Introduction to the Atomic Mass Evaluation

Wenjia HUANG Supervisor: Georges Audi

Centre de Sciences Nucléaires et de Sciences de la Matière wenjia.huang@csnsm.in2p3.fr

CERN, March 22

Outline

1 Introduction

- Atomic Mass
- History of AME

Evaluation technique

- Input data
- Least-squares method
- Input files

Outline

1 Introduction

- Atomic Mass
- History of AME

2 Evaluation technique

- Input data
- Least-squares method
- Input files

Outline

1 Introduction

- Atomic Mass
- History of AME

Evaluation technique

- Input data
- Least-squares method
- Input files

Atomic Mass

- Nuclear physics : shells, shapes, pairing, nuclear models ...
- Nuclear astrophysics : r,rp, vp-process
- Atomic physics : QED
- Metrology : Fundamental constants
- ...

Atomic Mass

- Nuclear physics : shells, shapes, pairing, nuclear models ...
- Nuclear astrophysics : r,rp, vp-process
- Atomic physics : QED
- Metrology : Fundamental constants
- ...

Why "Atomic" mass?

- Most measurements give the mass of the atom or of the single charged ion.
- Easy to derive Q-value...

Mass Measurements

- Indirect methods: Energy
 - ▶ Reaction Energies A(a,b)B: $Q_r = M_A + M_a M_b M_B$
 - ★ (n, γ) and (p, γ) help building the backbone
 - $\star\,$ close to stability
 - Decay Energies: α , β , p decays
 - \star far from stability

Mass Measurements

- Indirect methods: Energy
 - ▶ Reaction Energies A(a,b)B: $Q_r = M_A + M_a M_b M_B$
 - ★ (n, γ) and (p, γ) help building the backbone
 - $\star\,$ close to stability
 - Decay Energies: α , β , p decays
 - \star far from stability

• Direct Methods: Time of flight or frequency

- ► TOF (MSU, GANIL)
- ▶ Penning Traps (ISOLDE, TRIUMF, ...) also for the backbone
- ▶ Storage Rings (GSI, IMP)
- ► Multi-Reflection Time-of-flight mass spectromer (ISOLDE, GSI, RIKEN)

• In the early 1950's, it was found that many relations (direct and indirect) overdetermined the mass value of many nuclides. e.g.

• In the early 1950's, it was found that many relations (direct and indirect) overdetermined the mass value of many nuclides. e.g.

• Aaldert H. Wapstra established a procedure using the least-squares method to solve the problem of overdetermination.

• In the early 1950's, it was found that many relations (direct and indirect) overdetermined the mass value of many nuclides. e.g.

- Aaldert H. Wapstra established a procedure using the least-squares method to solve the problem of overdetermination.
 - ▶ Best values for the atomic masses and their associated uncertainties.

• In the early 1950's, it was found that many relations (direct and indirect) overdetermined the mass value of many nuclides. e.g.

- Aaldert H. Wapstra established a procedure using the least-squares method to solve the problem of overdetermination.
 - ▶ Best values for the atomic masses and their associated uncertainties.
 - AME1955, AME1961, AME1964, AME1971, AME1977, AME1983, AME1993, AME2003, AME2012, AME2016.

Evaluation of Nuclear Data

- Theoretical evaluation (= theoretical predictions) predict values for large sets of nuclei make effective calculations for : r-process - reactors - ... uncertainties : just starting security <=> feasibility
- Evaluation of experimental data basic blocks: results from experiments if available: prefered to theoretical predictions allows also to test theoretical "evaluations"

Csnsm Georges Audi

Input data for AME

- Reaction Energies (eV)
 - (**p**,**n**), (**n**, γ)

• Desintegration Energies (eV)

- $\beta \operatorname{-decay}(\beta^{-}, \beta^{+})$ $\alpha \operatorname{-decay}(\alpha)$

• Mass Spectrometry (u)

- Penning trap: Frequency ratios between two ions (relatively simple).
- ESR-CSRe: Frequency correlations between all known and unknown (complex).
- MR-TOF.

