Operational tools

Laurette Ponce BE-OP

Context

- After the 19th September, a re-enforcement of access control during powering tests was requested
- Access system designed to cope with radiation hazard ONLY, not electrical or cryogenic risks
- Not possible to implement a "hardware" link between access system and converters during this shutdown)
- For personnel safety, 2 powering phases have been defined, with different access restrictions AND hardware/software limitations of the current
- In addition of these measures and the procedure, a SOFTWARE interlock has been implemented

Outlines

- Hardware and software limits
- Software interlock
 - Principle of the interlock
 - The tools used to build the logic
 - Consequences for PO
- How to switch from PO phase 1 to PO phase 2

Hardware and software limits

- To guarantee the safety of personnel during powering phase 1, current has to be limited in the main magnets as proposed to the safety Task-force (EDMS 1001985):
 - RB 100A
 - RQF/RQD 800A
 - RQ4-RQ10 900A
 - IPD 1000A
 - RQX 800A
 - RQTX2 600A
 - RQTX1 132A
- 2 types of limitation on PC side:
 - For RB, RQF and RQD: hardware limits in the power converter
 - For IPQ, IPD : FGC software limits
- Another software limits in the operational database:
 - Redefinition of I_max in LSA
 - This is the max current used by the sequencer

Additional tools for OP

- A software interlock for checking access conditions versus current in the magnets
- Proposal for 2 fixed displays
- The software interlock is based on several different softwares to build the signals needed for the logic : more details in the following slides
- The main components are the LHC Software Interlock System, the LHC Access Control System and TIM (TI supervision tool)

Principle of the interlock

- The principle is to stop <u>all the power converters of a sector</u> in case the current level in one of them is not compatible with the actual access conditions in the sector:
 - to prevent powering above the defined level during powering phase 1
 - to stop the powering above so called "safe current level" in case of intrusion during powering phase 2
- The Interlock is on the PCs, not on the access system:
 - The access conditions (which zones are patrolled and empty) define the level of current allowed in the whole sector
 - No action on the access system, just reading of the status

