Entropy and abundance criteria to constrain susy models with dark matter

Luis Cabral,¹, *Myriam Mondragón*,² Lukas Nellen,³ Dario Núñez,³ Roberto Sussmann,³ Jesús Zavala ³

¹CIIDET

²IF-UNAM

³ICN-UNAM

SUSY 2007

Motivation

- Growing evidence for the existence of dark matter
- Neutralinos (LSP) one of the best candidates
- Little information on galactic halo thermodynamic properties
- Try to combine knowledge of astrophysics and cosmology to get an independent constraint for models with dark matter
 - Use abundance criterion
 - Define an entropy criterion
 - Combine the two, apply it to msugra
- Compatibility of abundance and entropy criteria
 - ⇒ constraint on susy models with dark matter

Abundance criterion

Standard approach: Boltzmann equation, after "freeze out" neutralino number is constant

$$\Omega_{\chi} \approx 1/\langle \sigma v \rangle$$
,

where $\langle \sigma v \rangle$ is the thermally averaged cross section times the relative velocity of the LSP annihilation pair.

Exact solution using MicrOmegas, assuming most DM is LSP. Relates $\Omega_{\chi} h^2$ to parameters of susy model.

Belanger, Kraml, Pukhov; Belanger et al

Entropy Criterion

Another way to set a constraint equation by entropy considerations.

Consider neutralino gas in two stages of evolutions:

freeze-out era present era

Intial and final states taken in equilibrium.

Entropy expression from microcanonical ensemble in "mean field" approximation in terms of phase space volume:

$$s = \ln \left[\frac{(2mE)^{3/2} V}{(2\pi\hbar)^3} \right],$$

where V and E are local average values of volume and energy.

Change in entropy between initial (s_f, x_f, n_f) and final states $(s^{(h)}, x^{(h)}, n^{(h)})$

$$s^{(h)} - s_f = \ln \left[\frac{n_f}{n^{(h)}} \left(\frac{x_f}{x^{(h)}} \right)^{3/2} \right].$$

where $x_f = m_\chi/T_f$,

 m_{χ} is the neutralino mass and $T_{\rm f}$ is the temperature of the system at freeze-out n number density of particles, s entropy

Today: centre of halos.

Rewrite with observables

Relate n_f with present day cosmological parameters like Ω_0 and h.

Taking as an approximation:

$$n_f = n_0 \left(1 + z_f\right)^3$$

Entropy per particle for a photon gas at freeze-out and the one today are proportional to the cube of the temperature of the system at the corresponding epoch:

$$g_{*f} S_{f} = g_{*0} S_{0} (1 + z_{f})^{3}$$

 g_* degrees of freedom, known function of $x = m_\chi/T$ z redshift

Gondolo

Observables

$$n_{\rm f} = \frac{g_{*\rm f} \left(x_{\rm f}\right)}{g_{*\rm 0} \left(x_{\rm 0}^{\rm CMB}\right)} \left[\frac{T_{\rm f}}{T_{\rm 0}^{\rm CMB}}\right]^{3} = n_{\rm 0} \frac{g_{*\rm f} \left(x_{\rm f}\right)}{g_{*\rm 0} \left(x_{\rm 0}^{\rm CMB}\right)} \left[\frac{x_{\rm 0}^{\rm CMB}}{x_{\rm f}}\right]^{3}$$
 where $x_{\rm 0}^{\rm CMB} \equiv m/T_{\rm 0}^{\rm CMB} = 4.29 \times 10^{12} \, m/{\rm GeV}$, with $T_{\rm 0}^{\rm CMB} = 2.7 \, {\rm K}$

