π

g2c
≤ A.

This means that the vortex has a minimal effective
area 1

Nc

4π
g2c , which excludes the other vortices. This

unit area is called the Bradlow area.
Now we realize these BPS vortices as D-brane bound

states in Type IIA superstring theory. For example, if
we consider three-dimensional model, it is realized by
a bound state of k D0-branes, Nc D2-branes and Nf

D6-branes in R1,2×C2/Z2×R3, where the orbifold pre-
serves a half of supercharges and removes extra mod-
uli (flat directions). As discussed in [4], the T-duality
maps a Wilson line of the gauge field which express
the vortex configuration to a domain-wall (kinky D-
brane) configuration. If we take a T-duality along one
cycle (with radius R) of the torus, the k vortices are
mapped to the kinky D-branes which wrap k-times
on a dual cycle. It is convenient to see the kinky D-
brane configuration in covering space of the dual cycle.
In the covering space, the kinky D-branes is expressed
as kink configurations interpolating between the flavor
D5-branes. In general, the kink configuration is smooth
functions, but if we take a special limit of g2c → ∞
and 1/R → ∞ with d ≡ 2/g2cR fixed, then the shape
of the kinks become sharp and is represented by piece-
wise linear functions. For example, if we consider the
simplest case, namely k-vortices with Nc = Nf = 1
(ANO vortices), the above process is depicted in Fig.1.

Once we take the limit and get the piece-wise lin-
ear configuration, we can identify the domain-wall kink
configuration with a system of k hard rods with length
d on S1 with radius L1. Therefore, if we want to calcu-
late the volume of the configuration (moduli) space of
the vortices, we need to calculate the volume of the T-
dual domain-wall configuration space, which further-
more reduces to the volume of the configuration space
of hard rods on S1. This reduced problem is easy to
calculate. The answer to the k ANO vortices is pro-
portional to 2πL(2πL−kd)k−1

k! . The statistical partition
function of gas of k identical hard rods with mass m
on S1 with radius L

Zrods =
(

mT

2π

)k 2πL(2πL − kd)k−1

k!
.

Note that these parameters are expressed in terms of
the dual picture. So, in order to obtain the thermody-
namical partition function of the original vortex sys-
tem, we replace m with (2π)2Rc and d with 2/g2cR.
Then we finally obtain the partition function of the
vortices

Z
Nc=Nf=1

k,T 2 =
1
k!

(cT )kA

(
A − k

4π

g2c

)k−1

, (1)

where A = (2π)2RL is the area of the torus. From the
partition function (1), we can derive the van der Waals
equation of state of the vortex gas

P

(
A − k

4π

g2c

)
= kT, (2)

where the Bradlow area 4π
g2c appears and pressure di-

verges at A = k 4π
g2c . This agrees with the arguments

over the BPS equations.
In the above derivation, we have used the special

limit of the parameters where the kink configuration
approximates to the piece-wise linear function. Thus
we can evaluate easily the volume of the moduli space.
However, in spite of the approximate calculation, we
find the results (1) and (2) are exact as compared with
[5]. This means that a kind of localization works in
the calculation of the volume of the BPS vortex mod-
uli space as like as in the instanton calculus, that is,
the volume does not depends on the detailed structure
of the moduli space and is determined by fixed point
structure of isometries. This localization reduces the
problem to the simple statistical or combinatorial one.
We will see another evidence in the next section.

Our argument can be extended to the general Nc

and Nf case. The problem of the volume calculation of
the moduli space also reduces to the one-dimensional
statistical system. For Nf > 1, there appear short
length hard rods which correspond to domain-walls
connecting the Higgs vacua within a period of the cov-
ering space. In the limit of 1/R → ∞, these shot rods

1 L is a radius of another cycle of the torus against the
T-dual direction.
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Fig. 1. Vortices as a bound state of D-branes. T-duality maps it to a kinky D-brane configuration. If we consider the
configuration in a covering space, it is equivalent to a system of hard rods in one-dimension.

are regarded as particles bound on the long rods corre-
sponding to the kinky D-branes wrapping around the
dual circle. In addition, the hard rods now can be over-
lapped with each other, so the rods effectively become
“soft” for the general non-Abelian case. Thus the con-
figuration space of the non-Abelian vortices is equiv-
alent to the rods with the particles in one-dimension.
It is however difficult to integrate over the whole con-
figuration space of the reduced system of the rods. We
can perform it for the some special cases. For exam-
ple, in the case of k local non-Abelian vortices with
Nc = Nf = N , we obtain an expansion of the parti-
tion function in terms of 1/A

Z
Nc=Nf =N

k,T2 = (cT )kN 1

k!

