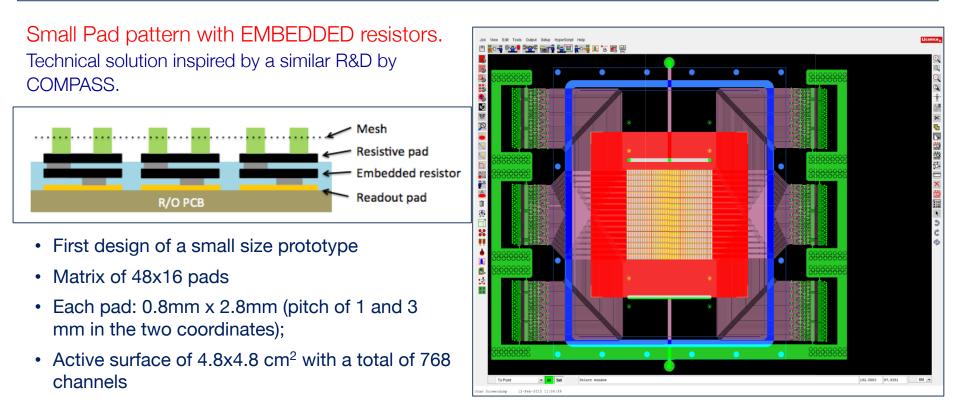
# MPGD-NEXT – TASK 3 : HIGH PERFORMANCE MICROMEGAS

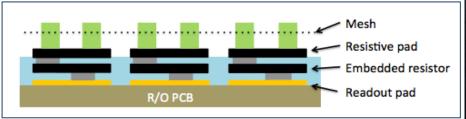

M. lodice for the INFN Roma Tre and Napoli Groups

March 23<sup>rd</sup>, 2017

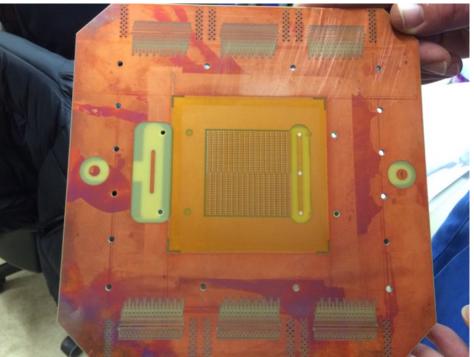
# MPGD-NEXT WP3: SMALL PADS RESISTIVE MICROMEGAS

#### Small Pad Resistive Micromegas.

- GOAL: Development of improved Resistive MicroMegas (MM) detectors with small pad readout, aimed at operation under high rate (>1 MHz/cm<sup>2</sup>)
- From existing R&D we aim at reducing the pad size from  $\sim 1$  cm<sup>2</sup> to < 3mm<sup>2</sup>.
- Ongoing R&D
- Possible application: ATLAS very forward extension of muon tracking (Large Eta Muon tagger)




# MPGD-NEXT WP3: SMALL PADS RESISTIVE MICROMEGAS


#### Small Pad Resistive Micromegas.

- GOAL: Development of improved Resistive MicroMegas (MM) detectors with small pad readout, aimed at operation under high rate (>1 MHz/cm<sup>2</sup>)
- From existing R&D we aim at reducing the pad size from  $\sim 1$  cm<sup>2</sup> to < 3mm<sup>2</sup>.
- Ongoing R&D
- Possible application: ATLAS very forward extension of muon tracking (Large Eta Muon tagger)

#### Small Pad pattern with EMBEDDED resistors. Technical solution inspired by a similar R&D by COMPASS.



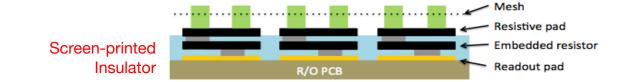
- First design of a small size prototype
- Matrix of 48x16 pads
- Each pad: 0.8mm x 2.8mm (pitch of 1 and 3 mm in the two coordinates);
- Active surface of 4.8x4.8 cm<sup>2</sup> with a total of 768 channels



#### Main objectives in a three year R&D project:

- 1. Optimize the design of resistive micromegas with small size pad readout;
- 2. Optimize the construction;
- 3. Optimize the parameter of construction **(resistivity**,...) and operations (gas mixture,...);
- 4. Establish the optimal trade-off between dimensions and channel routing to read-out electronics;
- 5. Establish safe operation up to a rate of O(1MHz/cm<sup>2</sup>)
- 6. Construct a medium/large size prototype (~40x40 cm<sup>2</sup>)
- 7. Start a process of technology transfer to industries.

