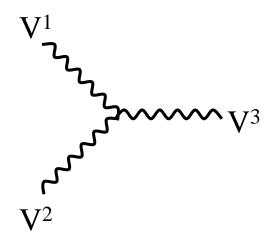
Diboson production with CMS

Vuko Brigljević Ruđer Bošković Institute, Zagreb

on behalf of the CMS Collaboration

LHC Days in Split October 2-7 2006

Motivation

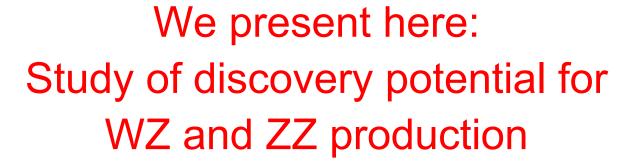

- Prediction of the non-abelian SM gauge structure:
 Couplings between gauge bosons
- Measuring the coupling between the gauge bosons tests a central part of the SM
- Deviations could hint to new physics
- Complementary to direct search for new physics

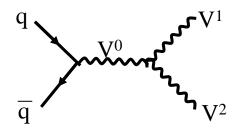
Manifestation of gauge boson couplings at the LHC: production of final states with boson pairs (W,Z, γ)

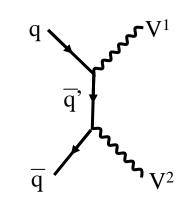
Gauge boson couplings

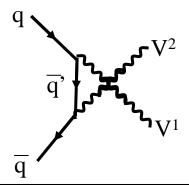
Triple gauge couplings (W,Z,γ)

- Charged couplings WWZ and WW γ Allowed in the SM
- Neutral couplings ZZZ, ZZγ
 Forbidden in the SM

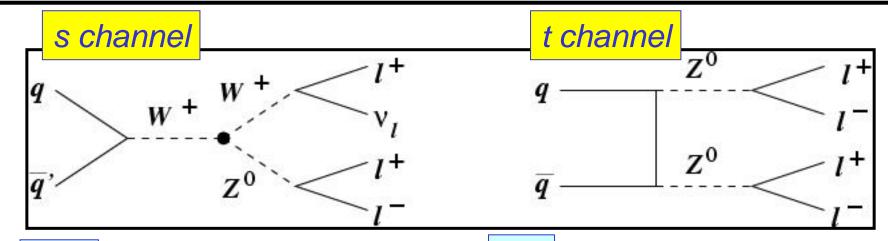



Diboson production at the LHC




Production Processes at the LHC

- Leading order Feynman diagrams:
- Only s-channel has three boson vertex
- Anomalous couplings tend to manifest in:
 - Cross section enhancement
 - Enhancement at high p_T of V^{1,2}.
 - Production angle.



WZ and ZZ production at the LHC

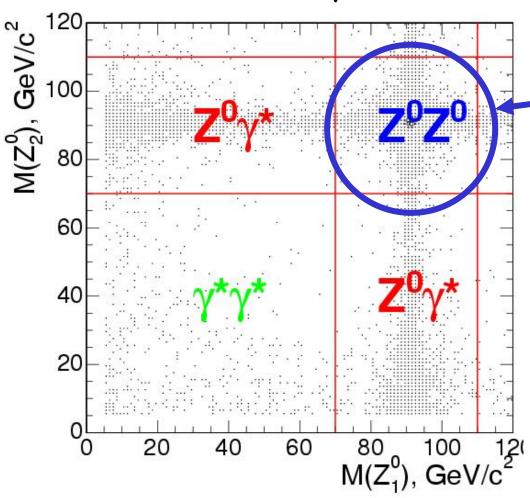
WZ

- s-channel dominates
- Sensitive to TGC

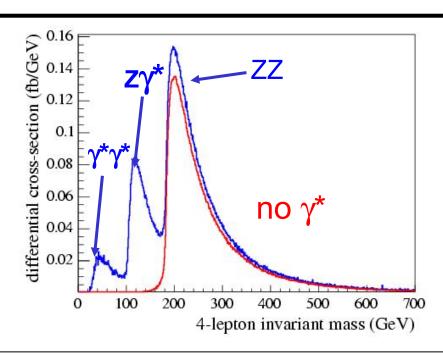
ZZ

- Only t-channel at tree level
- s-channel suppressed by O(10⁻⁴)

no ZZZ TGC


Constitute backgrounds (partly irreducible) for some new physics searches

Need to consider γ^* contribution



Our signal

ZZ signal definition

Define on-shell Z as:

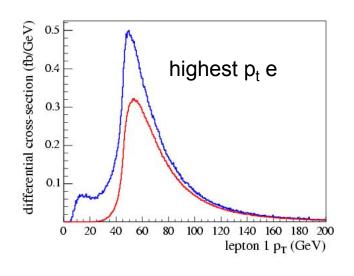
$$70 \text{ GeV} < M_Z < 110 \text{ GeV}$$

