
C++ modules in ROOT
Vassil Vassilev and Raphael Isemann

Raphael Isemann / 15.03.2017

About me: Raphael Isemann
● Technical student working for CMS in the SFT group.

● Currently studying for Master of Computer Science @ Chalmers University.

● Previously Google Summer of Code student at LLVM/Apple.

● Here at CERN since February.

● Working on moving CMS/ROOT to C++ modules.

2Raphael Isemann / 15.03.2017

What are C++ modules (PCMs)?
● Modules are a system to more efficiently handle used libraries in C++.

○ Replaced the old method of #include "Header.h" and textual inclusion.

● Work like precompiled headers (PCHs).
○ With less restrictions on how they can be used inside programs.

○ We only load those parts of a module that we need for the program (lazy loading).

● Developed by companies like Google, Apple in the clang parser.
○ Motivation for them is reducing their compilation times.

○ Collaborate and have regular meetings with us.

○ Code is open source.

● We want to use modules in ROOT to optimize the loading of our libraries.
3Raphael Isemann / 15.03.2017

4Raphael Isemann / 15.03.2017

Why optimizing library loading?

Slide from Vassil’s CHEP 2016 talk

Adoption plan for C++ modules in ROOT

1. Use modules to compile ROOT.
○ Compiling ROOT with modules to test if they can handle the codebase.
○ Works in the ROOT nightly builds.
○ Impact so far:

■ Improved code quality in parts of ROOT’s code base.
■ Reduced ROOT compilation times.

5Raphael Isemann / 15.03.2017

ROOT compilation time with modules
build time in seconds

6Raphael Isemann / 15.03.2017

Adoption plan for C++ modules in ROOT

1. Use modules to compile ROOT.
2. Use modules to optimize ROOT’s runtime.

○ This is scheduled next.
○ Provide support for rootcling (genreflex) to build PCMs and load them in

ROOT.
○ We made a few tests to estimate the possible performance gains...

7Raphael Isemann / 15.03.2017

Estimating performance of modules in ROOT

● ROOT uses the same parsing/AST as clang.
○ And modules already when compiling with clang.

● So we profiled clang’s parsing code to estimate ROOT’s
performance when parsing.

● We currently miss an memory optimization in clang.
○ Because clang loads redundant template specializations.
○ There is a short patch to fix this (at least for the examples we profile).
○ We refer to the parsing with this optimization as “patched modules”.

8Raphael Isemann / 15.03.2017

Profiling example 1 - Using ROOT headers

#include "THtml.h"
#include "TTree.h"
#include "TLorentzVector.h"

// Definitions to actually require the #includes

THtml h;
TTree t;
TLorentzVector l;

9Raphael Isemann / 15.03.2017

Profiling example 2 - Using EVE library

#include "TEveShape.h"
#include "TEveShapeEditor.h"
#include "TEveLine.h"
// ...

#include "TEvePlot3DGL.h"
TEvePlot3DGL a;

With modules

class __attribute__… TEveShape;
class __attribute__… TEveShapeEditor;
class __attribute__… TEveLine;
// ...

#include "TEvePlot3DGL.h"
TEvePlot3DGL a;

Without modules

10Raphael Isemann / 15.03.2017

Memory consumption with/without modules
memory of parsed AST in MiB

11Raphael Isemann / 15.03.2017

Parse time with/without modules
parse time in seconds

12Raphael Isemann / 15.03.2017

Possible performance gains with modules
● Estimates from the tests we just seen:

○ 5-10 times faster loading of libraries.

○ 5-25% less memory consumption from loaded libraries now.

○ 20-40% less memory consumption from loaded libraries planned.

○ Further optimizations in the future...

13Raphael Isemann / 15.03.2017

Future optimizations in modules
● Google has 100 Million lines of code already compiling with modules.

○ Likely that they will continue investing into this feature.