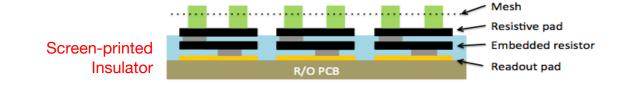
2017


#### Main objectives in a three year R&D project:

- Optimize the design of resistive micromegas with small size pad readout; [successful]
- ✓ 2. Optimize the construction; [Two prototypes built. → Successful]
  - 3. Optimize the parameter of construction **(resistivity**,...) and operations (gas mixture,...);
  - 4. Establish the optimal trade-off between dimensions and channel routing to read-out electronics; [ONGOING]
  - 5. Establish safe operation up to a rate of O(1MHz/cm<sup>2</sup>) [ONGOING]
  - 6. Construct a medium/large size prototype (~40x40 cm<sup>2</sup>)
  - 7. Start a process of technology transfer to industries.

#### CONSTRUCTION OF PROTOTYPES

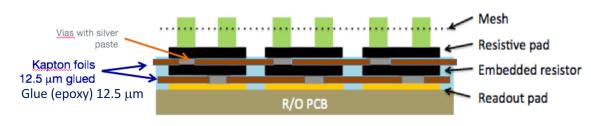
TWO Prototypes built so far (Paddy1 and Paddy2)


- Both with the same layout: Matrix 48x16 1x3 mm<sup>2</sup> pads 768 channels
- The construction technique was different in the two cases
  - Full screen printing: stack of all layers, including the insulator, all deposited by screen-printing. A simple, cost effective technique **but subject to HV instabilities** (seems that we are not able to avoid pin-holes in the insulator)

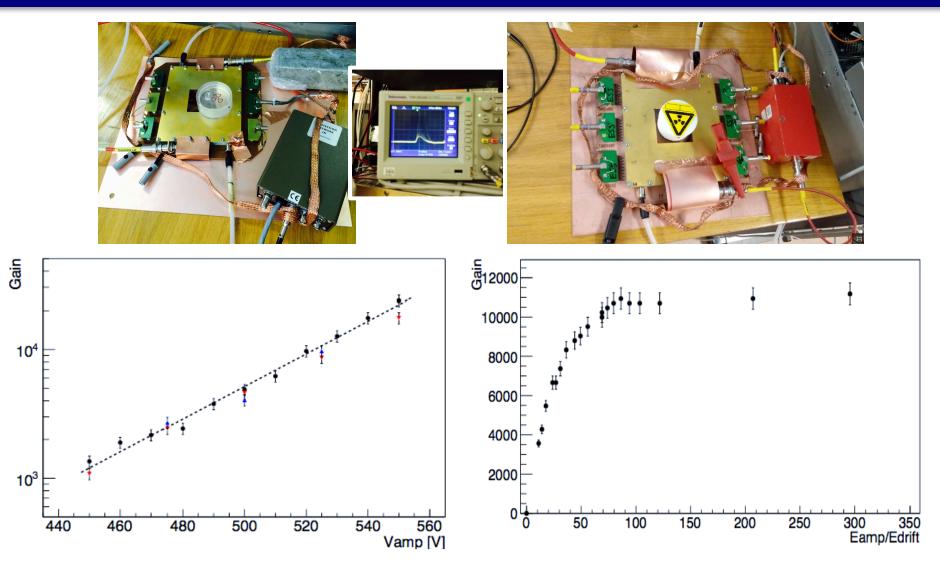


### CONSTRUCTION OF PROTOTYPES

TWO Prototypes built so far (Paddy1 and Paddy2)


- Both with the same layout: Matrix 48x16 1x3 mm<sup>2</sup> pads 768 channels
- The construction technique was different in the two cases
  - Full screen printing: stack of all layers, including the insulator, all deposited by screen-printing. A simple, cost effective technique **but subject to HV instabilities** (seems that we are not able to avoid pin-holes in the insulator)




2. Standard Kapton insulating foils. Vias are filled with silver epoxy paste deposited by screen printing followed by a planarization step.

