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Motivation

I Growing evidence for the existence of dark matter
I Neutralinos (LSP) one of the best candidates
I Little information on galactic halo thermodynamic

properties
I Try to combine knowledge of astrophysics and cosmology

to get an independent constraint for models with dark
matter

I Use abundance criterion
I Define an entropy criterion
I Combine the two, apply it to msugra

I Compatibility of abundance and entropy criteria
⇒ constraint on susy models with dark matter



Abundance criterion

Standard approach: Boltzmann equation, after “freeze out”
neutralino number is constant

Ωχ ≈ 1/〈σv〉,

where 〈σv〉 is the thermally averaged cross section times the
relative velocity of the LSP annihilation pair.

Exact solution using MicrOmegas, assuming most DM is LSP.
Relates Ωχh2 to parameters of susy model.

Belanger, Kraml, Pukhov; Belanger et al



Entropy Criterion

Another way to set a constraint equation by entropy
considerations.
Consider neutralino gas in two stages of evolutions:

freeze-out era
present era

Intial and final states taken in equilibrium.

Entropy expression from microcanonical ensemble in “mean
field” approximation in terms of phase space volume:

s = ln

[
(2mE)3/2 V

(2π~)3

]
,

where V and E are local average values of volume and energy.
Cabral-Rosetti, Hernandez, Sussman



Change in entropy between initial (sf, xf, nf) and final states
(s(h), x (h), n(h))

s(h) − sf = ln

[
nf
n(h)

(
xf
x (h)

)3/2
]

.

where xf = mχ/Tf,

mχ is the neutralino mass and Tf is the temperature of the
system at freeze-out
n number density of particles, s entropy

Today: centre of halos.



Rewrite with observables

Relate nf with present day cosmological parameters like
Ω0 and h.

Taking as an approximation:

nf = n0 (1 + zf)
3

Entropy per particle for a photon gas at freeze-out and the one
today are proportional to the cube of the temperature of the
system at the corresponding epoch:

g∗fSf = g∗0 S0 (1 + zf)
3

g∗ degrees of freedom, known function of x = mχ/T
z redshift Gondolo



Observables

nf =
g∗f

(
xf

)
g∗0

(
xCMB

0

) [
Tf

T CMB
0

]3

= n0
g∗f

(
xf

)
g∗0

(
xCMB

0

) [
xCMB

0
xf

]3

where xCMB
0 ≡ m/T CMB

0 = 4,29× 1012 m/GeV, with T CMB
0 = 2,7 K

At freeze-out we can consider the halo as a MB neutralino gas:

ρf = mχ nχ

(
1 +

3
2 xf

)
, pf =

mχ nχ

xf
,

sf =

[
ρ + p
n T

]
f
=

5
2

+ xf,

ρ density, p pressure, T temperature



Today n0/n(h)
c = ρ0/ρ(h)

c and ρ0 = ρcrit Ω0 h2

Collecting results we get a theoretical expression for the
entropy:

s(h)
c |th =

5
2

+ xf + ln

[
g∗f

(
xf

) (
xCMB

0

)3

g∗0
(
xCMB

0

) h2 Ω0

(xf x (h)
c )3/2

ρcrit

ρ(h)
c

]

which depends on inital state xf, observable cosmological
parameters Ω0, h and on generic state variables associated to
the present halo structure x (h)

c , and ρ(h)
c .



Notice

Assumption of MB statistics does not apply to self-gravitational
collision-less system.

An exactly isothermal halo is not a realistic model:
its total mass diverges
distribution function → infinite particle velocities

More realistic halo models use “energy truncated” (ET)
distribution functions, with maximal “cut off” velocity.
Binney, Tremaine; Padmanabhan; Katz, Horowitz, Dekel; Katz; Magliocchetti, Pugacco, Vesperini



Empirical estimate of entropy

Take equation for entropy, restrict phase space volume to the
actual range of momenta (i.e. put maximal escape velocity)
Assume a relation of the form

v2
e (0) = 2 |Φ(0)| ' α σ2

(h)(0),

where Φ(r) is the newtonian gravitational potential, and α is a
proportionality constant
We get empirical expression for the entropy

s(h)
c |em ' ln

[
m4 v3

e

(2π~)3 ρ(h)
c

]
= 89,17 + ln

[( m
GeV

)4
(

α

x (h)
c

)3/2 GeV/cm3

ρ(h)
c

]
,

where we used x (h)
c = c2/σ2

(h)(0).



