

Physics with LHCb

Matthew Needham CERN

On behalf of the LHCb collaboration

- Introduction
- Ingredients of physics analysis at LHCb
- Physics program
- Summary

LHC days in Split, 2nd – 7th October 2006

Motivation

- We expect to directly observe new physics at the LHC
 - Cosmological arguments: Dark Matter
 - Hierarchy problem: why is Higgs mass lot less than the Planck scale
- But building and elucidating a model for the new physics will not be easy
- New physics can give rise to new particles in loops
 - Possible deviations from standard model observables
- Indirect measurements can provide complementary information

The State of Play

- All measurements consistent with
 CKM matrix picture
- Effect of new physics small in the flavour sector is small?
- Consistency, compare measurements where NP effects expected with tree level measurements
- Clear avenues to explore:
 - Angle γ least constrained
 - CP violation in B_s oscillations

$$\sin 2 \beta = 0.674 + -0.026$$

$$\alpha = 93 + 11$$
 degree

$$\gamma = 71 \begin{array}{c} +22 \\ -30 \end{array}$$
 degree

LHCb Requirements

- Time-dependent measurements
- Working in the harsh environment of the LHC
- B events 1 % of the total cross-section
 - Selective trigger need

LHCb Geant4 simulation

Mass/pointing constraints to reduce

Good primary and secondary vertexing to determine proper time

The LHCb Detector

RICH system for PID

Tracking system

Event Simulation

- Detector perfomance and physics reach obtained with Monte Carlo
- Event generation using Pythia 6.3 with dedicated LHCb tuning
- Detailed GEANT4 simulation of the detector geometry
- Detector response from testbeams and tests of prototypes
- Reconstruction and pattern recognition
- Results using large MC samples generated for Data Challenge in 2004-2005
- Sensitivities are obtained using fast simulations with efficiencies, resolutions and background level from full simulations.

Trigger Strategy

~2 kHz

Visible collisions

 $L = 2 \cdot 10^{32} \, \text{cm}^{-2} \, \text{s}^{-1}$

L0: [hardware]
high Pt particles
calorimeter + muons
4 s latency

1 MHz readout

~1800 nodes farm

Exclusive selections
Inclusive streams

- Enhance the b content in sample
 - High Pt particles,
 - Displaced tracks
 - Increase b content: from 1% to 50-60%
- Different output streams from HLT
 - 200 Hz are dedicated to the exclusive selections of specific channels
 - Main stream for the core LHCb physics programme
 - Inclusive streams for calibration and data mining:
 - di-muon stream
 - D* stream
 - single muon

Flavour Tagging

Opposite side

- High Pt leptons
- K^{\pm} from $b \rightarrow c \rightarrow s$
- Vertex charge
- Jet charge

- Fragmentation K[±] accompanying B_s
- $-\pi^{\pm}$ from $B^{**} \rightarrow B^{(*)}\pi^{\pm}$

Figure of merit:

 $\varepsilon D^2 = \varepsilon (1-2\omega)^2$: tagging power

E: tagging efficiency

wrong tagging fraction

Tagging power in %

Tag	\mathbf{B}_{d}	B_{s}
Muon	1.1	1.5
Electron	0.4	0.7
Kaon opp.side	2.1	2.3
Jet/ Vertex Charge	1.0	1.0
Same side π/K	0.7 (π)	3.5(K)
Combined (Neural Net)	~ 5.1	~9.5

LHCb Physic Program

Dedicated b physics program. Ultimate physics goals:

- Bs mixing parameters: Δm_S , $\Delta \Gamma_S$ and ϕ_S
- α : e.g. with $B_d \rightarrow \pi^0 \pi^- \pi^+$
- β : e.g with $B_d \rightarrow J/\psi K_S$
- Measurements of with γ using different methods
- Rare decays
 - $B_S \rightarrow \mu\mu$ to the level of the SM prediction
 - Radiative penguin $B_d \to K^* \gamma$, $B_s \to \phi \gamma$, $B_d \to \omega \gamma$
 - Electroweak penguin $B_d \to K^{*0} \mu^+ \mu^-$
- and much more, e.g. B_c, charm physics (oscillations/CP violation)

Angle y

- Least well constrained CKM angle
- LHCb will measure in several channels
 - from $B_S \rightarrow D_S K$
 - from $B^0 \rightarrow D^0K^{*0}$
 - from $B^{\pm} \rightarrow DK^{\pm}$ using the ADS method
 - B⁺ \rightarrow D ${}^{0}K^{+}$ Dalitz (D ${}^{0}\rightarrow$ K_S π π ,K_SKK)
 - from $B^0 \rightarrow \pi^+\pi^-$ and $B_S \rightarrow K^+K^-$