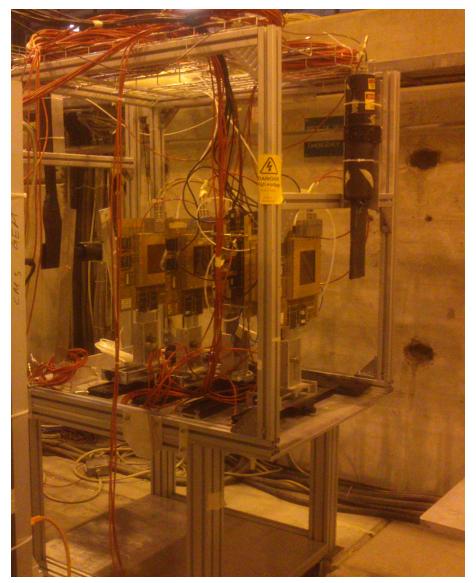
Before pressing the Kapton:

- Laminate the 12 μm glue on the back of the 12 μm Kapton
- Drill all the vias
- Then proceed with the gluing/press step



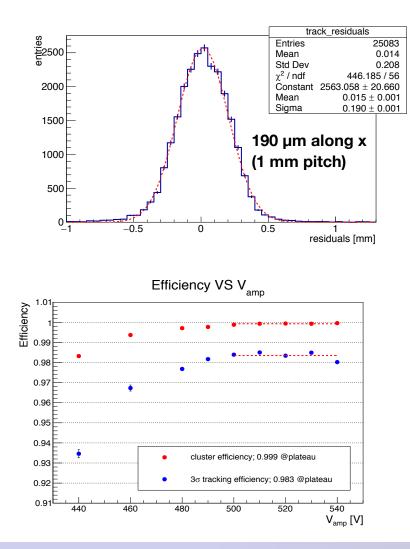
### GAIN RESULTS WITH <sup>55</sup>FE SOURCE IN THE LAB

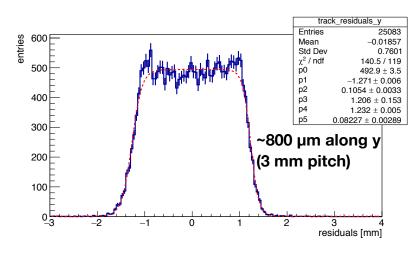



- Very good performance. Gain curves compatible with "standard" bulk strips micromegas
- No HV instabilities with the second prototype

# TEST BEAM @ CERN

- Test Beam at the SPS H4 CERN Experimental area
- High energy muons/pions beam
- Test Setup:
  - Small-pads MM
  - Three double readout (xy) small size bulk micromegas as reference
  - o Ar/CO<sub>2</sub> 93/7 pre-mixed gas
  - o DAQ: SRS+APV25


#### Measurements:


- Efficiency Vs HV
- Spatial resolution
- Drift HV scan
- X-Y scan (very limited the detector is ~50x50 mm<sup>2</sup>)
- Inclined tracks

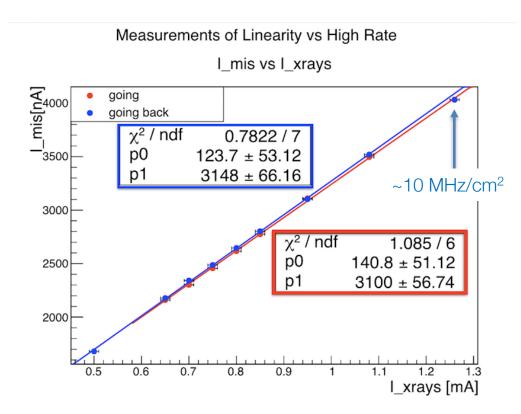


## MAIN TEST BEAM RESULTS

The <u>Position resolution</u> is obtained by the difference btw the position measured from Paddy and that extrapolated by the Tmm tracks.

