MIRKO POJER on behalf of Hardware Commissioning Coordination

'POWERING TESTS AND SAFETY' WORKSHOP

POWERING TESTS

- Before September 19, a limit to access of people in the tunnel had been defined, which considered 1 kA as a safe current threshold.
- The incident of sector 3-4 and further investigations demonstrated that not only 1 kA was a too arbitrary value, but, above all, that also the service areas and the experimental caverns are not safe in case of an electromechanical fault, associated to a massive helium release.
- Already at the end of October last year, to investigate other sectors at the quest of a similar precursor as the one responsible for sector 3-4 event, the underground areas were massively limited.
- A Safety Task Force was also constituted with the aim of defining conditions for access during powering and defining as well compensatory measures to mitigate the effects of a similar incident.

ACCESS CONDITIONS DURING POWERING TESTS

After September 19 event, strict access conditions were defined when powering the superconducting circuits in the LHC tunnel.

In particular, two powering phases are identified: powering Phase I and powering Phase II, with different access limitations according to the energy stored in the circuits and to the effect of electromechanical failure and helium release (MCI).

This is taking into account the recommendations of the Safety Working Group, organized after sector 3-4 incident.

CERN CH-1211 Ge Switzerland	neva 23
	the Large Hadron Collider project

LHC Project Document No. LHC-MPP-ES-0002 ver.1.0
CERN Div./Group or Supplier/Contractor Document No.
EDMS Document No.
1001985

Date: 2009-05-20

Engineering Specification

ACCESS AND POWERING CONDITIONS FOR THE SUPERCONDUCTING CIRCUITS IN LHC

Abstract

Following the incident on 19 September 2008, more severe access restrictions to underground areas were introduced for the re-powering of electrical circuits with superconducting magnets. In this document two phases of powering are defined, phase I and phase II. During powering in phase I the current in the different electrical circuits is limited and the probability for massive accidental release of helium due to powering is considered to be negligible. The access conditions are much less severe than in phase II, where the circuits may be powered to their nominal current for the physics energy. The parameters for powering in phase I are defined.

Prepared by : Matteo Solfaroli Hugues Thiesen Glyn Kirby Knud Dahlerup-Petersen Arjan Verweij Rob Wolf Jim Strait Rüdiger Schmidt Checked by : Jose Miguel Jimenez Lucio Rossi Ghislain Roy Laurent Tavian Mike Lamont Karl Hubert Mess Andrzej Siemko Magali Gruwe Laurette Ponce Serge Claudet Roger Bailey Gianluigi Arduini Jean-Paul Burnet Approved by : Frederic Bordry Paul Collier Steve Myers Lyn Evans Ralf Trant

...the risk of massive accidental helium release due to powering is negligible if the stored energy in the circuit is below 100 kJ"

Circuit type	Maximum energy stored [J] at nominal current	L (H)	Maximum current level	Energy [J]	Corresponding powering test step			
main dipoles	1.13E+09	15.708	0A	0.0E+00	PIC1			
main quadrupoles	3.79E+07*	0.263	760A	7.6E+04	PLI1			
arc individually powered quadrupoles	8.70E+05 (RQ7)	0.06	900A	2.4E+04	PLI2			
600A circuits	6.50E+04** (RSD1)	0.432 (400A)	400A / 550A	3.5E+04	PNO			
120A orbit correctors	1.42E+04 (RCBCH7)	2.84	120A	1.4E+04	PNO			
60A orbit correctors	9.10E+03	6.02	60A	9.1E+03	PNO			
Stand alone quadrupole	1.90E+06 (RQ4.L2)	0.296	600A	5.3E+04	PLI2			
Stand alone dipoles	9.40E+05 (RD2.R2)	0.052	1000A	2.6E+04	PLI2			
inner triplet		L1 = 0.09						
quadrupoles	7.55E+06	L2 = 0.038	n.a.	5.9E+03	PCC			
Q2b)		L3 = 0.09						

* Energy stored in both circuits, since at a current above 2000A the RQF and RQD circuits are always powered together ** The current in a few 600A circuits (RQ6) in point 3 and point 7 is limited to 400A, to respect the limit for the stored energy of 100kJ

The 100 kJ energy level has been taken as the boundary between Phase I and Phase II, between which tests are permitted with people in the tunnel and which are not, when we have to close and when we have to really patrol a sector.