The logic

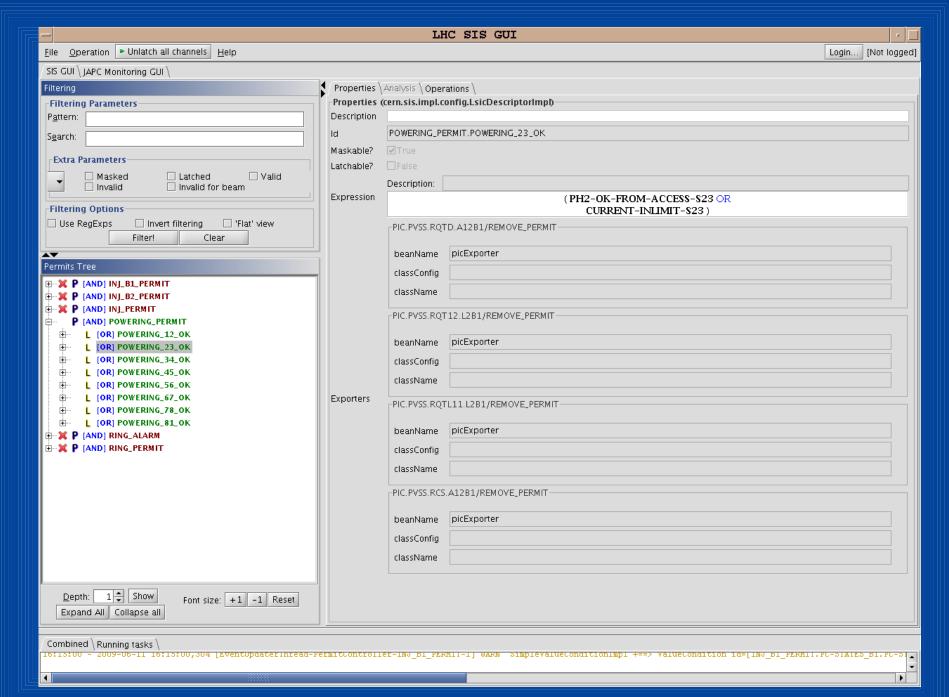
```
Access OK for PO PHASE 2 = true

OR

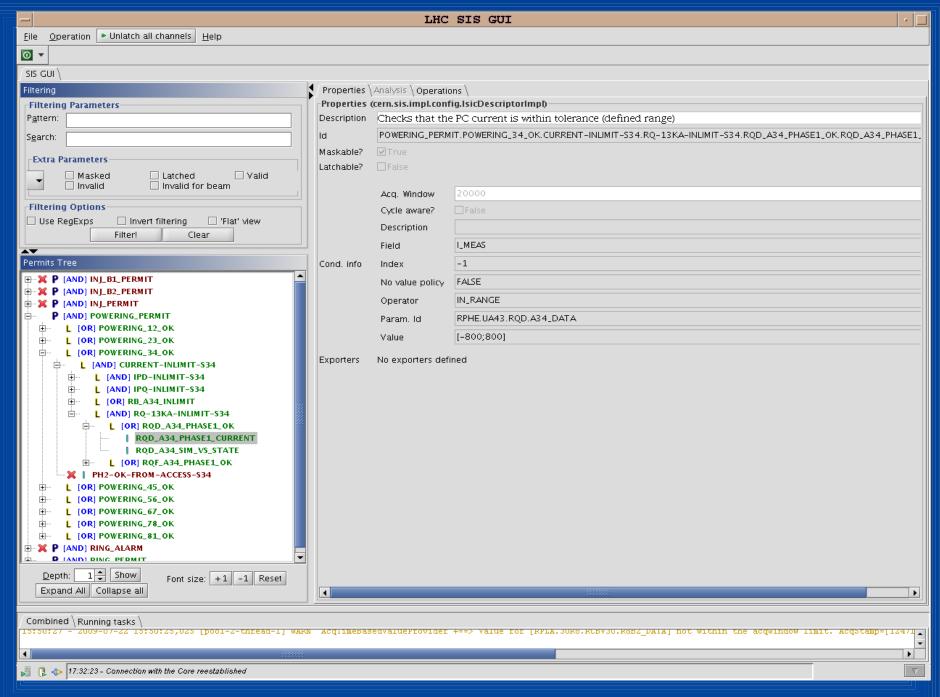
POWERING permit = true

OR

PC in simulation mode = true
```


- The logic is built inside the LHC Software Interlock System.
- Origin of the signals:
 - PC OP mode and I_Meas are read and combined by the SIS
 - Access OK comes from a LASER alarm (via LACS and TIM software)
 - POWERING permit = false triggers on change from true to false a GLOBAL REMOVE_PERMIT to each PIC of the powering sector

The tools used to build the interlock


- PIC
 - To remove the PC permit of the PCs
 - Use the new GLOBAL REMOVE_PERMIT command
- The SIS:
 - To combine the signals and evaluate the powering permit
 - To export the slow power command to the PIC
- The LASS/LACS
 - To extract the patrol status
- > TIM
 - To combine the individual signal form the LACS and export to LASER
- > LASER
 - To publish access conditions readable from SIS

How it works

- There is one POWERING_permit per sector
- The GLOBAL REMOVE_PWRMIT is sent to all the PIC of the sector (LSS + arc)
- Constant monitoring of the measured current (I_meas) and the OP mode in the main circuits of the sector:
 - RB, RQD, RQF, IPQ, IPD, RQX are monitored
 - 600 A, 120A and 60A NOT monitored
 - => **CURRENT-INLIMIT-Sxx** signal = true if all the I_meas < I_max or PC in simulation mode
- Constant monitoring of the access conditions for the concerned sector:
 - Status of the patrol
 - Just a concatenation of the LASS info
 - => PH2-OK-FROM-ACCESS-Sxx signal = true if all the access sub-sectors defined according to the access matrix are SAFE

