
Constraints on mSUGRA through entropy and abundance
criteria

L.G. Cabral-Rosetti1, M. Mondragón2a, L. Nellen3, D. Núñez3, R. Sussmann4b, and J. Zavala3
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Abstract. We derive an expression for the entropy of a present dark matter halo described by a
Navarro-Frenk-White modified model with a central core. The comparison of this entropy with the
one of the halo at the freeze-out era allows us to obtain an expression for the relic abundance of
neutralinos, which in turn is used to constrain the parameter space in mSUGRA models, when used
with the WMAP observations. Moreover, by joning these results with the ones obtained from the
usual abundance criteria, we are able to clearly discriminate validity regions among tanβ values
of the mSUGRA model, by demanding both criteria to be consistent with the 2 sigma bounds of
the WMAP observations for the relic density: 0.112 < Ωh2 < 0.122. We found that for sgn µ = +,
small values of tanβ are not favored; only for tanβ ∼ 50 are both criteria significantly consistent.
The use of both criteria also allows us to put a lower bound on the neutralino mass, mχ ≥ 151GeV.

PACS. 14.80.Ly Supersymmetric partners of known particles – 95.35.+d Dark matter – 98.62.Gq
Galactic halos

1 Introduction

Supersymmetry models which have the neutralino as
the lightest supersymmetric particle (LSP) and as a
candidate for dark matter (DM), have several param-
eters that can be constrained by the bounds on the
present density of DM, ΩCDM , that come from sev-
eral outstanding observations such as the Cosmic Mi-
crowave Background radiation (CMBR) [1], Galaxy
clustering, Supernovae and Lyman α forest. One of
the most recent works which combines all these data
leads to: 0.112 ≤ ΩCDMh

2 ≤ 0.122 [2]. In particu-
lar for mSUGRA models these constraints have been
obtained using the standard approach [3,4], which is
based in the Boltzmann equation considering that af-
ter the “freeze-out” era, neutralinos cease to annihi-
late keeping its number constant. In such an approach,
the relic density of neutralinos is approximately: Ωχ ≈
1/〈σv〉, where 〈σv〉 is the thermally averaged cross sec-
tion times the relative velocity of the LSP annihilation
pair. Within the mSUGRA model five parameters (m0,
m1/2, A0, tanβ and the sign of µ) are needed to spec-
ify the supersymmetric spectrum of particles and the
final relic density. We will use the numerical code mi-
crOMEGAs [5] to compute the relic density following
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the past scheme which will be called the “abundance
criterion” (AC).

Just after “freeze-out”, we can consider neutrali-
nos then as forming a Maxwell-Boltzmann (MB) gas
in thermal equilibrium with other components of the
primordial cosmic structures. In the present time, such
a gas is almost colisionless and either constitutes galac-
tic halos and larger structures or it is in the process
of its formation. In this context, we can conceive two
equilibrium states for the neutralino gas, the decou-
pling (or “freeze-out”) epoch and its present state as
a virialized system. Computing the entropy per parti-
cle for each one of this states we can use an “entropy
consistency” criterion (EC) using theoretical and em-
pirical estimates for this entropy to obtain the relic
density of neutralinos (Ωχ).

Our objective is then to use AC and EC criteria, to
obtain constraints for the parameters of the mSUGRA
model by demanding that both criteria must be con-
sistent with each other and with the observational con-
straints of ΩCDM .

2 Abundance criterion

Relic abundance of some stable SUSY species χ is de-
fined as Ωχ = ρχ/ρcrit, where ρχ = mχnχ is the relic’s
mass density (nχ is the number density), ρcrit is the
critical density of the Universe (see [6] for a review
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on the standard method to compute the relic density).
The time evolution of nχ is given by the Boltzmann
equation:

dnχ
dt

= −3Hnχ − 〈σv〉(n2
χ − (neqχ )2) (1)

where H is the Hubble expansion rate, 〈σv〉 is the ther-
mally averaged cross section times the relative velocity
of the LSP annihilation pair and neqχ is the number
density that species would have in thermal equilib-
rium. In the early Universe, the neutralinos (χ) were
initially in thermal equilibrium, nχ = neqχ . As the Uni-
verse expanded, their typical interaction rate started
to diminish an the process of annihilation froze out.
Since then, the number of neutralinos in a comoving
volume has remained basically constant.