At freeze-out we can consider the halo as a MB neutralino gas:

$$\begin{split} \rho_{\text{f}} &= \textit{m}_{\chi} \, \textit{n}_{\chi} \, \left(1 + \frac{3}{2 \, \textit{x}_{\text{f}}} \right), \qquad \textit{p}_{\text{f}} &= \frac{\textit{m}_{\chi} \, \textit{n}_{\chi}}{\textit{x}_{\text{f}}}, \\ \textit{s}_{\text{f}} &= \left[\frac{\rho + p}{\textit{n} \, \textit{T}} \right]_{\text{f}} &= \frac{5}{2} + \textit{x}_{\text{f}}, \end{split}$$

 ρ density, p pressure, T temperature

Today
$$n_0/n_c^{\text{(h)}}=
ho_0/
ho_c^{\text{(h)}}$$
 and $ho_0=
ho_{ ext{crit}}\,\Omega_0\,h^2$

Collecting results we get a theoretical expression for the entropy:

$$\left. s_{c}^{\text{(h)}} \right|_{\text{th}} = \frac{5}{2} + x_{\text{f}} + \ln \left[\frac{g_{*\text{f}} \left(x_{\text{f}} \right) \left(x_{0}^{\text{CMB}} \right)^{3}}{g_{*0} \left(x_{0}^{\text{CMB}} \right)} \frac{h^{2} \, \Omega_{0}}{(x_{\text{f}} \, x_{c}^{\text{(h)}})^{3/2}} \, \frac{\rho_{\textit{crit}}}{\rho_{\textit{c}}^{\text{(h)}}} \right]$$

which depends on inital state $x_{\rm f}$, observable cosmological parameters Ω_0 , h and on generic state variables associated to the present halo structure $x_{\rm c}^{\rm (h)}$, and $\rho_{\rm c}^{\rm (h)}$.

Notice

Assumption of MB statistics does not apply to self-gravitational collision-less system.

An exactly isothermal halo is not a realistic model: its total mass diverges distribution function → infinite particle velocities

More realistic halo models use "energy truncated" (ET) distribution functions, with maximal "cut off" velocity.

Binney, Tremaine; Padmanabhan; Katz, Horowitz, Dekel; Katz; Magliocchetti, Pugacco, Vesperini

Empirical estimate of entropy

Take equation for entropy, restrict phase space volume to the actual range of momenta (i.e. put maximal escape velocity)
Assume a relation of the form

$$v_e^2(0) = 2 |\Phi(0)| \simeq \alpha \, \sigma_{\text{(h)}}^2(0),$$

where $\Phi(r)$ is the newtonian gravitational potential, and α is a proportionality constant

We get empirical expression for the entropy

$$\begin{aligned} \left. s_{c}^{(\mathrm{h})} \right|_{\mathrm{em}} &\simeq \ln \left[\frac{m^{4} v_{\mathrm{e}}^{3}}{(2\pi\hbar)^{3} \rho_{c}^{(\mathrm{h})}} \right] \\ &= 89,17 + \ln \left[\left(\frac{m}{\mathrm{GeV}} \right)^{4} \left(\frac{\alpha}{x_{c}^{(\mathrm{h})}} \right)^{3/2} \frac{\mathrm{GeV/cm}^{3}}{\rho_{c}^{(\mathrm{h})}} \right], \end{aligned}$$

where we used $x_c^{(h)} = c^2/\sigma_{(h)}^2(0)$.

Entropy constraint II

Equating the theoretical and the empirical estimates for the entropy per particle we finally obtain

$$In(\Omega_{\chi}h^{2}) = 10.853 - x_{f} + In\left[\frac{(x_{f}\alpha)^{3/2}m_{\chi}g_{*0}(x_{0}^{\text{CMB}})}{g_{*f}(x_{f})}\right],$$

lpha is the proportionality constant between the escape and dispersion velocities at the center of the halo.

Another constraint equation relating $\Omega_{\chi} h^2$ and observables.

More on α

lpha parametrizes our ignorance of the correct mechanical-statistics treatment of non-extensive systems formed by dark matter.

