Last news from the deep

... where underwater/ice neutrino telescopes operate...

Chantal RACCA IPHC Strasbourg

Today's menu

Fighting rumours, as an apetizer

Flashback (on detection principle and physics case), as a starter

Snapshots on detectors and results, as main dish

Convinced for the dessert?

Neutrino Telescopes do not operate yet.....

False! Kamiokande and Superkamiokande are v-telescopes!

Well...

High energy Neutrino Telescopes do not operate yet....

False! AMANDA and BAIKAL are operating

Neutrino Telescopes <u>sensitive enough</u> will take years to be operational...

False! IceCube's schedule is awesome and KM3's is aggressive too

Neutrino Telescopes do not have a clear physics case...

False ... (at least according to theorists!)... and see later...

and who knows, we are opening a new window to the Universe

(astrophysicists: "c'mmon, at most you'll just make a little hole in the wall")

Neutrino Telescopes are not experiments ...

Yes!...they are "a way of life"!...

- Enter R&D phase as a graduate student
- Participate in the design of the detector as a PhD student
- During your first post-doc you help writing the TDR
- Start construction during your second post-doc
- Keep on building it during your third post-doc
- Come back home during the first data taking
- Try to understand the data as a Tenure Track-er
- Get permanent position (if you understand the data)
- Get promoted (if you beat the Waxman&Bahcall limit)
- Get full Professorship (if you find one single source)
- But most likely, retire during the construction phase of the mythical "kilometre cube"

... just like LHC experiments, isnt' it ?

Flashback

the cosmic messenger,physics goals and detection principle

V : the cosmic messenger

γ: absorbed (GZK effect)

p : magn. field +GZK effect

Neutrino

- Source exploration on cosmologic distances
- In the heart of sources...
- Weakly interacting \rightarrow large detection volume

Neutrinos from galactic sources

-Pulsars

-Young Supernova Remnants (up to 100 ev/year/km²)

-Micro quasars (SS433: up to 250 ev/year/km²)

Neutrinos from extragalactic sources

-Active Galactic Nuclei (AGN) steady

-Gamma Ray Bursts (GRBs) transient (1-100 s)

Scientific goals

How can we do neutrino astronomy?

Snapshots

BAIKAL NT-200

Location: Lake BaikalCommissioned:1997No. of Strings:8Optical Sensors:192Depth:1366mInstrum. Volume/km3: 10^{-4} μ -Effective area (1 TeV): $\approx 2000 \text{ m}^2$ Angular resolution (1 TeV):3°

Deployment and maintenance: From frozen surface in winter.

Atmospheric Muon-Neutrinos

E_{THR} 15-20 GeV

Skyplot of NT200 neutrino events for 5 years (galactic coordinates)

372 Neutrinos in 1038 Days (1998-2003) 385 events from Monte-Carlo 18 hours per day for the Center of Galaxy

(Low energy phenomena)

Diffuse Neutrino Flux Limits + Models

BAIKAL Upgrade NT200+

Commissioned:

April 2005

Addition of 3 outer strings 12 PMT each Other improvements: DAQ, new cable to shore,...

Increase in sensitivity by factor 3-4.

Preparing a design for: Giant Volume Detector, km scale

Height = 210m \emptyset = 200m Volume ~ 4 Mton

A Gigaton (km3) Detector in Lake Baikal

Sparse instrumentation: 91 strings with 12/16 OM = 1308 Oms

- → Cascade effective volume for 100 TeV: ~ 0.5 -1.0 km2
- → Muon threshold between 10 and 100 TeV

Baseline schedule:

- R&D +TDR 2006-08. Funded. - Construction \geq 2009.

AMANDA / ICECUBE

AMANDA

- 677 analog OMs deployed along 19 strings
 - 10 strings 1997 (AMANDA B10)
 - 3 strings 1998 (AMANDA B13)
 - 6 strings 2000 (AMANDA II)
- Analog PMT signals using electrical and optical transmission lines.
- 200 m diameter, 500 meters height; AMANDA II encompasses 20 Mton instrumented ice volume.
- AMANDA will remain operational and form IceCube Inner Core Detector for low E physics (~ 100 GeV)
- IceCube surrounding strings provide effective veto – lower background and can push AMANDA energy threshold down.
- Conventional TDC / ADC technology for AMANDA has been entirely replaced by TWR system.
- Beginning 2007 season, AMANDA / IceCube data streams will be conjoined; detector subsystems will share trigger information.

Limits to diffuse fluxes

Limits on point sources

AMANDA Skymap

IceTop 160 frozen-water tanks 2 DOMs / tank

IceCube 80 strings 60 DOMs/string 17 m vertical spacing 125 m between strings

digital sensors (Digital Optical Modules)

analog sensors

AMANDA-II 19 strings 677 OMs

instrument deployed (Jan 2006) 9 IceCube strings (540 DOMs) 32 IceTop Tanks (64 DOMs)

2005, 2006, 2007 Deployments

IceTop station only 2006

IceCube string and IceTop station to be deployed 12/06 – 01/07

604 DOMs deployed to date

Next year looking for ≥ 12 strings. IceTop will be backed off to remain in line with hole deployment

Want to achieve steady state of 14 strings / season.