There are several ways to solve equation (1), one
of the more used is based on the “freeze-out” approxi-
mation (see for example [7]). However in order to have
more precision, we will use the exact solution to Boltz-
mann equation using the public numerical code mi-
crOMEGAs 1.3.6 [5] which calculates the relic density
of the LSP in the Minimal Supersymmetric Standard
Model (MSSM). We will take and mSUGRA model
and its five parametersas input parameters for mi-
crOMEGAs and use Suspect [8], which comes as an
interface to micrOMEGAs, to calculate the supersym-
metric mass spectrum.

Using micrOMEGAs, we can obtain the relic den-
sity for any region of the parameter space to discrimi-
nate regions that are consistent with the WMAP con-
straints in this abundance criterion.

3 Entropy consistency criterion

Since the usual MB statistics that can be formally ap-
plied to the neutralino gas at the “freeze-out” era can
not be used to describe present day neutralinos sub-
ject to a long range gravitational interaction making
up non-extensive systems, it is necessary to use the ap-
propriate approach that follows from the microcanoni-
cal ensemble in the “mean field” approximation, which
yields an entropy definition that is well defined for
a self-gravitating gas in an intermediate state. Such
an approach is valid at both the initial (“freeze-out”
era, f) and final (virialized halo structures, h) states
that we wish to compare. Under these conditions, the
change in the entropy per particle (s) between these
two states is given by [9]:

sh − sf = ln

[
nfχ
nhχ

(
xf

xh

)3/2
]
, (2)

where x = mχ/T , T is the temperature of the gas.
A region that fits with the conditions associated with
the intermediate scale is the central region of halos
( 10pc3 within the halo core); evaluating the thermo-
dynamical quantities at this region, using equation (2)
and some extra assumptions (conservation of photon

entropy), it is possible to construct a theoretical esti-
mate for sh that depends on the nature of neutralinos
(mχ and 〈σv〉), initial conditions (given by xf ), cos-
mological parameters (Ωχ, the Hubble parameter, h)
and structural parameters of the virialized halo (cen-
tral values for temperature and density); for details of
these and the following, see section IV of [9].

An alternative estimate for sh can be made based
on empirical quantities for observed structures in the
present Universe using the microcanonical entropy def-
inition in terms of phase space volume, but restricting
this volume to the actual range of velocities accessi-
ble to the central particles. That is, restricting the es-
cape velocity up to a maximal value ve(0) which is
related to the central velocity dispersion of the halo
(σh) by an intrinsic parameter α: v2

e(0) ∼ ασ2
h(0). In

a recent work [10], we estimate the value of α using
an NFW modified model with a central core, and ob-
tain 16.4 < α < 27.8. The range of values allowed for
this parameter is of the highest importance to deter-
mine the allowed region of the parameter space in the
mSUGRA model as will be clear in the results pre-
sented on next section.

Equating the theoretical an empirical estimates for
the entropy per particle it is obtained a relation for the
relic abundance of neutralinos using the EC criterion1:

ln(Ωχh2) = 10.853− xf + ln

[
(xfα)3/2mχ

f∗g (xf )

]
(3)

where f∗g (xf ) is a function related to the degrees of
freedom at the “freeze-out” time (see for example [7])
that will be described elsewhere [10].

Modifying the program micrOMEGAs, we obtained
the value for xf for any region of the parameter space
and then Ωχ using Eq. (3), therefore we were able
to discriminate regions that are consistent with the
WMAP constraints for the EC criterion.

