Detecting metastable staus and gravitinos at the ILC

Hans-Ulrich Martyn

RWTH Aachen & DESY

SUSY 2007

The 15th International Conference on Supersymmetry and the Unification of Fundamental Interactions

> July 26 - August 1, 2007 Karlsruhe, Germany

Gravitino in supersymmetry

Gravitino mass set by SUSY breaking scale F of mediating interaction

 $m_{3/2} = F/\sqrt{3} \cdot M_P$ reduced Planck scale $M_P = 2.4 \cdot 10^{18} \text{ GeV}$

in general free parameter depending on scenario

Typical SUSY scenarios

gauge mediation, gaugino mediation, SUGRA $m_{3/2} \sim eV$... TeV most interesting: gravitino LSP, stau NLSP $m_{3/2} = O(10-100 \text{ GeV})$

Dominant decay $ilde{ au} o au ilde{G}$ gravitational coupling, lifetime sec - years

$$\Gamma_{\tilde{\tau}\to\tau\tilde{G}} \ = \ \frac{1}{48\pi M_P^2} \frac{m_{\tilde{\tau}}^5}{m_{\tilde{G}}^2} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{\tau}}^2}\right]^4$$

Observables $m_{ ilde{ au}},\,t_{ ilde{ au}},\,m_{ ilde{G}},J_{ ilde{G}}$

Gravitino dark matter

Cold dark matter in Universe $\Omega_{\rm DM} \approx 22\%$

 $\Omega_{\rm DM} h^2 = 0.105 \pm 0.008$ WMAP

Formation

freeze out of thermal equilibrium negligible thermal production after reheating (inflation) $g ilde{g} o g ilde{G}, q ilde{g} o q ilde{G} \dots$ late decays of NLSP = WIMP $ilde{ au}_1 o au ilde{G}$

Cosmological constraint

BBN (t~1s) should not be destroyed during reheating or by NLSP decays stau bound states enhance Nucleon, Li production Pospelov 06

Steffen 06

74% Dark Energy

2296 Dark Matter

- 4% Atoms

GDM scenarios & spectra

2 mSUGRA, J Feng, B Smith 04

3-5 mSUGRA, A De Roeck et al 05

6, 7 $\tilde{\chi}$ MSB, W Buchmüller et al 05

H-U Martyn

Detecting staus and gravitinos (

Detecting staus & gravitinos

Identify & record stopping stau → stau mass

 $dE/dx \sim 1/\beta^2$ in TPC

record location & time stamp

Wait until decay → stau lifetime

 $ilde{ au} o au ilde{G}$ huge energy release

Measure T recoil spectra → gravitino mass

$$E_ au = (m_{ ilde{ au}}^2 - m_{ ilde{ ilde{G}}}^2)/2\,m_{ ilde{ au}}$$

Rare radiative decays \rightarrow gravitino spin

y-T correlations in $ilde{ au} o au \gamma ilde{G}$

Momentum acceptance for stopping particles

$$\beta \gamma = p/m \le 0.5$$

$m_{ ilde{ au}}$	$eta\gamma$ (HCAL)	$eta\gamma$ (Yoke)	
$125~{ m GeV}$	0.41 - 0.46	0.52 - 0.59	
$250~{ m GeV}$	0.33 - 0.37	0.42 - 0.48	
$375~{ m GeV}$	0.29 - 0.33	0.37 - 0.41	

LHC detectors not appropriate

additional absorber, calorimeter required

Gravitino not detectable in astrophysical expts

LDC detector

Yoke

HCAL

cryostat+vacuum tank

TPC

 $m_0 = 20 \ {
m GeV} \qquad aneta = 15 \ M_{1/2} = 440 \ {
m GeV} \qquad {
m sign} \ \mu + \ A_0 = 25 \ {
m GeV}$

- Case study L=100 fb⁻¹ @ 500 GeV σ_{SUSY} =300 fb (< 1 year data taking) $m_{ ilde{ au}}=157.6~{
 m GeV},~m_{ ilde{G}}=20~{
 m GeV},~t_{ ilde{ au}}=2.6\cdot 10^6~{
 m s}$
- Clean signature $\sum \vec{p} \simeq 0$ and $\sum E < \sqrt{s}$ completely reconstructed SUSY evts, no SM bkg