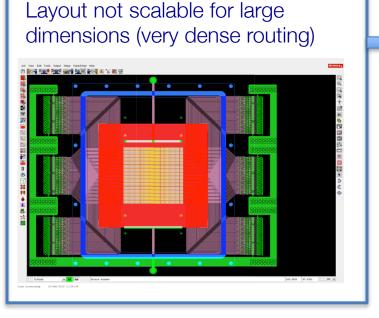





The <u>"turn-on" efficiency</u> curve is obtained:

- 1) By finding a cluster anywhere in the detector for any reference track  $\rightarrow \sim 100\%$
- 2) By finding a cluster within 3sigma from the extrapolated impact point of the reference track
  → > 98%

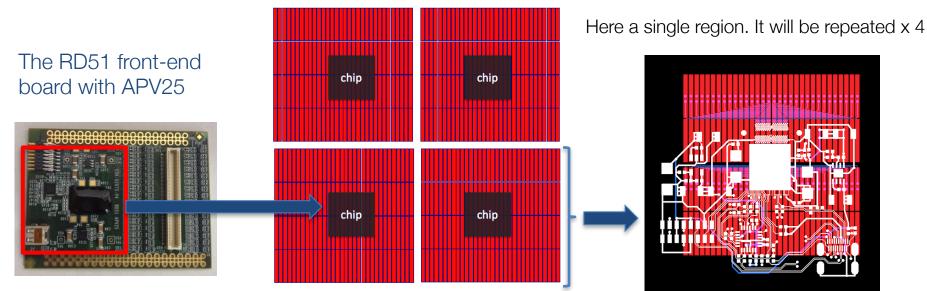
#### **ONGOING TESTS WITH X-RAYS**


PRELIMINARY analysis of the data taken few weeks ago

- Detector current in the amplification gap VS current of the (Cu) X-Ray gun
- Many checks still ongoing (i.e. Linearity of the X-ray gun Vs Rates, X-ray spot-size, etc...)



 Preliminary results are very promising showing no drop in current (i.e. Gain) at rates > 10 MHz/cm<sup>2</sup>

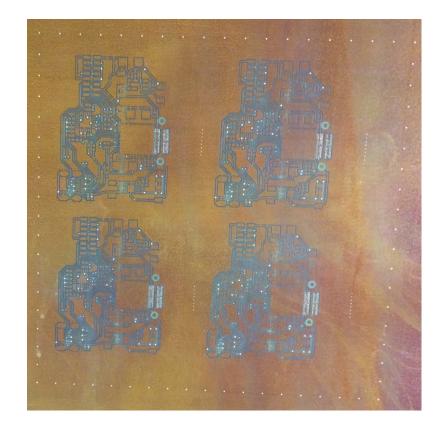

### WHAT'S NEXT: LARGE SIZE PROTOTYPES



New R&D on MM small-pad Detectors WITH EMBEDDED electronics (back wire-bonded) .

#### DESIGN OF A FIRST PROTOTYPE :

- 4 regions with 32x4 mini-pad
- Pitch 1x8 mm2
- Each region can be readout by a back embedded APV25 chip with associated Front-end electronic reassembled on the detector board




### CONSTRUCTION OF SMALL-PADS MM WITH EMBEDDED ELX



#### Front:

3 minipad regions with pitch 8x1 mm 1 minipad regions with pitch 3x1 mm (same as prevoius prototypes)



#### BACK:

Layout of the 4 regions for the assembly of the front-end electronics and the 4 APV25 chips (In Progress NOW)

#### **PROJECT PROFILE**

&

#### MILESTONES 2017

|                                                                                             | 2016 |    |           | 2017 |           |    | 2018 |    |    |    |    |    |
|---------------------------------------------------------------------------------------------|------|----|-----------|------|-----------|----|------|----|----|----|----|----|
| activity                                                                                    | Q1   | Q2 | <b>Q3</b> | Q4   | <b>Q1</b> | Q2 | Q3   | Q4 | Q1 | Q2 | 03 | Q4 |
| Simulation and Design of MM with pixelated anode                                            |      |    |           |      |           |    |      |    |    |    |    |    |
| Construction and tests of the first small prototype (10x10 cm2)                             |      |    |           |      |           |    |      |    |    |    |    |    |
| Construction and TESTS of an improved small size<br>prototype                               |      |    |           | K    | P         |    |      |    |    |    |    |    |
| Design, construction and test of second generation<br>small prototype (new Resistive Layout |      |    |           |      |           |    |      |    |    |    |    |    |
| Design and Construction of MM with EMBEDDED<br>ELECTRONICS for Large Size Detectors         |      |    |           |      | •         |    |      |    |    |    |    |    |
| Construction of large size prototype (~40x40 cm2)<br>and cosmics tests                      |      |    |           |      |           |    |      |    |    |    |    |    |
| Test-beam and High Irradiation Tests                                                        |      |    |           |      |           |    |      |    |    |    |    |    |