● Google, Apple mostly want to optimize time, not memory.
○ But we observe that memory consumption is proportional to runtime.

○ => Future speed optimizations will probably also reduce memory usage.

● Once we moved to modules, we get future optimizations for free!
○ Optimizations happen behind the scenes in the module implementation.

○ We probably get them all without doing any changes to ROOT/experiments.

14Raphael Isemann / 15.03.2017

Adoption plan for C++ modules in ROOT

1. Use modules to compile ROOT.
2. Use modules to optimize ROOT’s runtime.
3. Use this ROOT feature in CMS/other experiments.

○ We already started preparing for this.
○ Making patches for modules implementation to handle the codebase.

■ We fixed two issues in the modules implementation so far in
collaboration with the developers from Google and Apple.

■ Bug 32186 and Review D30496.
○ Making CMS codebase compatible with modules.

15Raphael Isemann / 15.03.2017

http://bugs.llvm.org/show_bug.cgi?id=32186
https://reviews.llvm.org/D30496
http://bugs.llvm.org/show_bug.cgi?id=32186

Making code compatible with modules
1. Changes are in general fixing minor implementation bugs:

○ Having all headers self-contained.
○ No circular dependencies between libraries (between headers in the same library is OK).

2. Only requires minimal code changes for the experiments:
○ Modules often require no further changes in modern C++ code.
○ For CMS we have so far a 10 line diff to compile FWCore with modules: PR17943.
○ Changes are all adding missing includes/removing unnecessary includes.
○ The configuration is done in an external modulemap file.

3. Available tools help with finding/fixing those issues:
○ Clang itself: Can point out what headers to include (or directly include them for you).
○ “Modularize”: Checks for violations of the One-Definition-Rule, generates modulemap files.

16Raphael Isemann / 15.03.2017

Future work for next months
1. Making all of CMS compile with modules.
2. Fixing few remaining bugs in the module implementation and bring them

upstream.
3. Working on the template specialization patch.

17Raphael Isemann / 15.03.2017

Thanks!

Questions?

Raphael Isemann / 15.03.2017

FAQ

Raphael Isemann / 15.03.2017

● Q: Will modules force us to a certain compiler/vendor?
○ A: No, in a production ready environment PCMs will be provided by

rootcling.

● Q: What are the mechanics of modules? They work the same way as
#include? E.g. making all globals available.

○ A: In the current implementation they do. But that depends on the
modulemap.

● Q: How do we handle autoloading? Do we still need forward declarations?
○ A: The modules implementation should do this for us.

Some open questions:

Raphael Isemann / 15.03.2017

● Q: How do we handle autoloading? Do we still need forward declarations?
○ A: The modules implementation should do this for us. But we will see

what is more efficient. Suggestions welcome.

● Q: How do we handle modules across different systems? E.g. different OS
versions of SLC6.X?

● Q: Should we replace all PCH with PCMs?

Backup slides

Raphael Isemann / 15.03.2017

Next slides:

Memory usage when running clang over Eve library

Raphael Isemann / 15.03.2017

Memory usage - No modules - Eve library

23Raphael Isemann / 15.03.2017

Memory usage - Modules - Eve library

24Raphael Isemann / 15.03.2017

Memory usage - Patched modules - Eve library

25Raphael Isemann / 15.03.2017

Textual inclusion in C++
/* foo.h */
int foo(int a);

/* main.cpp */
#include "foo.h"

int main(int argc, char **argv) {
 return foo(3);
}

26Raphael Isemann / 15.03.2017

Textual inclusion in C++
/* main.cpp.m after preprocessing*/
int foo(int a);

int main(int argc, char **argv) {
 return foo(3);
}

27Raphael Isemann / 15.03.2017

Textual inclusion in C++
/* preprocessed main.cpp.m */
int foo(int a); // <- will be parsed for every compilation!

int main(int argc, char **argv) {
 return foo(3);
}

28Raphael Isemann / 15.03.2017