The Enhanced Hot Water Drill

EHWD designed to drill a 2450 m × 60 cm hole in ~30 hr. Fuel budget is 7200 gal per hole. Shown above is drill camp and tower site (inset), both mobile field arrays. Everything must fit into LC-130 for transport to Pole.
 Supply:
 200 GPM @ 1000 psi, 190 °F

 Return:
 192 GPM @ 33 °F
 Make-Up:
 8 GPM @ 33 °F

Thermal Power: 4.5 Megawatt

IceTop – the Surface Airshower

Event Signatures in IceCube ...

10¹³ eV (10 TeV) 6x10¹⁵ eV (6 PeV)

v_{τ} +N \rightarrow τ +.. τ[±] (300 m!) $\tau \rightarrow v_{\tau}$ +hadrons signature of v_{μ} signature of v_{τ}

Multi-PeV

- IceCube is a km³ detector that improves sensitivity and extends neutrino energy range detection with respect to AMANDA-II
- AMANDA-II upper limits on cosmic neutrino searches getting tighter and closer to WB limit
- IceTop/IceCube cosmic ray composition measurement up to ~10¹⁸ eV with x100 higher sensitivity than SPASE/AMANDA
- construction of IceTop and IceCube is proceeding at pace and every year the array increases size significantly
- IceCube and AMANDA overlap sensitivity in energy

"The V" @ South Pole

NESTOR: Rigid Structures Forming Towers

- Tower based detector (titanium structures).
- Dry connections (recover-connect-redeploy).
- Up- and downward looking PMs.
- 3800 m deep.
- Electro-optical cable deployed June 2000, but damaged
- Cable recovered, repaired & redeployed (Jan 2002)
- 1 Floor deployed in 2003. downward cosmic ray muons reconstructed

After few weeks-fault developed in the submarine cable, awaiting repair

Tower(s) with12 floors

- \rightarrow 32 m diameter
- \rightarrow 30 m between floors
- → 144 PMs per tower

95 Physicists from 12 Institutions

NEMO architecture

The Mini Tower for NEMO

11-11-11 **Backbone cable** (electro-optical) Nexans-D0330 Mechanical stresses

are applied only to the tensioning ropes

NEMO status

- Installation of the Catania Test Site at 2000m depth:
- Two underwater stations transmitting data since January 2005
- NEMO Phase-1 now under assembly →
- to be deployed in October
- Construction of the km3-infrastructure
 offshore Capo Passero:

- shore laboratory acquired → currently under restoration
- E.O. cable acquired → to be installed by Nexans-Alcatel within 2007
- a mini tower with 4 OM will be deployed together with the cable
- a fully equipped tower will be deployed within 2007

ANTARES Construction Milestones

First complete detector Lines installed in 2006

...and connected by submersible ROV Victor from Ifremer on March 2nd

Singles Counting Rates

Data taking & data processing

Coincidence rates from ⁴⁰K decays

⁴⁰K coincidence rate from Gauss fit:

Line 1 time calibration with MILOM LED beacon

The first muon found with Line 1

Recorded on March 4th: 2 days after Line 1 connection !

single string muon reconstruction

Event Display by Aart Heijboer

Reconstruction of atmospheric muon tracks

Reconstruction with Line1: Algorithm minimizes χ^2 of PMT hit time vs altitude to find zenith angle of μ track

Reconstruction of atmospheric muon tracks

A nice, vertical track with hits in each storey of the line

Atmospheric muon zenithal angular distribution

Line 2 deployed Jul 27th

Connected with NAUTILE Sept 21st

First muon seen by lines 1&2

KM3NET Design Study

The next step in the Mediterranean Sea is an EU funded 'Design Study':

- Participation: all current projects + "newcomers" + marine institutes
- EU Contribution : 9 M€
- Starting date : feb 1, 2006
- Duration : 3 years (TDR: feb 2009)
- Target Cost: ~200 M€ ?
- Size : minimum 1km3 and extendable

KM3NET is included in the Astroparticle Physics European Coordination (ApPEC) ROADMAP

KM3NET is selected by the *European Strategy Forum for Research Infrastructures* (ESFRI) 'List of Opportunities'

Conclusions

- The recent past of neutrino astrophysics is extremely bright (v oscillations, confirmation of solar model, direct detection of supernova collapse)
- High energy Neutrino Telescopes are presently operating.
 The technique is proven and the limits obtained are meaningful

• New, bigger and more sensitive telescopes will soon operate

Surprises might be round the corner...