Assume spherical dark matter halo with a constant density core in the center, then the dark matter density profile follows the Navarro-Frenk-White (NFW) profile, and then it has a cutt-off:

$$\rho(y) = \begin{cases} \rho_c & \text{if } y < y_c \\ \frac{\delta_0 \rho_0}{y(1+y)^2} & \text{if } y_c \le y \le y_v \\ 0 & \text{if } y > y_v \end{cases}$$

 ho_c is the constant central density of the core, $y=r/r_s$, $y_c=r_c/r_s$, $y_v=r/r_v$, r_s is a scale radius, r_c is the core radius and r_v is the virial radius; ho_0 , δ_0 and r_s are parameters that define the NFW profile.

For a model without core, all these parameters can be given by a series of well-established formulas

$$\delta_0 = \frac{\Delta c^3}{3 \left[\ln (1+c) - c/(1+c) \right]},$$

$$\rho_0 = \rho_{\text{crit}} \Omega_0 h^2 = 253.8 h^2 \frac{M_{\odot}}{\text{kpc}^3},$$

where $c=r_s/r_v$, ρ_{crit} is the critical density for closure in an Einstein-de Sitter Universe (central value) Ω_0 is the ratio of the total density of the Universe today $\Omega_0=1$, $\Delta\sim 100$ for a Λ CDM model

Lokas, Hoffman: Lokas

Navarro, Frenk, White; Mo, Mao, White; Lokas, Mamon; Zavala et al.

NFW density profile is defined by two parameters:

a "size" parameter r_{v} a concentration parameter c

$$r_{V} = \left(\frac{3M_{V}}{4\pi\Delta\rho_{0}}\right)^{1/3},$$

$$c_0 \approx 62.1 \left(\frac{M_V h}{M_{\odot}}\right)$$

both depend on total mass contained in the halo M_{ν} .

c₀ fit for central value of concentration, in numerical studies it has a scatter

Bullock et al.

We use these eqs to describe real dark matter with only one free parameter M_{ν} .

Model for dark matter dominated systems

From previous expressions \rightarrow analytical formula for α

To compute: need values for r_v , r_s and r_c use an observational sample of galaxies corresponding to dark matter dominated systems

$$16.4 \le \alpha \le 27.8$$

Conservative estimate

Apply to msugra

We have the AC and EC \rightarrow compute relic abundance, see where they coincide

Take simple version of msugra to test the method:

fix
$$A_0=0$$
 and $\operatorname{sgn}\mu=+$ vary $m_{1/2},\,m_0$ and $\tan\beta$

see where they are compatible

Bulk and coannihilation regions

 $\tan \beta = 10$

$$\tan \beta = 50.$$

Allowed regions in the parameter space for AC (red) and EC (blue) criteria for the mSUGRA model with

$$A_0 = 0$$
 and $\operatorname{sgn} \mu = +$.

Focus point

 $\tan \beta = 10$

 $\tan \beta = 50.$

Allowed regions in the parameter space for AC (red) and EC (blue) criteria for the mSUGRA model with

$$A_0 = 0$$
 and $\operatorname{sgn} \mu = +$.

Higgs

The lightest Higgs M_{Higgs} mass vs the LSP mass m_{χ} , the dashed line indicates the present experimental limit on M_{Higas} .

$A_0 \neq 0$

$$\tan \beta = 10$$

$$\tan \beta = 50.$$

Allowed regions in the parameter space for AC (red) and EC (blue) criteria for the mSUGRA model with

$$A_0 = 1000 \text{ GeV}$$
 and $\operatorname{sgn} \mu = +$.

Conclusions

- Through entropy considerations we get a constraint equation for Ωh² from cosmological/astrophysical considerations.
- By requiring the AC and EC criteria to coincide we can constrain parameter space of interesting dark matter susy models:

example simple version of msugra

```
\Rightarrow large tan \beta LSP > 150 GeV
```

- Also, knowledge of LSP can give us feedback on astrophysical considerations to model dark matter halos
- Can be applied to any kind of dark matter
- ► Can be applied to any model

