
Max Baak 1/26

XROOTD tests

Outline

 Castor background & changes

 What changes for you?

 XROOTD speed tests

Max Baak & Matthias Schott

ADP meeting

18 Jan „09

Thanks to Andreas Peters!

Max Baak 2/26

Castor

 CASTOR default pool: place to copy data to with commands like:

• rfcp MyFileName
/castor/cern.ch/user/<letter>/<UID>/MyDirectory/MyFileName

 Default CASTOR pool: 60 TB disk pool with a tape back-end.

• When disk is full, older files are migrated to tape automatically to make
space for newer files to arrive on disk.

 CERN has only one tape system, managed by Central Computing
Operations group.

• Shared by all experiments.

Max Baak 3/26

Castor problems

 CASTOR:

• In theory:

 “pool with infinite space”. Sometimes delays to get files back from tape.

• In practice:

 Source of many problems and user frustration

 CASTOR problems:
• Tape systems not designed for small files very inefficient.

 Preferred file size >= 1Gb

• If CERN tape system used heavily, long time for the data to be migrated
back to disk applications time out.

 Typical user: uncontrolled/chaotic access to tape system

• „Lock up‟ when too many open network connections.

• Could easily lead to situations which endanger data taking

 Already several of such situations even without LHC running.

Max Baak 4/26

Changes to Castor

 LHC data taking mode:

• Protect tape system from users to make sure it performs well/controlled
when taking data.

 Consequence:

• CASTOR pool becomes disk pool only

• Default CASTOR tape back-end will be closed down for users

 Disable write access for users to tape.

 Full information:

• https://twiki.cern.ch/twiki/bin/view/Atlas/CastorDefaultPoolRestrictions

Max Baak 5/26

What changes for you?

 Files on CASTOR which have not been used for a long time, and
which have been migrated to tape, will no longer be available.

 The CASTOR pool will be closed for writing in ~two months time

• Original deadline January 15th , already extended!

 All data that is on the CASTOR pool that you want to keep need
to be copied somewhere else.

 Copy whereto? Answer: “atlascernuserdisk” disk pool

 CERN personnel only, no disk quota

• 100 Tb user disk. Average: ~1Tb / user

• Not accessible through grid.

 Request permission: atlas-castordefaultpoolrestrictions@cern.ch

Max Baak 6/26

Instructions atlascernuserdisk

 atlascernuserdisk pool runs under a different CASTOR stager:

• export STAGE_HOST=castoratlast3

• export STAGE_SVCCLASS=atlascernuserdisk

 Then simply use the usual rfcp, rfdir, ... commands.

 Copy to usual $CASTOR_HOME directory

• /castor/cern.ch/user/<letter>/<UID>/

 Transition period to bring data into this pool from the default
tape system:

• (slow)

• export STAGE_HOST=castoratlast3

• stager_get -M $CASTOR_HOME/<subdir>/<filename> -S atlascernuserdisk

 Request permission: atlas-castordefaultpoolrestrictions@cern.ch

Max Baak 7/26

XROOTD

 For default CASTOR pool, files can be accessed directly in root /
athena using RFIO protocol

• Filenames begin with “rfio:” turl.

• Eg. rfio:/castor/cern.ch/user/m/mbaak/dummyFile.root

 atlascernuserdisk disk pool connected to XROOTD server

 XROOTD: file server/network protocol developed for root

• Easily scalable to larger file systems, handle many open network connections

• Well integrated in PROOF (parallel processing)

• Originally developed at SLAC

 Used successfully in BaBar experiment

 “Fast and reliable”

Max Baak 8/26

Requirements for using XROOTD

 Root v5.18e or greater

• Athena 14.5.0 or greater

 Athena: need to create a PoolFileCatalog.xml file

 xrootd privileges

• atlas-castordefaultpoolrestrictions@cern.ch

 Environment variables

• export STAGE_HOST=castoratlast3

• export STAGE_SVCCLASS=atlascernuserdisk

 The files copied to “atlascernuserdisk” can be accessed in root or
athena via:

• File prefix: root://castoratlas3/

• root://castoratlast3//castor/cern.ch/user/m/mbaak/dummyFile.root

 TFile* foo = TFile::Open(“root://castoratlas3/file_on_atlascernuserdisk”);

Max Baak 9/26

XROOTD test results

Outline

 Single job performance

 Stress test results

• (Multiple simultaneous jobs)

Max Baak 10/26

Test setup

Five file-transfer configurations:

 Local disk (no file transfer)

 FileStager

• Effectively: running over files from local disk

 Xrootd

• Buffered

• Non-buffered

 Rfio

Files used:

 Zee, Zmumu AOD collections

 ~37 mb/file, 190 kb/event

 200 events per File

Max Baak 11/26

Intelligent FileStager

 cmt co –r FileStager-00-00-19 Database/FileStager

• https://twiki.cern.ch/twiki/bin/view/Main/FileStager

 Intelligent file stager copies files one-by-one to local disk, while
running over previous file(s).

• Run semi-interactive analysis over files nearby, eg. on Castor.

• File pre-staging to improve wall-time performance.

• Works in ROOT and in Athena.

 Actual processing over local files in cache = fast!

• Only time loss due to staging first file.

• In many cases: prestaging as fast as running over local files!

• Minimum number of network connections kept open.

• Spreads the network load of accessing data over length of job.

Max Baak 12/26

Large Scale Tests
 Basic Test Setup

• Number of Files: 259

• Total Datavolume: 9.55 GB

• Number of Events: 52.000

• Only one job is execute on a batch machine

 Three different Tests

• Setup 1: Read only Event Number

• Setup 2: Read 7 containers

• Setup 3: Read 7 containers + Monte Carlo
Truth Information + some Algorithmic

• Setup 4: Same as Setup 2 but with Tag-File
Access

 Note

• In this test the file access is overstressed as
data-AOD files have a supposed file-size of
2GB and contain much more events

1.64E+06

2.71E+06

3.26E+05

2.00E+06

8.92E+05

0.00E+00 1.00E+06 2.00E+06 3.00E+06

Local

File Stager

RFIO

XROOTD (Buffered)

XROOTD (NOT Buffered)

5.72E+05

6.58E+05

3.81E+05

6.12E+05

4.53E+05

0.00E+00 2.00E+05 4.00E+05 6.00E+05

Local

File Stager

RFIO

XROOTD (Buffered)

XROOTD (NOT Buffered)

Setup 2: Data Processed per [s]

Setup 3: Data Processed per [s]

Max Baak 13/26

Large Scale Tests

 Reading Only Event Number

• Reading 10% of File Content

 Timing:

• Comparable timing for local
access, xrootd and file stager

• RFIO 5 times slower

 Datatransfer

• RFIO: 45x larger data transfer
than needed

• xrootd (not buffered): 1%
overhead of file transfer

• xrootd (buffered): 32x larger
data transfer than needed

• FileStager: Copies whole file
and hence 12x larger data
transfer than needed

9.55E+09

7.88E+08

7.10E+06

1.01E+10

3.61E+10

2.57E+10

7.92E+08

0.00E+00 1.00E+10 2.00E+10 3.00E+10 4.00E+10

Total Data Volume

Root Read Data Volume

Local

File Stager

RFIO

XROOTD (Buffered)

XROOTD (NOT Buffered)

401

519

2530

455

699

0 500 1000 1500 2000 2500 3000

Local

File Stager

RFIO

XROOTD (Buffered)

XROOTD (NOT Buffered)

Time in Seconds [s]

Datatransfer in Byte

Max Baak 14/26

Read-ahead buffer

 After read request, read ahead YYY kb

• In anticipation of next read request.

 Read-ahead buffer transferred and stored in cache.