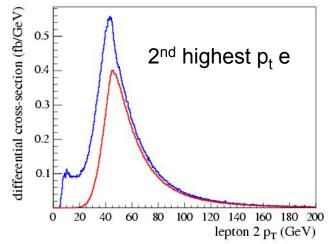
Distinguish 3 states:

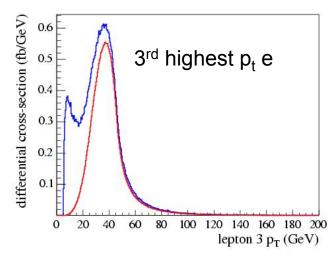
NLO cross section from MCFM:

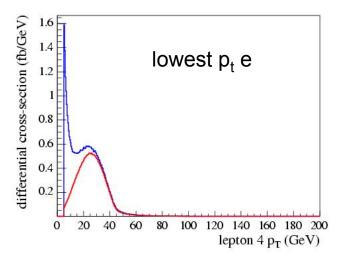
$$\sigma_{IO}$$
 (pp \rightarrow ZZ \rightarrow 4e) = 13.7 fb

$$\sigma_{NLO}(pp \rightarrow ZZ \rightarrow 4e) = 18.7 \text{ fb}$$


We consider only ZZ events


$$p_t > 30, 20, 15, 10 \text{ GeV/c}$$




$Z/\gamma^* Z/\gamma^* \rightarrow 4e$ lepton spectra

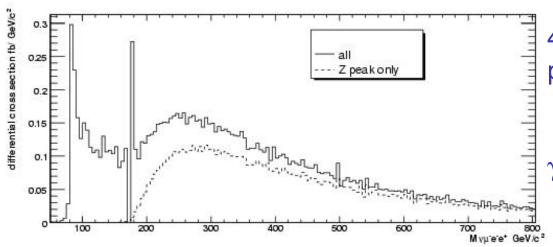
with γ^* without γ^*

Cut on leptons p_t:

 $p_{t}^{1} > 30 \text{ GeV/c}$

 $p_{t}^{2} > 20 \text{ GeV/c}$

 $p_{t}^{3} > 15 \text{ GeV/c}$


 $p_{t}^{4} > 10 \text{ GeV/c}$

Keep only ZZ!

WZ signal definition

4 lepton invariant mass for process pp \rightarrow WZ \rightarrow ee $\mu\nu_{\mu}$ (MCFM NLO)

γ* contribution included

- Restrict to on-shell Z boson: | M(I+I-) M_ZPDG | < 20 GeV
- Implicitly forces W on shell

NLO cross section from MCFM

$$\sigma_{NLO}$$
 (pp \rightarrow W⁻Z \rightarrow 3I, I=e, μ , τ) = 0.63 pb σ_{NLO} (pp \rightarrow W⁺Z \rightarrow 3I, I=e, μ , τ) = 1.03 pb

→ overall *k*-factor to Pythia

Studied final states

1. $pp \rightarrow ZZ \rightarrow 4e$

Effort on Signal efficiency

2. $pp \rightarrow WZ \rightarrow 3l \ (l=e,\mu)$

4 different event categories:

- 1. "3e": $W \rightarrow ev, Z \rightarrow ee$
- **2.** "2e1 μ ": W $\rightarrow \mu \nu$, Z \rightarrow ee
- 3. "2 μ 1e": W \rightarrow ev, Z $\rightarrow \mu\mu$
- **4.** " 3μ ": $W \rightarrow \mu\nu$, $Z \rightarrow \mu\mu$

Effort on Background rejection

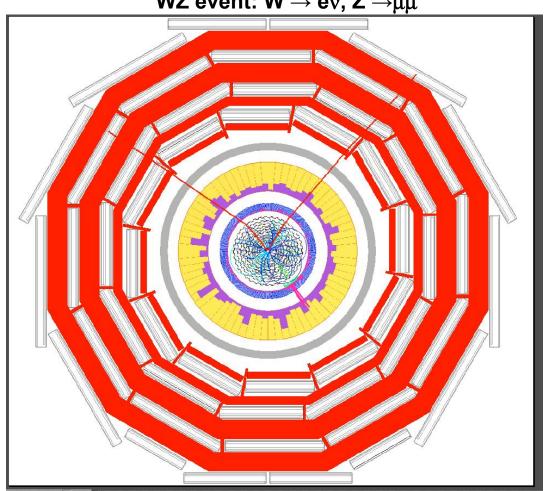
Backgrounds

Events with 3 or more (true or fake) leptons and/or real Z:

ttbar, Z+jets (especially Zbb),...