Connections plot with *primary*, *secondary* and unconnected items.

- primary : A, B, C, D \Rightarrow used in LSM
- secondary : E, F, G \Rightarrow deduced from primaries
- unconnected : H, I \Rightarrow systematic #

The particularity of AME is that any mass measurement basically establishes a relation between two or more nuclides, which results in an entangled network.

For ⁹⁶ Mo as an example, its mass is determined by:									
JY1	2016Al03	3602.919	0.092	μu	96Zr-96Mo	8-	11		
MMn	1991Is02	9154.32	0.05	keV	95Mo(n,γ)96Mo	4 -	.,		
MBdn	2006Fi.A	6821.5	0.4	keV	96Mo(n,γ)97Mo	0-	•		
JY1	2016Al03	3426.80	0.17	μu	96Nb-96Mo	- 1	r',s		

Its mass cannot be calculated by simple average but by the AME method!

Treatment of Data–LSM-1

Q equations to N parameters (Q > N)

$$\sum_{j=1}^{N} k_{ij} m_j = q_i \pm dq_i \quad i = 1, \dots, Q \quad \Rightarrow \quad K |m\rangle = |q\rangle$$

Simple construction

$${}^{t}KWK |m\rangle = {}^{t}KW |q\rangle$$
$$A |m\rangle = {}^{t}KW |q\rangle$$

A: normal matrix, W: error matrix $\omega_i = 1/(dq_i dq_i)$

Parameters-Masses

$$|\bar{m}\rangle = A^{-1t}KW|q\rangle \Rightarrow |\bar{m}\rangle = R|q\rangle$$

HUANG (CSNSM)

Flow-of-information matrix

 $F = {}^t R \otimes K$

G. Audi et al, NIMA 249 (1986) 443

- The(i, j) element of F represents the influence of datum i on mass m_j
- A column of F represents all the contributions brought by all data to a given mass m_j
- A row of F represents the influences given by a single piece of data to each nuclide, their sum is the significance of the data

Adjusted input data

$$\left|\bar{q}\right\rangle = KR\left|q\right\rangle$$

What are the values of : A=? B=? A+B=? A-B=?

Measured quantities are :

$$A = 1 \pm 1$$

$$B = 2 \pm 1$$

$$K = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$|\mathbf{m}\rangle = \begin{pmatrix} A \\ B \end{pmatrix}$$

$$|\mathbf{q}\rangle = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$

$$|\mathbf{q}\rangle = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$

$$|\mathbf{q}\rangle = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$

$$A + B = 4 \pm 1$$

$$\mathbf{M} = \{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M} = |\mathbf{q}\rangle = |\mathbf{q}\rangle = \mathbf{M} |\mathbf{q}\rangle$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{t} & 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{pmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \end{pmatrix}$$
 Covariance Matrix

The errors on A and B are : $\sigma_{A} = \sigma_{B} = \sqrt{\frac{2}{3}} = 0.82$

and the correlation coefficient of A&B is : $\frac{-\frac{1}{3}}{\sigma_{A}\sigma_{B}} = -\frac{1}{2} = -0.5;$

$$|\mathbf{m}\rangle = \mathbf{A}^{-1} \mathbf{t} \mathbf{K} \mathbf{W} | \mathbf{q} \rangle$$

$$\begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \end{pmatrix}^{\mathbf{t}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} \frac{4}{3} \\ \frac{7}{3} \end{pmatrix}.$$

$$A = 1.33 \pm 0.82 \qquad B = 2.33 \pm 0.82$$

$$\sigma^{2} (A \pm B) = \sigma_{A}^{2} + \sigma_{B}^{2} \pm 2 \operatorname{cov}(A, B).$$

$$A + B = \frac{11}{3} \pm \frac{\sqrt{6}}{3} \qquad A - B = -1 \pm \sqrt{2}$$

$$A + B = 3.67 \pm 0.82 \qquad A - B = -1 \pm 1.41$$

$$\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{t} & 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{pmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \end{pmatrix}$$
 Covariance Matrix