12th June 2009


12th June 2009

Reliability of the parameters

- Problem: numerous software for the access conditions evaluation:
 - LASS (Safety System) signals are exported to the LACS (Control System)
 - LACS is publishing the signals to TIM
 - TIM signals are combined in a rule to create an alarm
 - This alarm is published by LASER
 - SIS is reading LASER alarm
- The REMOVE_PERMIT is sent to the PIC via CMW.
- Software has been tested during sector 23 tests:
 - The load on the PIC is OK, signals received within few seconds
 - Tests interrupted several times, but no unexplained triggers
 - We have identified PO procedures which are not compatible with the logic
- Note: the current measure is not latched anymore
- Systematic test are needed: to be defined within the DSO tests?

Consequences for PO

- During phase 1, access conditions are never met, so the current within limit = true is needed to have the PC permit
- If signals from the FGC are not arriving or the I_meas values published are above the limits during phase 1, PC permit is removed to all the PCs of the sector. Some exemples:
 - A restart of the FGC is stopping any ongoing tests
 - Same for calibration when I_meas is simulated
 - Maybe others...?
- When FGC restart or calibration are needed, PO expert should first contact the EiC so that he masks the concerned circuit :
 - Discipline is needed as soon as tests are starting in a sector
 - Masking is a fast procedure

12th June 2009

Switching from PHASE 1 to PHASE 2

- The complete procedure is described in a engineering specification under preparation LHC-MPP-ES-0003 (EDMS 1012328)
- During the whole procedure, no powering is allowed and all the PC of the sector should be LOCKED by PIC.
- The order of the actions are to be carefully followed:
 - Block the circuit
 - Proper information of the change (HW coordinator + LSA)
 - Establish access conditions (patrols)
 - Update the software limits in database
 - Remove the hardware limits
 - Synchronize FGC and careful check by PO expert
 - Final check of all is OK by EiC, helped by SIS and LASS
 - Unblock the circuits

Switching from PHASE 2 to PHASE 1

- When sector is defined in Phase 2, no powering is allowed in the sector when access is needed, even below the phase 1 current
- If required, then we will have to switch back to phase and re-establish the hardware and software limits

- For both switching, no change are needed for the SIS interlock: can be constantly running during the procedure
- Some questions:
 - The tracking of hardware/FGC limits is done by PO
 - Communication between HWC/OP and PO is crucial
 - Do we need more tools to ease the tracking? A kind of yellow paper for HW limits?

More tools

- The powering phases are now defined as a sector mode : this is published in LSA : sequence available to change it
- A fixed display will show the mode of each sector and the access conditions (still in preparation...)

	people in zone		
Sector 12	PO phase 1	Access OK	0
Sector 23	Cool down	Access OK	0
Sector 34	PO phase 2	Access OK	0
Sector 45	Shutdown	Access OK	0
Sector 56	PO phase 1	Access OK	2
Sector 67	Cool down	Access OK	3
Sector 78	PO phase 1	Access OK	1
Sector 81	Cool down	Access OK	9

Proposal for another fixed display, as help for volunteers giving access:

Zone	ITX 1R	LSS 1 R	Arc 12	LSS 2L	ITX 2L
People IN		UJ 16		UJ23	
PC ON	RQX	IPD/IPQ/corr	RB/RQ/600	DA IPD/IPQ/corr	RQX

Summary

- The interlock is now deployed and constantly running
- We can try to improve the logic in order to allow calibration, but I would like to keep it as simple as possible
- Need to be tested with partial DSO tests before the start of the powering phase 2
- The interlock is stopping the Power Converter, not blocking the access...
- In case of doubt, the LASS gives the real status...
- Safety is guaranteed by:
 - Hardware and FGC software limits
 - Procedure to be apply for giving access
- SIS interlock is another independent way of checking that current is limited when people are accessing.