Signal and Background samples

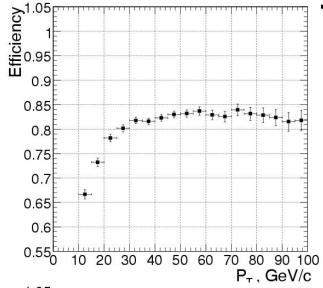
Cross sections tir	Cross sections times BR (NLO)		or
<u>Signals</u>			
ZZ(4e)	18.7 fb	1.37	
WZ(3I,I=e, μ , τ)	1.6 pb	1.92	
Main backgrounds			
tt(2I)	62.3 pb	1.6	
Z(ee)bb	60.3 pb	2.4	
Z(μμ)bb	60.3 pb	2.4	
tt(4e)	194 fb	1.6	
$ZZ(2e2\mu)$	32.3 fb	1.35	(bg. For WZ)

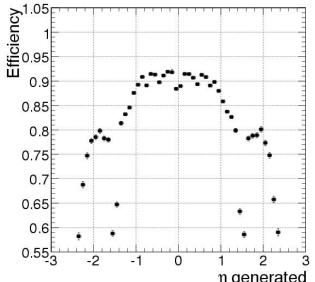

tt(21) generated with TopReX, Zbb with CompHEP, all others with Pythia

Full detector simulation and reconstruction

WZ event: W \rightarrow ev, Z $\rightarrow \mu\mu$

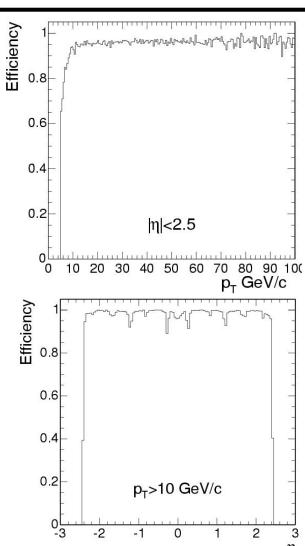
- Signal and backgrounds passed through full detector simulation
- Used reconstructed objects:
 - Tracks
 - ECAL clusters
 - Electrons
 - ECAL clusters + tracks
 - Muons
 - Muon system + tracker
 - Jets
 - For jet veto (WZ)


Lepton selection: electrons


Dibosons with CMS

Electron candidate selection

- Match ECAL "Supercluster" + track
 - "Supercluster": group of nearby ECAL clusters in narrow η window (Bremsstrahlung recovery)
 - $-0.7 < E_{CLUSTER} / P_{track} < 3.$
- Isolation requirements in HCAL + tracker:
 - No hadronic activity E^{HCAL} / E^{ECAL} < 0.08
 - less than 3 tracks with p_t > 2 GeV/c in $\Delta R = 0.15$ cone around candidate
 - Sum(Pt) of all tracks with p_t >2 GeV/c in $\Delta R = 0.2$ cone around candidate must be < $(1+0.34)E_{T}^{SuperCl.}$



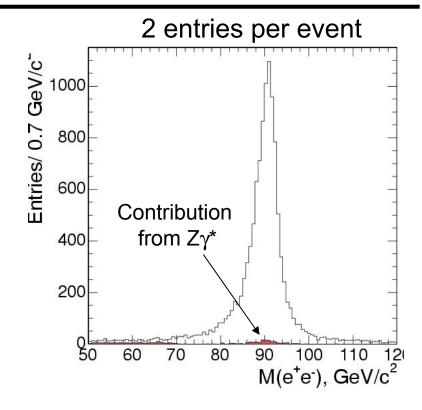
Lepton selection: muons

Muon candidate selection

- Match muon track with track in the central tracker
- Require isolation in tracker and calorimeter
 - Sum(Pt) of all tracks in ∆R = 0.25 cone around muon candidate < 2 GeV
 - Energy in calorimeters in ∆R = 0.3 cone around muon candidate < 2
 GeV

ZZ Event selection

Find 4 electron candidates


- Ordered by P_t , must satisfy: $P_t > 30$, 20, 15, 10 GeV/c
- $|\eta| < 2.5$

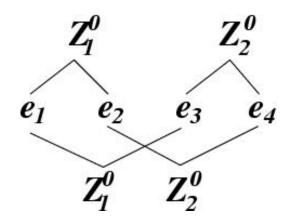
Form Z candidate:

- Combine e⁺e⁻ pair
- 50 GeV < M(e+e-) < 120 GeV
- Order Z's according to nearness to MZ
 - Z1 and Z2

Form ZZ candidate

Combine two non-overlapping Z's

- Z1 biased towards true Z mass and higher p_t lepton
- Consider Z1 and Z2 on equal footing


ZZ best candidate selection

Best Z association:

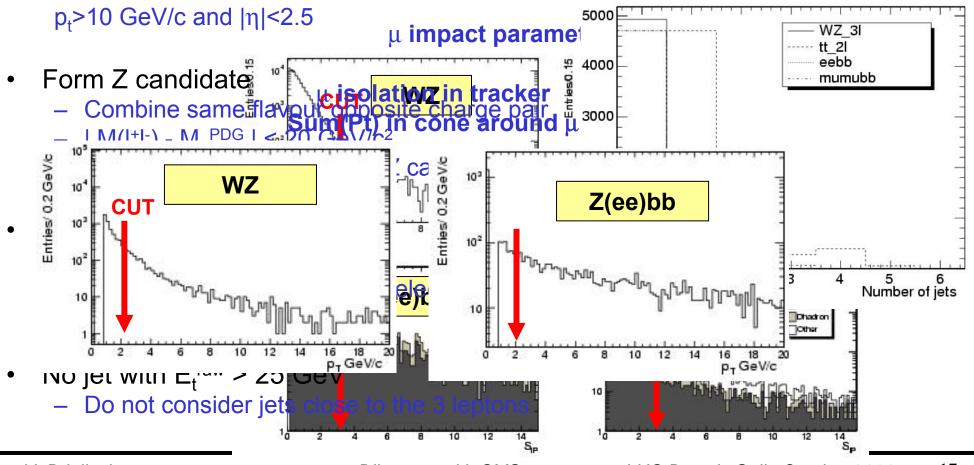
- possible ambiguity in lepton assignment
- Choose ZZ pairing with masses closest to PDG Z mass