4 Results and Conclusions

Using both the AC and EC that have been described in
the preceeding sections, we can compute the total mass
density of neutralinos present today and constrain the
region in the mSUGRA parameter space where both
criteria are fulfilled. Out of the five parameters, we will
fix µ > 0. Then our strategy is to explore wide regions
for the values of the other four parameters, by means
of a bi-dimensional analysis in the m0−m1/2 plane for
different fixed values of A0 and tanβ. It is important
to mention that we are not presenting an exhaustive
search in all the possible regions, but we concentrated
on those regions which have received more attention
in the literature, see for example [3].

In Fig. (1), we present the results for tanβ = 10,
for three values of A0, namely A0 = 1000, 0,−1000
GeV, shown in the top, middle and bottom panels re-
spectiveley. The yellow region (lower right corner) is

1 This formula is a small modification to the one pre-
sented in [9]
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Fig. 1. Allowed regions in the parameter space for AC
(lighter gray/red) and EC (darker grey/blue) for the
mSUGRA model with sgnµ = +, tanβ = 10, and A0 =
1000 GeV, top panel, A0 = 0 GeV, middle panel, and
A0 = −1000 GeV, bottom panel. The figures show the so
called bulk and coannihilation regions. The yellow region
shows where the stau is the LSP.

where the τ̃ is the LSP, the lighter and darker areas
(red and blue for the online version in colours) define
the allowed regions for the EC and AC respectively ac-
cording to the observed DM density. The area of the
EC region depends on the size of the interval of val-
ues of the parameter α, the lower and upper bounds
of α determine the upper and lower boundaries of the
EC region. As can be seen from the figure, the region
where both criteria are fullfilled is very small, in fact,
only for the highest values of α there is an intersection
between both criteria. This behavior holds for all val-
ues of A0 in the interval [−1000, 1000] GeV, here we
are showing only the extreme and central values.

Repeating the same procedure for larger values of
tanβ, it is found that the intersection region for both

Fig. 2. The same as Fig. (1), but for tanβ = 50, and now
A0 = −500 GeV in the bottom panel.

criteria becomes larger, but it gets to be significant
for the largest values of this parameter. This is clearly
shown in Fig. (2), which is equivalent to Fig. (1), but
for tanβ = 50. In this case the bottom panel is for
A0 = −500 GeV. It is clear from the figure that for
these values of tanβ both criteria are consistent, as
shown by the large intersection area for values of A0

in the interval [0, 1000] GeV. For negative values of
A0 the intersection region decreases with A0, see the
bottom panel of the figure. For even lower values of A0

the intersection becomes insignificant.
In Figs. (3) we present the same analysis but for the

Focus Point region, and for the central value A0 = 0.
The situation is consistent with the previous results,
both criteria intersect for tanβ = 50 and there is
nearly no intersection for tanβ = 10.

This analysis allows us to arrive to one of the main
results of our work. The use of both criteria favours
large values of tanβ.
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Fig. 3. Allowed regions in the parameter space for
AC (lighter gray/red) and EC (darker grey/blue) in the
mSUGRA model with A0 = 0, sgnµ = +, tanβ = 10, top
panel, and tanβ = 50, bottom panel. The region shows the
so called Focus Point region.

In Figs.(4) and (5) we show the allowed values for
the LSP and the Higgs mass after constraining the
parameter space with the abundance and entropy cri-
teria. As can be seen from Fig. (4), the current limit
for the Higgs favour, combined with the AC and EC
criteria, favours even more a large value of tanβ. This,
in turn, puts a constraint on the allowed SUSY mass
spectra of the bulk and coannihilation regions: it gives
an LSP of mass mχ ∼ 140 GeV for tanβ 10, and a
lower bound for the LSP mass mχ & 150 GeV for
large tanβ.

Further analysis, which is currently under way, is
required to give more precise conclusions about this
new method to constrain the parameter space of the
mSUGRA model [10].
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