• Prolific stau production pairs & cascade decays

500 GeV close to optimal energy for stau trapping

Stau mass measurement

pair production

$$e^+e^-
ightarrow ilde{ au}_1 ilde{ au}_1$$

$$m^2 = E_b^2 - p^2$$

$$p_{ ilde{ au}}=192.4\pm0.2~{
m GeV}$$

$$\Rightarrow \mid m_{ ilde{ au}} = 157.6 \pm 0.2 \; \mathrm{GeV}$$

Time of flight

time resolution at calorimeter $\delta t = 1$ ns all candidates, large sample from cascades

$$m^2 = (1/\beta^2 - 1) \cdot p^2$$

 \rightarrow $\delta m_{ToF} = 0.15 GeV$

Stau lifetime measurement

trigger isolated τ decay in detector
any time - not correlated to beam collision
origin - associate to list of stopped staus
e, μ, h in HCAL E > 10 GeV
μ, h in yoke E > 10 GeV

$$t_{ ilde{ au}} = (2.59 \pm 0.05) \cdot 10^6 \; \mathrm{s}$$

Gravitino mass from decay rate

assuming gravitational coupling

$$\Gamma_{\tilde{\tau}} = t_{\tilde{\tau}}^{-1} = \frac{1}{48\pi M_P^2} \frac{m_{\tilde{\tau}}^5}{m_{\tilde{G}}^2} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{\tau}}^2} \right]^4$$

$$m_{\tilde{G}}=20.0\pm0.2~{\rm GeV}$$

Gravitino mass measurement

T decay spectra
$$au o
ho v$$
 & $3\pi v$ $E^{max}_{ au o h
u} = (m^2_{ au} - m^2_{ ilde{G}})/2\,m_{ ilde{ au}}$ feasible if $extit{m}_{ extit{gravitino}} imes extstyle \sim 0.1\,m_{ extit{stau}}$ $m_{ ilde{G}} = 20 \pm 4~ ext{GeV}$

Planck scale using $t_{ ilde{ au}}, m_{ ilde{ au}}$ and $m_{ ilde{ ilde{G}}}$

$$M_P^2 = \frac{t_{\tilde{\tau}}}{48\pi} \frac{m_{\tilde{\tau}}^5}{m_{\tilde{G}}^2} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{\tau}}^2} \right]^4$$

$$M_P = (2.4 \pm 0.5) \cdot 10^{18} \; \mathrm{GeV}$$

SUSY breaking scale $F \sim m_{ ilde{G}} M_P$

$$F = (8.3 \pm 0.1) \cdot 10^{19} \text{ GeV}^2$$

Test of Supergravity

gravitino = superpartner of graviton

• Case study L = 1000 fb⁻¹ @ 800 GeV, σ_{SUSY} = 5 fb $m_{ ilde{ au}}=340.2~{
m GeV},~m_{ ilde{G}}=100~{
m GeV},~t_{ ilde{ au}}=1.8\,10^6~{
m s}$

HCAL 1350 Yoke 770

$m_{ ilde{ au}} [{ m GeV}]$	$t_{ ilde{oldsymbol{ au}}}\left[\mathrm{s} ight]$	$m_{ ilde{m{G}}}(E_{m{ au}})$
340.2 ± 0.2	$(1.8 \pm 0.1) 10^6$	100 ± 10

Gaugino mediation scenario P1

• Case study L = 200 fb⁻¹ @ 420 GeV , $\sigma_{\sf SUSY}$ = 27 fb $m_{ ilde{ au}}=185.2~{
m GeV}, \ m_{ ilde{G}}=50~{
m GeV}, \ t_{ ilde{ au}}=9.1\,10^6~{
m s}$

HCAL 3700 Yoke 4100

 $m_{ ilde{ au}} \, [ext{GeV}] \qquad t_{ ilde{ au}} \, [ext{s}] \qquad m_{ ilde{G}}(E_{ au}) \ 185.2 \pm 0.1 \quad (9.1 \pm 0.2) \, 10^6 \quad 50 \pm 3$

Gauge mediation scenario SPS 7

• Case study L =1 00 fb⁻¹ @ 410 GeV, $\sigma_{\sf SUSY}$ = 500 fb $m_{ ilde{ au}}=124.3~{
m GeV},~m_{ ilde{G}}=0.1~{
m GeV},~t_{ ilde{ au}}=210~{
m s}$

HCAL 10000 Yoke 4900

 $m_{\tilde{ au}} \; [{
m GeV}] \; t_{ ilde{ au}} \; [{
m s}] \; m_{ ilde{G}}(E_{ au}) \ 124.3 \pm 0.1 \; 209.3 \pm 2.4 \; < 9$

Gravitino - or something else?