Correct pairing for ~100% of all on shell ZZ events

Best ZZ candidate

- Due to fake electrons more than one ZZ candidate can be formed (2.5 % events)
- Retain pair with highest p_t non common lepton

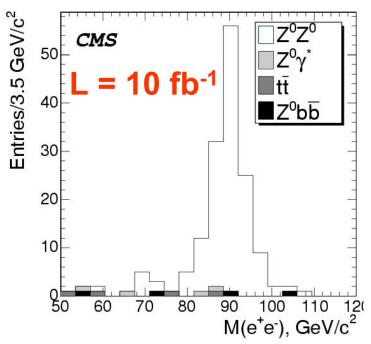
Correct choice for 98.3 % of events



WZ Event Selection

Selection / Background rejection Strategy

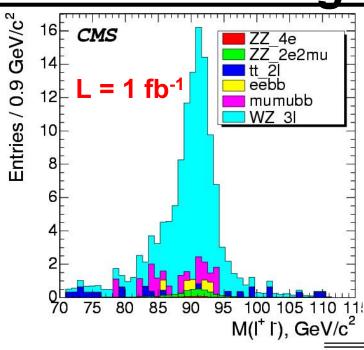
Find 3 isolated electrons or muons with no lifetime



ZZ→4e expected signal & background

M(e⁺e⁻) after all cuts (2 entries per event)

Expected signal and background yields for 1 and 10 fb⁻¹


	Efficiency, %	$N_{ m events}$ /1fb $^{-1}$	$N_{ m events}$ / $10{ m fb}^{-1}$
Z^0Z^0	38	7.1	71.1
$Z^0\gamma^*$	4.5	0.16	1.60
$Z^0 b \overline{b}$	0.07	0.08	0.84
$t\overline{t}$	0.06	0.12	1.22
Total background	99 <u></u> -	0.36	3.66
S_L	::—·	4.8	13.1

Nearly background free!

WZ →3l expected signal & background

M(I⁺I⁻) after all cuts 4 channels combined (3e,2e1μ,2μ1e,3μ)

Presence of peaking backgrounds:

- •Zbb
- •ZZ (irreducible)

Expected signal and background yields for 1 fb⁻¹

High significance in the first fb⁻¹!

9	$e^\pm e^+ e^-$	$\mu^{\pm}e^{+}e^{-}$	$e^\pm \mu^+ \mu^-$	$\mu^\pm\mu^+\mu^-$	Total	Efficiency, %
$W^\pm Z^0 ightarrow \ell^\pm \ell^+ \ell^-$	14.8	26.9	28.1	27.0	96.8	6.1
Z^0Z^0	0.63	1.54	1.50	1.51	5.19	4.7
$t\overline{t}$	0.93	1.55	-	0.31	2.79	0.02
$\mu^+\mu^-b\overline{b}$		(7	6.54	4.9	11.4	0.005
$e^+e^-b\overline{b}$	1.21	1.82	1 <u></u>	(<u>—</u>)	3.03	0.005
Total background	2.8	4.9	8.0	6.7	22.5	8 3
S_L	5.3	7.3	6.5	6.6	12.8)-:
			<u> </u>			

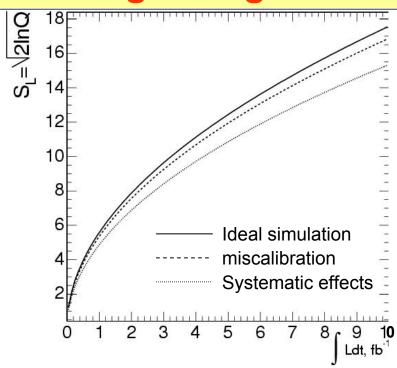
Systematic uncertainties

Systematic uncertainties on cross section

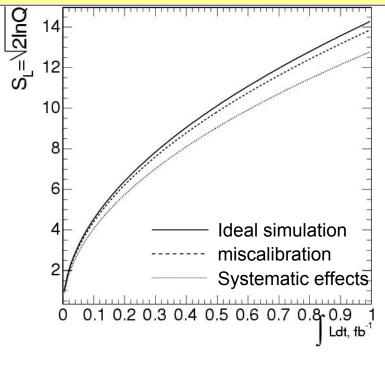
Systematic source	Cross section	Significance
Luminosity	10.0	%
Trigger efficiency	1.0	1.0
Electron identification	2.6	5.2
Muon identification	3.4	6.8
Jet energy scale	5.0	5.0
$Z^0 b \overline{b}$ subtraction	12.0	12.0
$Z^0Z^0 \rightarrow 4l$ subtraction	4.0	4.0
PDF uncertainty	9 <u>2—2</u> 9	3.5
Total	17.4	20.8