# Updates from the original planning:

 The first MM mini-pad Prototype has shown some limitations. A second small size prototype with a different construction technique has been built in 2016 and SUCCESFULLY tested

Construction already started

- Further performance studies with the second small size prototype with high/low intensity test beams and under high irradiation (X-rays)
- 2. Construction and test of the Small-Pad MM with Embedded Readout Electronics



3. Design and construction of a new small size small-pads prototype for resistivity optimization studies (a configuration different from the "embedded resistor" is also under study).

#### ANAGRAFICA ROMA TRE E NAPOLI - 2017

Preventivi 2017 > CSN V > MPGD\_NEXT > Roma III > Modulo EC/EN 7

Modulo EC/EN 7

A cura di: Mauro lodice

| Ricercatori         |     |            |                           |       |             |  |  |  |  |
|---------------------|-----|------------|---------------------------|-------|-------------|--|--|--|--|
| Nome                | Età | Contratto  | Qualifica                 | Aff.  | %           |  |  |  |  |
| 1 Biglietti Michela |     | Dipendente | Ricercatore               | CSN I | 10          |  |  |  |  |
| 2 Iodice Mauro      |     | Dipendente | Ricercatore               | CSN I | 20          |  |  |  |  |
| 3 Petrucci Fabrizio |     | Associato  | Prof. Associato           | CSN I | 20          |  |  |  |  |
|                     |     |            | Numero Totale Ricercatori | 3     | FTE:<br>0.5 |  |  |  |  |

Preventivi 2017 > CSN V > MPGD\_NEXT > Napoli > Modulo EC/EN 7

Modulo EC/EN 7

A cura di: MASSIMO DELLA PIETRA

| Ricercatori            |     |            |                           |       |             |  |  |
|------------------------|-----|------------|---------------------------|-------|-------------|--|--|
| Nome                   | Età | Contratto  | Qualifica                 | Aff.  | %           |  |  |
| 1 Alviggi Maria Grazia |     | Associato  | Prof. Associato           | CSN I | 20          |  |  |
| 2 Canale Vincenzo      |     | Associato  | Prof. Associato           | CSN I | 20          |  |  |
| 3 Della Pietra Massimo |     | Associato  | Prof. Associato           | CSN I | 20          |  |  |
| 4 Di Donato Camilla    |     | Associato  | Prof. Associato           | CSN I | 20          |  |  |
| 5 Sekhniaidze Givi     |     | Dipendente | Ricercatore               | CSN I | 20          |  |  |
|                        |     |            | Numero Totale Ricercatori | 5     | FTE:<br>1.0 |  |  |



## SITUAZIONE 2016 E RICHIESTE 2017

| TASK 3 |             |                                   | IN         | FN unit N | A          | INFN unit Roma3 |           |           |  |
|--------|-------------|-----------------------------------|------------|-----------|------------|-----------------|-----------|-----------|--|
|        |             |                                   | 2016 Rich. | 2016 Ass. | 2017 Rich. | 2016 Rich.      | 2016 Ass. | 2017 Rich |  |
|        | Consumables | Resistive MM with pixeled readout | 4          | 4         | 10         | 4               | 4         |           |  |
|        |             | Gas                               | 1          |           | 2          | 0               | 0         |           |  |
|        |             | Fe electronics                    | 3          | 1         | 4          | 0               | 0         |           |  |
|        |             | Small Items                       | 2          |           | 3          | 0               | 0         |           |  |
|        |             | total                             | 10         | 5         | 19         | 4               | 4         | 1         |  |
|        | Equipment   | DAQ system                        |            |           |            | 10              | 0         |           |  |
|        |             | total                             | 0          | 0         | 0          | 10              | 0         |           |  |
|        | Travelling  | MPGD-NEXT annual meeting          | 0          |           | 0          | 1               | 1         |           |  |
|        |             | test beam activity                | 3          | 1 (s.j.)  | 3          |                 | 1 (s.j.)  |           |  |
|        |             | total                             | 3          | 1         | 3          | 3               | 1         |           |  |
|        | Grand Total |                                   | 13         | 6         | 22         | 17              | 5         | 1         |  |