Standard model γ

Sensitive to new physics

γ from $B_s \rightarrow D_s K$

- Interference between tree level decays via mixing
- $B_s^0 \left\{ \frac{\bar{b}}{s} \right\} C_s^{\bar{c}} \left\{ D_s^{\bar{c}} \right\} D_s^{\bar{c}}$

- Insensitive to new physics
- Measure $\gamma + \phi_S$
- ϕ s will be determined from $B_S \rightarrow J/\psi \phi$

- Main background comes from $B_s \rightarrow D_s \pi$
- Factor 10 higher branching ratio
- Suppressed using Kaon identification from RICH
- 5.4 k events expected with 2fb⁻¹ (1 year of data)
- Background from $B_s \rightarrow D_s \pi < 10 \%$
- S/B > 1 at 90% CL

γ from $B_s \rightarrow D_s K$

- Measuring the decay asymmetry requires resolving the Bs oscillations
- Excellent proper time resolution from vertex detector

Precision: $\sim 13^{\circ}$ on γ with 2fb⁻¹

γ from B[±] \rightarrow DK[±] (ADS Method)

- Measure relative rates of $B^- \to D(K\pi) K^-$ and $B^+ \to D(K\pi) K^+$
 - Two interfering tree B-diagrams, one colour-suppressed ($r_B \sim 0.077$)
 - Two interfering tree D-diagrams, one Double Cabibbo-suppressed ($r_D^{K\pi} \sim 0.06$)

Colour allowed

Double Cabbibo suppressed

Colour suppressed

Cabbibo favoured

- For these decays the reversed suppression of the D decays relative to the B decays results in much more equal amplitudes
- Large interference effects

• Simple counting experiment (no tagging, no proper time) measure:
$$\Gamma(B^- \to (K^-\pi^+)_D K^-) \propto 1 + (r_B r_D^{K\pi})^2 + 2r_B r_D^{K\pi} \cos\left(\delta_B - \delta_D^{K\pi} - \gamma\right)_{\bullet}$$

$$\Gamma(B^- \to (K^+\pi^-)_D K^-) \propto r_B^2 + (r_D^{K\pi})^2 + 2r_B r_D^{K\pi} \cos\left(\delta_B + \delta_D^{K\pi} - \gamma\right), \qquad \text{favoured \sim60k evts}$$

$$\Gamma(B^+ \to (K^+\pi^-)_D K^+) \propto 1 + (r_B r_D^{K\pi})^2 + 2r_B r_D^{K\pi} \cos\left(\delta_B - \delta_D^{K\pi} + \gamma\right)$$

$$\Gamma(B^+ \to (K^-\pi^+)_D K^+) \propto r_B^2 + (r_D^{K\pi})^2 + 2r_B r_D^{K\pi} \cos\left(\delta_B + \delta_D^{K\pi} + \gamma\right), \qquad \text{colour suppressed 0.5 k}$$

Precision: 4°- 13° with 2fb⁻¹

rncb Thcb

γ from B \rightarrow hh

- $B^0 \to \pi^+\pi^-$ originally proposed for measurement of angle
- But extraction of α is compromised by influence of penguin diagrams

- Measure time-dependent CP asymmetries for $B^0 \to \pi^+\pi^-$ and $B_s \to K^+K^ A_{CP}(t) = A_{dir} \cos(\Delta m \ t) + A_{mix} \sin(\Delta m \ t)$
- Extract four asymmetries:

$$\begin{split} A_{\rm dir}({\rm B}^{0} &\to \pi^{+}\pi^{-}) = f_{1}(d,\,\theta,\,\gamma) \\ A_{\rm mix}({\rm B}^{0} &\to \pi^{+}\pi^{-}) = f_{2}(d,\,\theta,\,\gamma,\,\beta) \\ A_{\rm dir}({\rm B}_{\rm s} &\to {\rm K}^{+}{\rm K}^{-}) = f_{3}(d',\,\theta',\,\gamma) \\ A_{\rm mix}({\rm B}_{\rm s} &\to {\rm K}^{+}{\rm K}^{-}) = f_{4}(d',\,\theta',\,\gamma,\,\chi) \end{split}$$

 $de^{i\theta}$ = ratio of penguin and tree amplitudes in $B^0 \to \pi^+\pi^$ $d'e^{i\theta'}$ = ratio of penguin and tree amplitudes in $B_s \to K^+K^-$

- Assume U-spin flavour symmetry (d \leftrightarrow s) d = d' and $\theta = \theta'$
- Take ϕ_{J} from $B_{d} \rightarrow J/\psi K_{S}$ and ϕ_{S} from $B_{S} \rightarrow J/\psi \phi$ solve for γ

γ from B \rightarrow hh

Use PID from RICH

- 26k $B_d \rightarrow \pi\pi$ events with 2fb⁻¹, B/S<0.7
- 37k $B_s \rightarrow KK$ events/year, $B/S=0.31\pm0.1$
- $\sigma(\gamma) \sim 5^{\circ}$ + uncertainty from U-spin symmetry breaking
- Sensitive to new physics