Source of systematic uncertainty	$\int Ldt = 1\mathrm{fb}^{-1}$	$\int Ldt = 10\mathrm{fb}^{-1}$
Luminosity	10.0	5.0
Trigger efficiency	1.0	1.0
Background subtraction	0.6	0.6
$Z^0\gamma^*$ subtraction	1.2	1.2
Electron identification	4×2.0	4×1.5
Total	12.9	7.9

Systematic uncertainties on significance


Source	$\int Ldt = 1\mathrm{fb}^{-1}$	$\int Ldt = 10\text{fb}^{-1}$
Trigger efficiency	1.0	1.0
Background subtraction	0.6	0.6
$Z^0\gamma^*$ subtraction	1.2	1.2
Electron identification	4×2.0	4×1.5
PDF and QCD scale factor	6.4	6.4
Total	18.4	14.9

WZ and ZZ Discovery Potential



ZZ→4e signal significance

$$S_L = \sqrt{2 \ln Q}, \qquad Q = \left(1 + \frac{N_S}{N_B}\right)^{N_S + N_B} e^{-N_S}$$

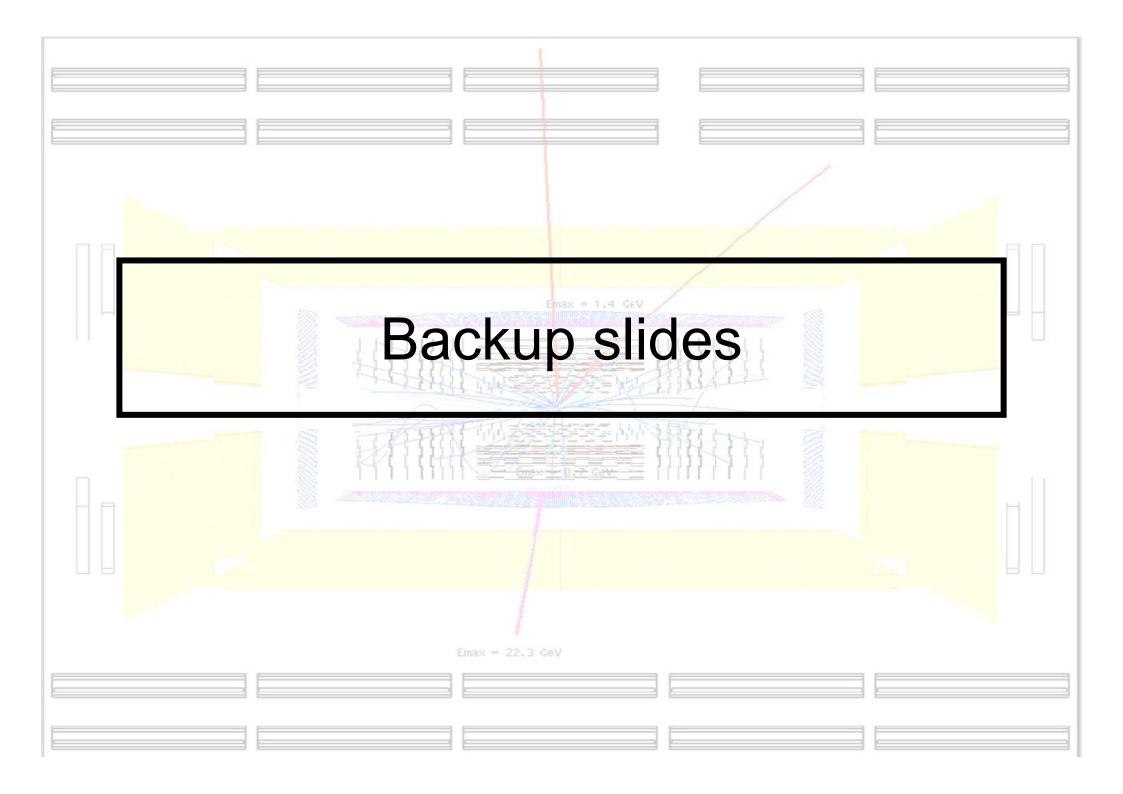
WZ →3I signal significance

5 σ discovery at:

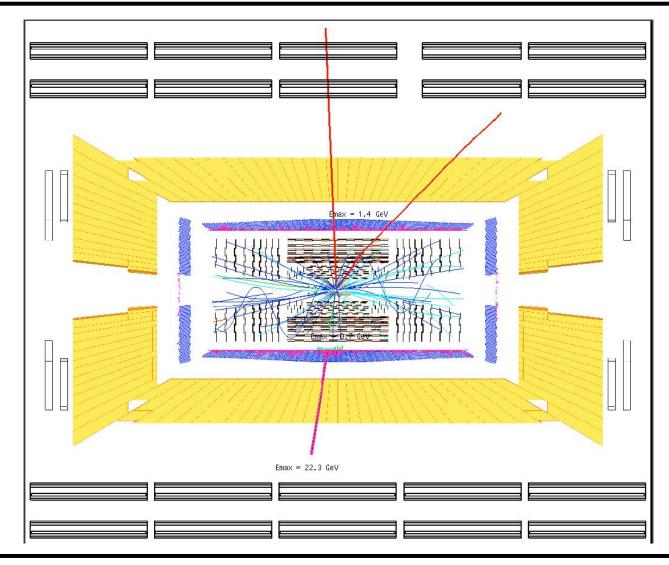
• ZZ : ~1 fb⁻¹

• WZ : ~150 pb⁻¹

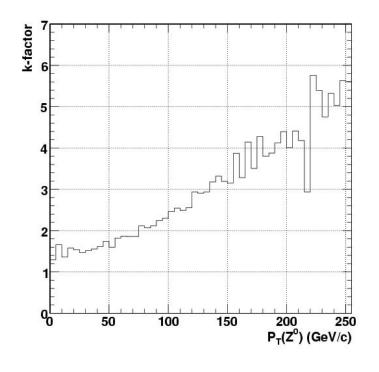
Summary

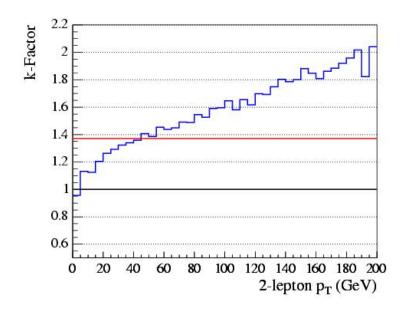

- We have investigated the discovery potential for the SM reactions pp → ZZ → 4e and pp → WZ → 3l (l=e,μ)
- Signal and background samples were processed through the full simulation, reconstruction analysis chain of the CMS detector
- For 1 fb⁻¹ we expect:
 - 7.1 signal and 0.4 background events for ZZ → 4e
 - 97 signal and 23 background events for WZ $\rightarrow\!3I$ Expect to establish those signals already in the first run
- Possibility to probe anomalous gauge couplings already with a few fb⁻¹

Reference

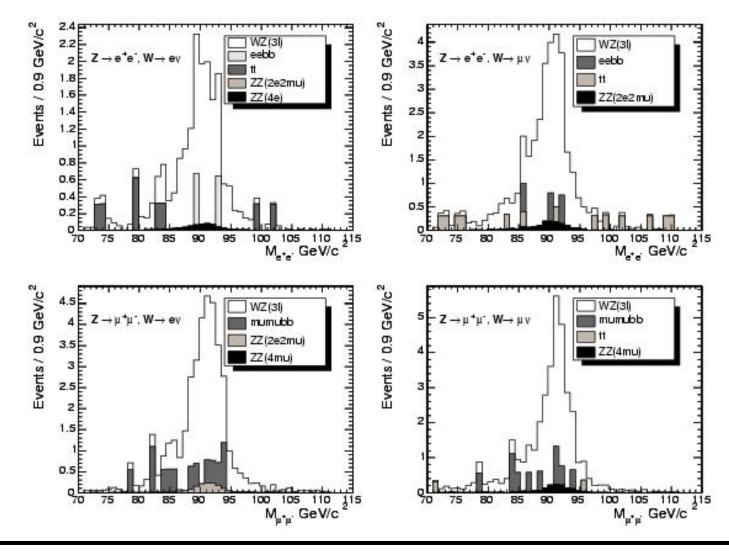

Study of Di-Boson Production with the CMS Detector at LHC, CERN-CMS Note 2006/108