(For access conditions related to the different powering phases see Matteo's presentation)

In this case the powering conditions during phase I are as follows:

- No tests on the RB in Phase I, apart PIC1, done in simulation mode
- In the same cryostat, no more than one main circuit (RQF/D, IPD, IPQ) powered simultaneously
- In the arc, it is possible to power one individual powered quadrupole from an even point and one individual powered quadrupole from an odd point at the same time
- No restriction for powering the 60A, 80A, 120A and 600A circuits

(Refer to Laurette's presentation for current limits etc.)

Circuit type	Maximum current level
main dipoles	0A
main quadrupoles	760A
arc individually powered quadrupoles	900A
600A circuits	400A / 550A
120A orbit correctors	120A
60A orbit correctors	60A
Stand alone quadrupole	600A
Stand alone dipoles	1000A
inner triplet quadrupoles (Q1+Q3/Q2a+ O2b)	I_PCC

AN HELP IN DISTINGUISHING THE TWO PHASES

• The Powering to Nominal web page has been adapted:														Circ	uit t	ype	Maximum current level								
RCOX318	24 HOUR HEAT RUN	078 (0%)	-	-	-	PCL	PCC.1	P)C2	PNO al	PNO di	PNO.el	PIC2 GPM						maii	n dipo	oles		0A			
RCSSX3.L8	24 HOUR HEAT RUN	078 (0%)	-	-	-	PCL	PCC.1	PIC2	PNO.al	PNO.di	PNO.el	PIC2 GPM						qua	main drupo	oles		760A			
RCSX3.L8	24 HOUR HEAT RUN	0/8 (0%)	-	-	-	PCL	PCC.1	PIC2	PNO.al	PNO.di	PNO.el	PIC2 GPM						• I	arc						
RCTX3.L8	2! HOUR HEAT RUN	078 (0%)	-	-	-	PCL	PCC.1	PIC2	PNO.al	PNO.dl	PNO.et	PIC2 GPM						indi po	owere	ally ed	900A				
RD1.L8	24 HOUR REAT BUN	0 / 11 (0%)	-	-	-	PCL	PCC.3	PIC2	PL11.c2	21.12.12	PNO.c2	99C2 6PM					_	qua	drupo	oles					
RD2.L8	24 HOUR HEAT	0/11				PCL	P00.3	PIC2	PL11.c2	212.2	PNO.c2	PIC2					_	600/	A circ	uits	4	400A / 550A			
a bar anany	RUN 74 HOUR	(0%)	-	-	_							6PM						120)A or	bit					
RQ1018	HEAT RUN	(0%)	-	-	-	PCL	POC.4	PIC2	PLILe3	2126	PLI2.e3	PNO.c3	PNO.64	GPM			_	CO1	recto	ors					
RQ4.L8	24 HOUR HEAT RUN	0 / 13 (0%)	-	-	-	PCL	PCC.4	PIC2	PLILe3	2126	PLD.e3	PNO.¢	PNO.e4	PIC2 GPM				cor	recto	ors		60A			
RQ5.L8	24 HOUR HEAT RUN	0 / 13 (0%)	-	-	-	PCL	POC.4	PIC2	PLIL63	PLI26	PLI2.e3	PNO.¢	PNO.c4	PIC2 GPM				Stand alone			600A				
RQ6.L8	24 HOUR HEAT RUN	0713 (0%)	-	-	-	PCL	P00.4	PIC2	PLILe3	PLI2.65	PLI2.e3	PN0.63	PNO.64	PIC2 0PM				Stand alone			1000A				
RQ7.L8	24 HOUR HEAT RUN	0 / 13 (0%)	-	-	-	PCL	PCC.4	PIC2	PLI1.e3	200	PLI2.e3	PNO.03	PNO.e4	PIC2 GPM				dipoles inner triplet							
RQ8.L8	24 HOUR HEAT RUN	0 / 13 (0%)	-	-	-	PCL	PCC.4	PIC2	PLI1.c3	2126	PLI2.e3	PNO.¢	PNO.c4	PIC2 GPM				qua (01+	drupo O3/C	oles)2a+	I_PCC				
RQ9.L8	24 HOUR HEAT RUN	0 / 13 (0%)	-	-	-	PCL	P00.4	PIC2	PL11.c3	2126	PLI2.e3	PN0.63	PNO.64	PIC2 GPM					Q2b)	•					
RQX.L8	24 HOUR HEAT RUN	0 / 23 (0%)	-	-	-	PCC.TI	PCC.T2	РСС ТЗ	PIC2	PL12.e5	PLB-68	PL12.e6	PLI3.410	PL13.65	PCC 14	PNO.412	PNO.411	PNO.413	PNO.d14	PNO.415	PNO.415	PNO-017	PIC2 GPM		
RB.A78	24 HOUR HEAT RUN	0 / 23 (0%)	-	-	-	PCL	PQC	PCC.2	PIC2	PLILa2	PLIL 52	PL12.51	PL11.42	PLI2.62	PL12.42	PLIS.s2	FLI3.a5	PLD.fl	PLIS.40	PNO.a6	PNO.82	PIC2 GPM	PNO.TRAIN		
RQD.A78	24 HOUR HEAT RUN	0 / 23 (0%)	-	-	-	PCL	PCC	PCC.3	PIC2	PLI2.s1	71.11.53	PL11.d2	PLIEAS	PL12.fl	PL12.e2	PLIS.s2	PLEX.45	PLI3.53	PNO.a6	PNOJAS	PIC2 OPM	PNO.TRAIN			
RQF.A78	21 HOUR HEAT RUN	0 / 23 (0%)	-	-	-	PCL	PQC	PCC.3	PIC2	PL12.c1	PLII 163	PL11.42	PLI2.33	PL12.A	PL12.42	PLIS.#2	PLI3.45	PLI3.53	PNO.a6	PNO.33	PIC2 GPM	PNO.TRAIN			

