Polarized Charged Current DIS

Chared current DIS

• Exemplarily measured CC DIS cross section $Q^2 = 3000 \text{ GeV}^2 \& y \sim 0.25$

CC depends on longitudinal polarisation P_e

-> W-boson couples only to left-handed particles (right-handed anti-particles)

LHeC and FCC

- Huge increase of cross section due to \sqrt{s}
- For fixed (Q2,y), additional increase due lower x values
 - -> Gluon induced process become dominating
 - -> Helicity effects become important at high-x
- Most data will be taken with electrons with P~-80%
- P~+80% CC cross section is reduced by factor ~9

Weak-boson masses

Weak boson masses from EW+PDF fit to inclusive NC&CC DIS data

All other masses expected to be known

 $\begin{array}{l} \underline{\text{HERA prospects (1987)}} \\ m_{_{W}} & \sim \pm \ 80\text{-}100 \ \text{MeV} \\ \text{Our HERA value} \\ m_{_{W}} & \sim \pm \ 63_{_{\text{(exp)}}} 29_{_{\text{(PDF)}}} \end{array}$

 $\frac{\text{Indirect determiations}}{\text{m}_{\text{t}} \sim \pm 3 \text{ GeV}}$ $\text{m}_{\text{H}} \sim \pm 20 \text{ GeV}$

Competitive W-boson mass

- Since CC kinematics can be fully measured (no missing ET needed!)
- Outer error bars PDF uncertainties: beome negligibly small

(Indirect) determination of boson masses

W- and Z-boson masses: Most important input parameters to EW calculation

- LHeC & FCC: Greatly improved precision as compared to HERA
 - Benefit from increadibly higher cross sections than HERA
 - Correlation between m_w and m_z will be reduced with increasing scale (FCC) -> higher precision
- HERA with large uncertainty due to m_w - m_z correlation (H1-prelim-16-041)
- PDFs will not be the limiting factor for EW physics!

Light quark couplings at LHeC and FCC-eh

LHeC and FCC-ep

- Polarisation of lepton beam ($P_e \sim \pm 80\%$) improves precision
- Precise measurements of weak light-quark couplings feasible

Precision test of electroweak sector of Standard Model

Weak mixing angle

Weak mixing angle

• Define $sin^2\theta_w$ in on-shell scheme

$$\sin^2\theta_W = 1 - \frac{m_W^2}{m_Z^2}$$

No scale dependence in this definition

On-shell value can be translated

- into 'effective' weak mixing angle
- into MS-bar definition

Weak mixing angle

• Expected precision:

LHeC: $\pm 0.0003(exp)$ 0.0002(PDF) FCC: $\pm 0.0004(exp)$ 0.0003(PDF)

- Inclusive data will only be somewhat competitive with the direct extractions at the Z-pole, but:
- Scale-dependence of EW physics is studied up to TeV range
- Inclusive DIS data from LHeC and FCC probes scale dependence of EW theory in impressive range from 10 GeV up to highest accessible scales