WZ event

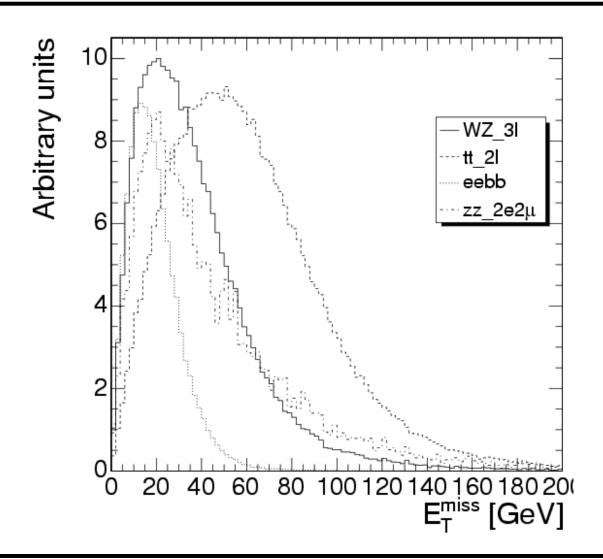




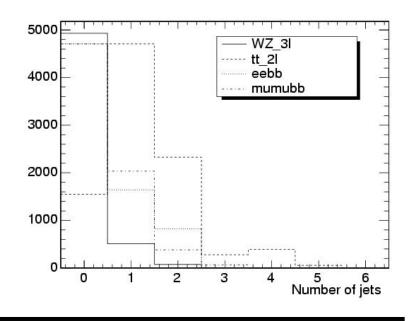
WZ & ZZ k-factors



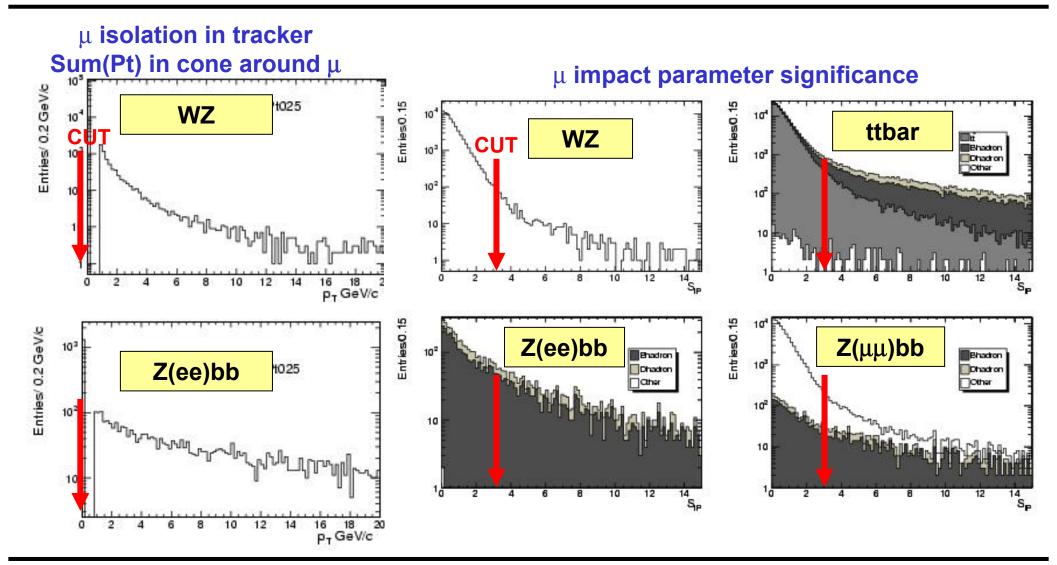
WZ yields by category

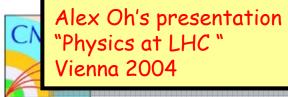


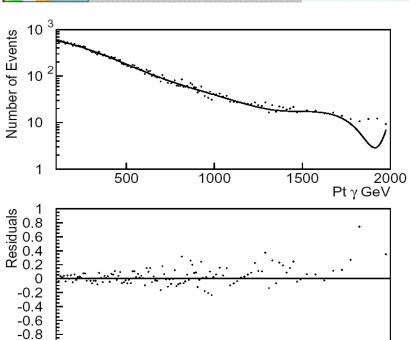
MET: why not use it?


No clear Signal / Background separation

WZ Event Selection




- Find 3 isolated electrons or muons p_t>10 GeV/c and |η|<2.5
- Form Z candidate
 - Combine same flavour opposite charge pair
 - $|M(I^+I^-) M_Z^{PDG}| < 20 \text{ GeV/c}^2$
 - Veto event if more than one Z candidate
- Find third lepton (from W)
 - $-P_t > 20 \text{ GeV/c}$
 - If more than one candidate, select the one
- No jet with E_t^{raw} > 25 GeV
 - Do not consider jets close to the 3 leptons



charged TGC

Strategy Wγ

- Binned log likelihood fit to $p_T(\gamma)$ distribution.
- Use parametrised p_T spectrum ($\Delta \kappa$, λ) from BHO NLO generator.

Luminosity	CMS P	redictions	TeV20	00 Predictions
$(\mathbf{f}\mathbf{b}^{-1})$	$\Delta \kappa$	λ	$\Delta \kappa$	λ
1	± 0.34	± 0.0034	± 0.4	± 0.12
10	± 0.17	± 0.0019	± 0.2	± 0.06
100	± 0.10	± 0.0009	-	-

$$\Lambda_{FF}=2TeV$$

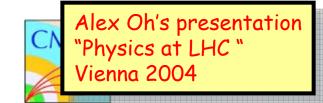
000.لک							
٦.550	-					Λ=2 Te\	v
0.004	-					95% CL	
0.002	- - -						
0	-	-	-			100 fb ⁻¹	
-0.002	-					10 fb ⁻¹	
-0.004	- -				1 = /	I fb ⁻¹	
-0.006 ₋₀).6	-0.4	-0.2	0	0.2	0.4	 0.6 Δκ

CMS NOTE 2001/056

LEP2 combined:

500

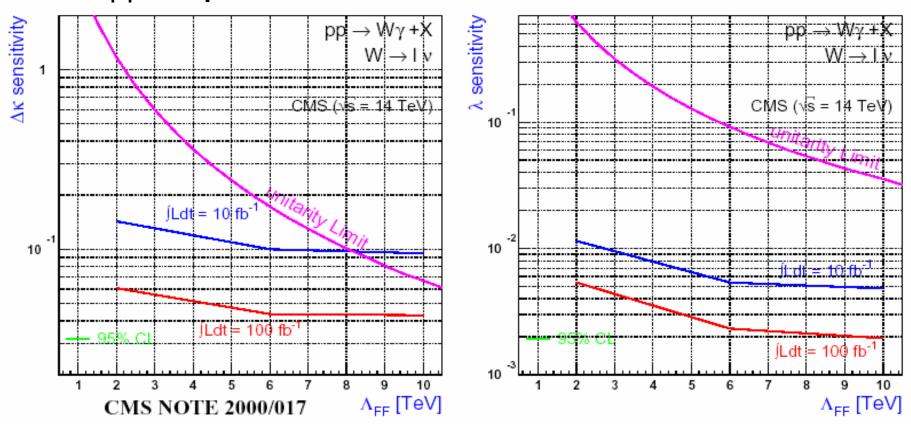
Parameter	68% C.L.	95% C.L.
$g_1^{ m Z}$	$0.991^{+0.022}_{-0.021}$	[0.949, 1.034]
κ_{γ}	$0.984^{+0.042}_{-0.047}$	[0.895, 1.069]
λ_{γ}	$-0.016^{+0.021}_{-0.023}$	[-0.059, 0.026]

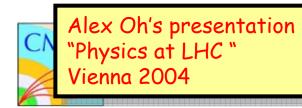

1000

1500

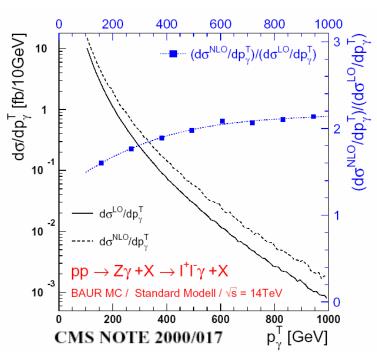
2000

Pt γ GeV

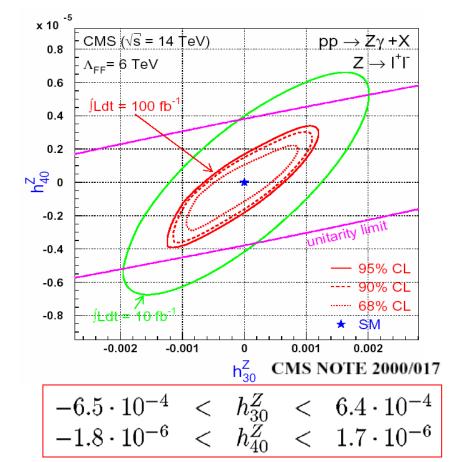

Limits with L=100fb⁻¹ improve by two orders of magnitude for λ_{γ} .

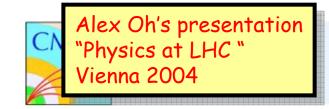


charged TGC


• Λ_{FF} dependence

neutral TGC

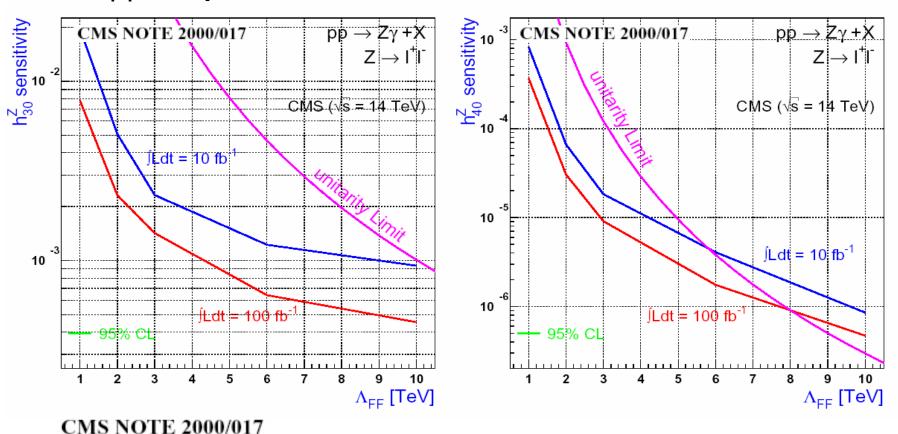

LEP2 combined:


h_3^Z	[-0.20,	+0.07]
h_4^Z	[-0.05,	+0.12]

Limits with L=100fb⁻¹ improve by 3(5) orders of magnitude for $h_3(h_4)$.

Zγ channel

- binned log likelihood fit to p_T(γ) distribution.
- NLO taken into account



neutral TGC

• Λ_{FF} dependence