N.B. It is not a safety measure, but just a "guideline". For the HW/SW tools, refer to Laurette's.

THE ACTUAL PLANNING

	5	ector 12		Se	ctor 23	8	Secto	r 34	Se	ector 45		Se	Sector 56		Sector	r 6/	S	ector /8	8	Se	Sector 81		
	Arc	LSS	Π	Arc	LSS	IT	Arc	LSS	Arc	LSS	ा	Arc	LSS	IT	Arc	LSS	Arc	LSS	Π	Arc	LSS	IT	
22																		al David					22
23 24 25 26	E Shut-I	Down acti Mushing	vities				Shut-D activi	own ties	w s	VARM UP		Shut-De	wn activ	ities	Shut-D	own	Shut-D	oor-Down own acti	vities	Shut-Do	o-Down wn activ	ities	23 24 25 26
27 28 29 30 31		Cool-Down		LHe er stabiliz	nptying ation at nLDown ARM UP	and BOK	Flushi			alidation			fushing		E Nuzhi		Coo stabili g	Down ar zation at CS tests	nd 80K	Co Shut-Du Co Si	ol-Down witractiv ol-Down CS tests		27 28 29 30 31
32 tsn 20 33 34 35			275	Co	solidation		€ -~	own	C	ool-Down		Co	ol-Down		Cool-D	own	• •	ool-Down			ol-Down ARM UP		32 33 tsn an y 34 35
36 37 38 39 40		P2N P2N		Co	ol-Down								P2N	ДЛИ 1971		0211		PZN		Co	ol-Down		36 37 38 39 40
41 42 42 43 44		Operation			P2N P2N		PZN	P2N	0	P2N		Op	P2N beration		P2M		o	peration			P2N	//// P2N	41 42 43 44
45 46 47 48				O	peration		Opera	tion			Cold	check out			Opera						P2N		45 46 47 48

WHICH IS THE IMPACT OF ACCESS RESTRICTIONS ON THE POWERING TESTS

Summary of executed test steps in sector 23

684/11000 test steps are done in Phase II (about 6% of total)

CERN

Thanks for the attention