The errors on A and B are : $\sigma_{A} = \sigma_{B} = \sqrt{\frac{2}{3}} = 0.82$

and the correlation coefficient of *A&B* is : $\frac{-\frac{1}{3}}{\sigma_{A}\sigma_{B}} = -\frac{1}{2} = -0.5;$

$$|\mathbf{m} = \mathbf{A}^{-1} \mathbf{t} \mathbf{K} \mathbf{W} | \mathbf{q} >$$

$$\begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 2/3 & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}^{\mathbf{t}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} \frac{4}{3} \\ \frac{7}{3} \end{pmatrix}.$$

$$A = 1.33 \pm 0.82 \qquad B = 2.33 \pm 0.82$$

$$\sigma^{2}(A \pm B) = \sigma_{A}^{2} + \sigma_{B}^{2} \pm 2 \operatorname{cov}(A, B). \qquad F = \begin{bmatrix} 0.67 & 0 \\ 0 & 0.67 \\ 0.33 & 0.33 \end{bmatrix}$$

$$A + B = \frac{11}{3} \pm \frac{\sqrt{6}}{3} \qquad A - B = -1 \pm \sqrt{2}$$

$$A + B = 3.67 \pm 0.82 \qquad A - B = -1 \pm 1.41$$

Covariance Matrix

-

Variance and Covariance (in nano-amu**2)

n	Н	D	4 He	13C	14N	15N	16O	28Si
0.24139								
-0.00617	0.00879							
0.01218	0.00262	0.01480						
0.00000	0.00000	0.00000	0.00401					
0.00469	-0.00620	-0.00151	0.00000	0.05315				
-0.00130	0.00236	0.00106	0.00000	0.03908	0.04299			
-0.00118	0.01397	0.01279	0.00000	-0.00323	0.00942	0.41639		
-0.00084	0.00231	0.00147	0.00000	0.01184	0.01429	0.00705	0.03007	
-0.00509	0.00950	0.00442	0.00000	0.04140	0.04353	0.05130	0.02433	0.27456

Covariance matrix provided to Codata group as requested

The covariance matrix is available on <u>AMDC</u> website http://amdc.impcas.ac.cn/