If direct mass measurement is not feasible, e.g. too light, the nature of the decay particle remains undetermined, the $t_{ ilde{ au}}-m_{ ilde{G}}$ relation may not be applicable

 $ilde{ au}
ightarrow au ilde{a}$ lifetime not related to axino mass Alternative: axino

Discrimination via radiative decay

$$ilde{ au}
ightarrow au \gamma ilde{a}/ ilde{G}$$

$$ilde{ au} o au \gamma ilde{a}/ ilde{G} \hspace{1cm} \mathcal{B} \sim \mathcal{O}(0.01), \,\, \mathcal{B}_{ ilde{a}} > \mathcal{B}_{ ilde{G}}$$

 $au-\gamma$ correlations sensitive to spin

LSP \bar{G} : collinear, soft γ' s

LSP $ilde{a}$: collinear soft and back-to-back energetic γ' s

Gravitino LSP Scenario

Axino LSP Scenario

A Brandenburg et al, hep-ph/0501267

GDM scenario results

	$m_{ ilde{ au}} [{ m GeV}]$	$t_{ ilde{ au}}\left[\mathrm{s} ight]$	$m_{ ilde{G}}(\Gamma_{ ilde{ au}})$	$m_{ ilde{G}}(E_{ au})$	$\sqrt{s}[{ m GeV}]$	$\mathcal{L}\left[\mathrm{fb}^{-1} ight]$
SPS 7	$\textbf{124.3} \pm \textbf{0.1}$	$\textbf{209.3} \pm \textbf{2.4}$	0.1 ± 0.001	< 9	410	100
FS 600	219.3 ± 0.2	$(3.6\pm0.1)10^6$	50 ± 0.7	50 ± 9	500	250
GDM ϵ	157.6 ± 0.2	$(2.6\pm0.05)10^6$	$\textbf{20} \pm \textbf{0.2}$	20 ± 4	500	100
GDM ζ	340.2 ± 0.2	$(1.8 \pm 0.06) 10^6$	100 ± 2	100 ± 10	800	1000
GDM η	$\textbf{322.1} \pm \textbf{0.2}$	$(6.9 \pm 0.3)10^4$	$\textbf{20} \pm \textbf{0.4}$	20 ± 25	800	1000
$ ilde{\chi}$ MSB P1	185.2 ± 0.1	$(9.1 \pm 0.2)10^6$	$\textbf{50} \pm \textbf{0.6}$	50 ± 3	420	200
$ ilde{\chi}$ MSB P3	102.5 ± 0.2	$(4.2\pm0.1)10^7$	25 ± 0.3	$\textbf{25} \pm \textbf{1.5}$	500	100

Large statistics samples with moderate integrated luminosity and proper choice of cm energy (and beam polarisations)

```
stau mass O (0.1 %)
stau lifetime O (1 %)
gravitino mass O(10\%) provided m_{Grav} > 0.1 m_{stau}
```

→ coupling: Supergavity if consistent with Planck, Newton constant SUSY breaking scale

Experimental challenges

- ILC timing structure
 5 buchtrains per second, each 1 ms long
- LDC detector
 readout of all ~2600 bunches, software trigger guarantees recording of slow particles
 pulsed operation of calorimeters foreseen (electronic heat consumption)
 HV, readout structure: 2 ms sensitive 198 ms idle 2 ms sensitive ...
 designed for usual beam-correlated physics scenarios, not for late decays
- Concept has to be revised to be prepared for long-lived particles !!!
 Yoke no problem, pulsed mode doesn't seem necessary
 → lifetime measurement feasible, at expense of lower statistics
 HCAL R&D needed to increase duty cycle of readout electronics

Conclusions

- A heavy gravitino is an interesting dark matter candidate, no chance for direct detection in astrophysical experiments
- > If kinematically accessible, a gravitino should be observable at future colliders via decays of metastable sleptons

$$ilde{ au}_1
ightarrow au ilde{G}$$
 (and similar $ilde{e}, \ ilde{\mu}$)

- The ILC and its proposed detectors offer excellent possibilities to determine the gravitino properties
 - mass, coupling, spin
 - with high precision, thus providing a unique test of supergravity
 - > ILC environment superior to LHC