Entropy constraint II

Equating the theoretical and the empirical estimates for the
entropy per particle we finally obtain

ln(Ωχh2) = 10,853− xf + ln

[
(xfα)3/2mχg∗0

(
xCMB

0

)
g∗f

(
xf

) ]
,

α is the proportionality constant between the escape and
dispersion velocities at the center of the halo.

Another constraint equation relating
Ωχh2 and observables.



More on α

α parametrizes our ignorance of the correct
mechanical-statistics treatment of non-extensive systems
formed by dark matter.

Assume spherical dark matter halo with a constant density core
in the center, then the dark matter density profile follows the
Navarro-Frenk-White (NFW) profile, and then it has a cutt-off:

ρ(y) =


ρc if y < yc

δ0ρ0
y(1+y)2 if yc ≤ y ≤ yv

0 if y > yv

ρc is the constant central density of the core, y = r/rs, yc = rc/rs,
yv = r/rv , rs is a scale radius, rc is the core radius and rv is the virial
radius; ρ0, δ0 and rs are parameters that define the NFW profile.



For a model without core, all these parameters can be given by
a series of well-established formulas

δ0 =
∆ c3

3 [ln (1 + c)− c/(1 + c)]
,

ρ0 = ρcrit Ω0 h2 = 253,8 h2 M�

kpc3 ,

where c = rs/rv , ρcrit is the critical density for closure in an
Einstein-de Sitter Universe (central value)
Ω0 is the ratio of the total density of the Universe today
Ω0 = 1, ∆ ∼ 100 for a ΛCDM model

Lokas, Hoffman; Lokas Navarro, Frenk, White; Mo, Mao, White; Lokas, Mamon; Zavala et al.



NFW density profile is defined by two parameters:
a “size” parameter rv
a concentration parameter c

rv =

(
3Mv

4π∆ρ0

)1/3

,

c0 ≈ 62,1
(

Mv h
M�

)
,

both depend on total mass contained in the halo Mv .
c0 fit for central value of concentration, in numerical studies it
has a scatter

Bullock et al



We use these eqs to describe real dark matter with only one
free parameter Mv .

Model for dark matter dominated systems

From previous expressions → analytical formula for α

To compute: need values for rv , rs and rc
use an observational sample of galaxies corresponding to dark
matter dominated systems

16,4 ≤ α ≤ 27,8

Conservative estimate



Apply to msugra

We have the AC and EC → compute relic abundance, see
where they coincide

Take simple version of msugra to test the method:

fix A0 = 0 and sgn µ = +
vary m1/2, m0 and tan β

see where they are compatible



Bulk and coannihilation regions

tan β = 10 tan β = 50.

Allowed regions in the parameter space for AC (red) and EC
(blue) criteria for the mSUGRA model with

A0 = 0 and sgn µ = +.



Focus point

tan β = 10 tan β = 50.

Allowed regions in the parameter space for AC (red) and EC
(blue) criteria for the mSUGRA model with

A0 = 0 and sgn µ = +.
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The lightest Higgs MHiggs mass vs the LSP mass mχ, the
dashed line indicates the present experimental limit on MHiggs.



A0 6= 0

tan β = 10 tan β = 50.

Allowed regions in the parameter space for AC (red) and EC
(blue) criteria for the mSUGRA model with

A0 = 1000 GeV and sgn µ = +.



Conclusions

I Through entropy considerations we get a constraint
equation for Ωh2 from cosmological/astrophysical
considerations.

I By requiring the AC and EC criteria to coincide we can
constrain parameter space of interesting dark matter susy
models:
example simple version of msugra

⇒ large tan β
LSP > 150 GeV

I Also, knowledge of LSP can give us feedback on
astrophysical considerations to model dark matter halos

I Can be applied to any kind of dark matter
I Can be applied to any model