000	0000000001 1	Data-file (Q-f	ile) input/	qflfu	G.1	Audi 👘 v 24	feb 2017						
000	00000001000												
000	00000001010	File of i	nput data for	atomi	c mass c	alculation							
000	00000001020												
000	00000001030	DDDDDDD	FFFFFFFF	II	LL	EEEEEEE							
000	00000001040	DDDDDDDD	FFFFFFFF	II	LL	EEEEEEE							
000	00000001050	DD DD	FF	II	LL	EE							
000	00000001060	DD DD	FF	II	LL	EE			Q-IIIC				
000	00000001070	DD DD	XX FFFFF	II	LL	EEEEE							
000	0000001080	DD DD	XX FFFFF	II	LL	EEEEE							
000	00000001090	DD DD	FF	II	LL	EE							
000	00000001100	DD DD	FF	II	LL	EE							
163	090666000a1	UKTG1 15Sc13	2.72		0.77	163Ho 0-16	3Dy O		-71112.8	1.9 m			
163	090666000b1	KSH2 15E103	3.042	2	0.037	163Ho-163D	У		-66378.27	0.80 m			
163	180665000a1	UhR04 64De15	-5069	4	2	162Dy 37Cl	-163Dy 350	21					
163	180665000b1	UhR04 64De15	2164	3	35	163Dv-162D	v						
163	180665000b2	UhR04 64De15	1985	3	18	163Dv-162D	v						
163	180665000b3	UhR04 64De15	2174	4	10	163Dv-162D	v						
163	800665000a1	KTG1 159c13	-76349 06		0.86	163Dy 0-C1	5		-71118 69	0.80 m			
162	000675000a1	Vmc1 158e12	76246 61		0.07	16240 0 01	5		71116 41	0.00 m			
105	000073000a1	KIGI 155015	-70340.01		0.57	10000-01	0.7.0		-/1110.41	0.51 m			
103	850733000a1	M 83SC18,	* 4/41.5	1	.5.	103Ta(a)15	9Lu		4625	15 A			
163	0660 163Dv	-66381.2	0.8			atbl		5/2-	10	34.TS	=24.896 4	2	
163	0670 *163Ho	-66378.3	0.8			4,570	ky 0.025	7/2-	10	57.EC	=100		
163	0670 * 163Ho	T : other:	92Ju01=47(+5-	4) d f	for g=66+	(hare ion)		.,	92.00	01+			
163	0671W 163Ho	m -66080 4	0.8 297	88	0 07	1 09	e 0 03	1/2+	10	57 70	-100	/l_fil	Δ
163	0672W 163Ho	n -64268 9	0.0 2109	4	0.4	800	ne 150	(23/2+)	125	01otil2 TT	-100	VI-III	C
163	0600 1635	-65160	5 2109		0.4	75.0	m 0 4	5/2-	10	52 01	-100		
163	06016 1635	-64723	5 445	5	0.6	590	ng 100	(11/2-)	10	74 10	-100		
T00	0001M 103FU	m -04723	5 445		0.0	380	115 100	(11/2-)	10	/4.11	-100		

2015E103 ** FELTA 115, 662501 [SH1-163Ho] S.Eliseev, K.Blaum, M.Block, S.Chenmarev, H.Dorrer, Ch.E.D.*ullmann, C.Enss, P.E.Filianin, L.Gasta r, F.Lautenschl'*eger, Yu. Norvikov, R.Hichaka, R.X.Sch' Wusler, L.Schweikhard, A.T./Yurlar 2015Et01* .FRVCA 91, 064317 A.YEtil\'e, D.Verney, N.N.Arsenyev, J.Bettane, I.N.Borzov, M.C.Mhamed, P.V.Cuong, C.Delafosse, F.Didierjean, ' asduff, F.Ibrahim, K.Kolos, C.Lau, M.Mikura, S.Roccia, A.P.Severynkhin, D.Testov, S.Tuseau-Nenez, V.V.Worzon, V. 2015F02* *FWVG 91, 024307 B.Fernandez-Dominguez, X.Fereine-Loper, N.K.Cimiofeyuk, P.Bescouvemont, N.N.Catford, F.Delaunay

R-file

Some numbers of AME2016

Typical Size

- 13035 experimental data
 5663 'U', 844 'O', 853 not accepted ('B', 'C', 'D' and 'F')
- 5675 valid input, compressed to 3884 in the pre-average procedure
 - 2023 primary data (Q)
 - **1207** primary nuclide (N)

Least-squares procedure

• Total $\chi=825~({\rm expected}~816\pm20~)$

3923 masses (96 more)

- 2497 experimental G.S + ${}^{12}C$ (59 more)
- 369 experimental ISO (23 more)
- 938 systematical G.S (23 more)
- 119 systematical ISO (9 less)

Summarise

- *Credible and reliable*-identifies and resolves contradictory results, not just compiles.
- Complete-includes all measured quantities and their uncertainties.
- up to date-results from most recent publications are included.

Summarise

- *Credible and reliable*-identifies and resolves contradictory results, not just compiles.
- Complete-includes all measured quantities and their uncertainties.
- up to date-results from most recent publications are included.

Collaborators

G. Audi M. Wang (coordinator) F.G. Kondev S. N W.J. Huang X. Xu