"

A

(N − 1)!

„

4π

g2c

«N−1
#k

×

"

1 − DN (k − 1)
k

A
+ O

 

„

4π

g2cA

«2
!#

,

where DN

4π/g2c = (2N−2)!!
(2N−1)!! . The partition function for

the k semi-local vortices with Nc = 1 and general Nf

is give by

Z
Nc=1,Nf

k,T2 = (cT )kNf
1

k

1

(kNf − 1)!
A

„

A − 4πk

g2c

«kNf−1

.

We can also derive the equation of state for these
vortex gases.

3 Large area limit

So far we have been treating the vortex system on
the compact 2-dimensional surface, but here we take a
large area limit of the base space, namely let us con-
sider the vortices on C. If we assume k vortices behave
as point particles, the moduli space is a symmetric
product space Mk ≅ Ck/Sk, where Sk is the symmet-
ric group of order k. The volume of the moduli space,
of course, diverges since C is non-compact, and is pro-
portional to (Vol(C))k. As in a spirit of [1], we expect
that it makes a sense to pick up a coefficient of the
divergent volume, that is, a regularized “volume” has
important information to investigate the structure of
the vortex moduli space and we can apply it to various
physical problems.

Before explaining how to evaluate the regularized
“volume”, we notice that there is one-to-one corre-
spondence between the Higgs vacua and the Young di-
agrams. We are considering the supersymmetric SU(Nc)

Fig. 2. D-brane bound states associated with the Higgs
vacua relate to Young diagrams via the Maya / Young di-
agram correspondence. White and black circles represents
D5-branes and D1-D5 bound states, respectively.

Yang-Mills theory (SQCD) with 8 supercharges. As-
suming Nc < Nf and Nf matter hypermultiplets have
non-degenerate masses which are ordered as m1 <
m2 < · · · < mNf

. The eigenvalues of the vev for the
adjoint scalar in the Higgs phase are given by choosing
Nc masses from mi’s. So the number of the Higgs vacua
is Nf

CNc = Nf !

Nc!Ñc!
, where Ñc = Nf − Nc. In the lan-

guage of the brane configuration, the Higgs vacua cor-
respond to bound states of D1 and D5-branes, whose
positions are related to the adjoint scalar vev and hy-
permultiplet masses, respectively. There works a kind
of exclusion principle and only one D1 can bind to
D5 due to the orbifolding by Z2. Identifying the D1
brane positions with right-up edges of the −45◦ ro-
tated Young diagram, that is, using the Maya diagram
(free fermion Fock space) / Young diagram correspon-
dence, the Higgs vacuum corresponds to a Young di-
agram within Nc × Ñc boxes. (See Fig.2.) Thus the
Higgs vacuum can be labeled by the Young diagram
λ.

The domain-wall in this supersymmetric system in-
terconnects two different Higgs vacua. If we choose two
different vacua (Young diagram) as λ1 and λ2 and
determine orientation of a “time” direction which is
transverse to the domain-wall, the BPS condition says
that the Young diagram λ1 should be include inside
the λ2, namely λ2 must be constructed by just adding
some boxes to λ1. We represent this inclusion relation
by λ1 ≺ λ2. If we arrange k domain-walls by a “time”
series, the k+1 vacua (λ1, λ2, . . . , λk+1) should satisfy

λ1 ≺ λ2 ≺ · · · ≺ λk+1.

This means that k BPS domain-walls consists a plane
partition (3d Young diagram). This correspondence,
however, is abstract since the domain-walls have thick-
ness and transition between vacua is smooth. If we
take a limit of g2c → ∞, the transition becomes steep
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Fig. 3. There is one-to-one correspondence between 3d
Young diagrams and kink flows (kinky D-branes).

since the kink profile of the domain-wall gets rectan-
gular (similar to the limit of d → 0 in the previous
section). Thus the correspondence between the BPS
domain-walls and 3d Young diagram is exact in the
above limit. We will consider this situation in the fol-
lowing.