 Xrootd:

• Read-ahead: 512 kb

• Cache size = 10 mb

 Rfio:

• Read-ahead: 128 kb

• Cache size = read-ahead size (128 kb)

 Effectively not used.

 Unfortunately: caching not very
successful for our purposes

 Xrootd: Read-ahead buffer can be turned off.

 Rfio: can probably be turned off as well, but we didn‟t manage.

1 kb

128 kb1 kb

Cache

1 kb

Castor: 1 Event

F
ile

 T
ra

n
sf

e
r

Athena

Max Baak 15/26

Typical read access pattern

 Typical AOD read access pattern.

 Average: ~1 kb / read access

 Note: 128 kb read-ahead buffer

bytes / read access

Max Baak 16/26

Large Scale Tests

096E+08

018E+08

775E+04

101E+08

1,029E+08

399E+08

019E+08

0,000E+00 500E+08 1,000E+08 1,500E+08

Total Data Volume

Root Read Data Volume

Local

File Stager

RFIO

XROOTD (Buffered)

XROOTD (NOT Buffered)

1099

663

5515

885

1988

0 1000 2000 3000 4000 5000 6000

Local

File Stager

RFIO

XROOTD (Buffered)

XROOTD (NOT Buffered)

Time in Seconds [s]

Datatransfer in Byte

 Analysis I:

• Reading 20% of File Content

 Timing:

• RFIO 5 times slower

• Xrootd (not buffered) twice as
slow as local access

• File Stager faster than local
access, as files are still in cache
when loaded by Athena

 Datatransfer

• RFIO: 57x larger data transfer
than needed

• xrootd (not buffered): 5%
overhead of file transfer

• xrootd (buffered): 22x larger
data transfer than needed

• FileStager: 5.5x larger data
transfer than needed

Max Baak 17/26

Large Scale Tests

096E+08

033E+08

0,000E+00

101E+08

1,160E+08

411E+08

035E+08

0,000E+00 500E+08 1,000E+08 1,500E+08

Total Data Volume

Root Read Data Volume

Local

File Stager

RFIO

XROOTD (Buffered)

XROOTD (NOT Buffered)

5720

4970

8590

5300

7170

0 2000 4000 6000 8000 10000

Local

File Stager

RFIO

XROOTD (Buffered)

XROOTD (NOT Buffered)

Time in Seconds [s]

Datatransfer in Byte

 Analysis II:

• Reading 35% of File Content
and more algorithmic inside the
analysis

 Timing:

• Overall comparable timing as
algorithmic part gets dominant

• Xrootd (not buffered) is 20%
faster than RFIO.

• File Stager faster than local
access, as files are still in cache
when loaded by Athena

 Datatransfer

• Similar to previous analysis

Max Baak 18/26

Large Scale Tests

096E+08

012E+08

813E+04

102E+08

831E+08

383E+08

012E+08

0,000E+00 400E+08 800E+08

Total Data Volume

Root Read Data Volume

Local

File Stager

RFIO

XROOTD (Buffered)

XROOTD (NOT Buffered)

286

503

3180

570

955

0 500 1000 1500 2000 2500 3000 3500

Local

File Stager

RFIO

XROOTD (Buffered)

XROOTD (NOT Buffered)

Time in Seconds [s]

Datatransfer in Byte

 Analysis I with Tag-Files:

• Reading 20% of File Content

• Access only 20% of the events
in each file

 Timing:

• Local processing is the fastest
(2x faster than the next)

• RFIO is dominated by latency of
opening the files

• Xrootd 3x faster then rfio:

 Datatransfer

• Similar to previous analysis

Max Baak 19/26

Stress- & Timing test

 Stress test: many similar jobs running simultaneously

• Focus of timing

 Time measured = time looping over events. No initialization.