Heights of the 3d Young diagram relate to the po-
sitions of the domain-walls, or we can equivalently ex-
press the positions as numerical numbers inside the
boxes of a skew Young diagram λk+1/λ1, which is re-
moval of boxes of λ1 from ones of λk+1. The num-
ber of domain-walls is given by k = |λk+1| − |λ1|,
where |λ| stands for the number of the boxes in the
Young diagram λ. We call the skew Young diagram
with the numerical numbers inside the boxes the skew
Young tableau. In order to calculate the volume of the
moduli (configuration) space of the domain-walls, we
need to count the number of all possibilities of the
Young tableau. It is similar to evaluation of a dimen-
sion of a symmetric group associated with the skew
Young diagram, but it diverges in our case since the
transverse direction to the domain-walls is continuous
and non-compact. To regularize the counting of the
domain-wall configuration space, we consider a finite
interval, discretize the transverse direction, and label
the positions by integers from one to sufficiently large
N . Therefore, we find the volume of the domain-wall
moduli space MDW

k is given by

Vol(MDW
k ) = lim

N→∞,q→1

1

Nk
sλk+1/λ1(1, q, q2, . . . , qN−1),

where sλ/λ′(x1, x2, . . . , xN ) is the skew Schur func-
tion. If we simply choose λ1 = ∅ and λk+1 = λ, then

Vol(MDW
k ) =

dλ

k!
=

∏
i<j

µi − µj − i + j

−i + j
,

where dλ is the dimension of the symmetric group and
µi, which satisfies µ1 ≥ µ2 ≥ · · · and

∑∞
i=1 µi = k, is

the number of the boxes in the i-th row of the Young
diagram λ. This volume is related to the volume of
the moduli space of the large N U(N) flat connections
on the two-dimensional disk [6]. It also corresponds
to just a “half” of the moduli space volume of non-
commutative U(1) instantons. This fact is reminiscent
of the observation by Hanany and Tong [7].

To apply the above domain-wall result to the vor-
tex, we have to consider the multiple domain-wall con-
figuration in the dual covering space as similar to the
previous section. For example, the k ANO vortices in
the Nc = Nf = 1 theory are equivalent to k domain-
walls of the Nc = 1 and Nf → ∞ by T-duality. Indeed,

if we count the number of configurations of k discrete
positions in N , it gives

Vol(MANO
k,C ) = lim

N→∞

1
Nk

N !
k!(N − k)!

=
1
k!

.

This agrees with the large area limit of (1) by iden-
tifying the divergent area Ak with Nk. Similarly we
can count the dual domain-wall configurations to the
vortices for the particular cases in the combinatorial
way. It precisely gives a coefficient of the large area
divergent part.

4 Conclusion and Discussions

In this talk, I give a simple schematic and combi-
natorial calculation of the volume of the vortex and
domain-wall moduli space. These BPS objects have
codimension 2 and 1. The problem of the moduli space
volume calculation reduces to the evaluation of the
volume of the one-dimensional hard rod configuration
space, or the counting of the number of 3d Young di-
agrams (plane partitions). These calculations also re-
lated to the counting of the BPS D-brane configura-
tions in the realization of supersymmetric gauge the-
ory. We expect that these schematic and D-brane pic-
ture can be applied to other solitons like instantons
and monopoles.

On the other hand, the calculation of the moduli
space volume has another application to the deriva-
tion of the effective prepotential or superpotential (F-
terms) in supersymmetric gauge theory. For two-dimensional
supersymmetric Yang-Mills theory, the non-perturbative
effective superpotential is calculated in [3] by using
equivariant cohomology or topological matrix model.
This is an effective theory in the Coulomb phase, but
similar combinatorial objects (Gamma functions) ap-
pears in the partition function, even though our cal-
culation is done in the Higgs phase. We also hope that
our calculation sheds light on the relation between ef-
fective theories in the Coulomb and Higgs phase, and
makes clear non-perturbative dynamics in supersym-
metric gauge theories.

References

1. N. A. Nekrasov, Adv. Theor. Math. Phys. 7, 831
(2004)

2. M. Eto, T. Fujimori, M. Nitta, K. Ohashi, K. Ohta
and N. Sakai, arXiv:hep-th/0703197.

3. S. Shadchin, JHEP 0708, 052 (2007)
4. M. Eto, T. Fujimori, Y. Isozumi, M. Nitta, K. Ohashi,

K. Ohta and N. Sakai, Phys. Rev. D 73, 085008
(2006)

5. N. S. Manton and P. Sutcliffe, “Topological solitons,”
Cambridge, UK: Univ. Pr. (2004)

6. T. Matsuo, S. Matsuura and K. Ohta, JHEP 0503,
027 (2005); S. Matsuura and K. Ohta, Phys. Rev. D
73, 046006 (2006)

7. A. Hanany and D. Tong, JHEP 0307, 037 (2003);
A. Hanany and D. Tong, JHEP 0404, 066 (2004)