 Protocols tested:

• FileStager

• Xrootd (no buffer)

• Xrootd (w/ buffer)

• rfio

 Basic Test Setup

• Number of Z colls: 20

• Total Datavolume: 700 MB

• Number of Events: 4000

• Setup 2: Read 7 containers

 20% of file contents

Max Baak 20/26

Xrootd: PoolFileCatalog
 Athena needs PoolFileCatalog.xml file to run over collections

using xrootd.

 Use command: pool_insertFileToCatalog

• Very unstable and slow!

 Cmd has hard time handle more then ~100 files per catalog

 For 20 files/catalog, (random) crash rate of ~40%.

 Slow: 100 files takes 20 sec

 Numbers on xrootd presented next are slightly optimistic.

• Many xrootd jobs crashed, freeing up bandwidth/cpu for the stress-test.

 pool_insertFileToCatalog command needs urgent fixing.

 Best solution: no dependency on PoolFileCatalog.xml

• Like for local files or rfio.

Max Baak 21/26

One vs Many jobs
 Running one job

 Many jobs running simultaneously, over different, (mostly)
uncached collections

 4 nodes, dual quad-core. Uniform filling of cpu slots.

 Lxbatch node: 1Gbit ethernet card / node

 One buffered job can easily clog up entire network bandwidth!

Protocol Njobs Avg. time (s) Factor

FileStager 1 66.7 1.00

Xrootd (no buf) 1 109.4 1.64

Xrootd (w/ buf) 1 101.0 1.51

rfio 1 289.8 4.34

Protocol Njobs Avg. time (s) Min (s) Max (s)

FileStager 32 (32 cores) 262.1 207.7 381.5

Xrootd (no buf) 15 (32 cores) 160.9 119.5 228.5

Xrootd (w/ buf) 16 (32 cores) 234.5 78.9 723.7

rfio 24 (32 cores) 627.8 307.1 928.6

Max Baak 22/26

(Cached) Timing tests

Average of:

 Rfio

 Xrootd
(no buffer)

 FileStager

 Dashed lines:
min/max
values of test

 Test: identical jobs running over identical cached collections

 Rfio: terribly inefficient.

Max Baak 23/26

(Cached) Timing tests

Average of:

 Xrootd
(no buffer)

 FileStager

 Dashed lines:
min/max
values of test

 Test: identical jobs running over identical (cached) collections

 Each job runs over same collections.

 Timing of xrootd is very stable running over cached files!

Max Baak 24/26

Stress test

 Many jobs running simultaneously, over different cached
collections

 Strategy: flood the batch queue.

Protocol Njobs Avg. time (s) Min (s) Max (s)

FileStager 189 582.5 68.9 1004.8

Xrootd (no buf) 111 169.7 124.7 239.8

Max Baak 25/26

(Uncached) Timing tests

Average of:

 Xrootd
(no buffer)

 FileStager

 Dashed lines:
min/max
values of test

 Test: similar jobs running over different, uncached collections

 4 nodes, dual quad-core. Uniform filling of cpu slots.

 X-axis: n jobs running simultaneously. Y-axis: time / job

 Each job runs over same collections.

Max Baak 26/26

Preliminary recommendations

 Xrootd & rfio read-ahead buffering: very inefficient

• Lots of unnecessary data transfer (sometimes >50x data processed!)

• 1 job completely blocks up 1Gbit ethernet card of lxbatch machines

 Large spread in job times, ie. unreliable

 Xrootd: frustrating dependency on PoolFileCatalog.xml

 Don‟t use rfio protocol to loop over files on CASTOR!

• >5x slower & takes up too much network bandwidth

Max Baak 27/26

Preliminary recommendations

Different recommendations for single / multiple jobs

 Single jobs: FileStager does very well.

 Multiple, production-style jobs

• Xrootd (no buffer) works extremely stable & fast on files in disk pool cache.

 Factor ~2 slow-down when read-ahead buffer turned on.

• Two recommendations:

 Xrootd, no buffer, for cached files

 FileStager or Xrootd for uncached files