Measurement of ϕ_s

- $\bullet \phi_S$, Bs oscillation mixing phase
- ϕ_S is small in the standard model: $\phi_S = -\arg(V_{tS}^2) = -2\lambda^2 \eta \sim -0.04$ radian
- Sensitive probe for new physics: $\phi_S = \phi_S^{SM} + \phi_S^{NP}$
- ϕ_S is not yet measured: interesting probe of new physics
 - Unconstrained even with Δm_S measurement from CDF
- Measure from time dependent asymmetry measurement in b →ccs transitions
- For this measurement need Δm_S as input

CP Asymmetry in $B_S \rightarrow J/\psi \phi$,...

- $B_s \rightarrow J/\psi \phi$ is the counter part of the golden mode $B_d \rightarrow J/\psi K_S$
- High yield: 125 k signal events per year (before tagging)
- •Vector-Vector final state: Admixture of CP eigenstates
 - Angular analysis needed

- Pure CP eigenstates (e.g. $B_s \rightarrow J/\psi \eta$) can also be added
 - No angular analysis needed but total statistics low (12k events year)

CP Asymmetry in $B_S \rightarrow J/\psi \phi$,...

• Physics reach:

Channels	$\sigma(\phi_s)$ [rad]	Weight $(\sigma/\sigma_i)^2$ [%]
$B_s \rightarrow J/\psi \; \eta(\pi^+ \; \pi^- \; \pi^0)$	0.142	2.3
$B_s \rightarrow D_s D_s$	0.133	2.6
$B_s \rightarrow J/\psi \ \eta(\gamma \ \gamma)$	0.109	3.9
$B_s \to \eta_\mathrm{c} \phi$	0.108	3.9
Combined (pure CP eigenstates)	0.060	12.7
$B_s \rightarrow J/\psi \phi$	0.023	87.3
Combined (all CP eigenstates)	0.022	100.0

Sensitivity with 2fb⁻¹, $\Delta m_S = 17.5 \text{ ps}^{-1}$, $\phi_S = -0.04$, $\Delta \Gamma_S / \Gamma_S = 0.15$ 2 σ measurement of standard model value with 2 fb⁻¹

Measurement of $B_s \rightarrow \mu\mu$

- Flavour Changing Neutral Current
 - BR ~ $3.5 ext{ } 10^{-9}$ in SM, hadronic uncertainities small
 - sensitive to new physics: can be be enhanced in SUSY and other models
 - current limit from Tevatron (CDF): 1.0×10^{-7} at 95% CL
- LHCb expect 17 events 2 fb⁻¹
- No background events selected in sample of 33 million events but estimation limited by statistics
 - b $\rightarrow \mu$, b $\rightarrow \mu$ known to be main source of background

NP?

Physics Reach

1 year of LHCb running (2fb⁻¹):

	Channel	Yield*	B _{bb} /S	Precision
-	$B_s \rightarrow D_s K$	5.4k	<1	σ(γ) ≈ 14°
	$B_d \to \pi\pi$	26k	< 0.7	
	$B_s \rightarrow KK$	37k	0.3	σ(γ) ≈ <mark>6°</mark>
	$B_d \rightarrow D^0(K^-\pi^+)K^{*0}$	0.5k	<0.3	
	$B_d \rightarrow D^0(K^+\pi^-)K^{*0}$	2.4k	<2	σ (γ) ≈ 8°
	$B_d \rightarrow D_{CP}(K^+K^-)K^{*0}$	0.6k	<0.3	
	$B \rightarrow D^0(K \pi^+)K^-$	60k	0.5	
	$B \rightarrow D^0(K^+\pi^-)K^-$	2k	0.5	$\sigma(\gamma) \approx 5^{\circ}$
α	B _d →π ⁰ π ⁻ π ⁺	14k	0.8	σ(α) ≈ 10°
φς	B _s → J/ΨΦ	125k	0.3	
	B _s → J/Ψη	12k	2-3	$\sigma(\phi_s) \approx 2^\circ$
	$B_s \rightarrow \eta_c \Phi$ 3k 0.7			
Δms	$B_s \to D_s \pi$	80k	0.3	∆m₅ up to 68 ps ⁻¹
β	$B_d \rightarrow J/\Psi K_S$	216k	0.8	σ(sin2β) ≈ 0.022
rare	$B_d \rightarrow K^* \mu^+ \mu^-$	4.4k	<2.6	C7eff/C9eff with 13% error
decays	$B_s \rightarrow \mu^+\mu^-$	17	<5.7	NP search
	$B_d \rightarrow K^* \gamma$	35k	< 0.7	$\sigma(A_{CP}^{dir}) \approx 0.01$

NP?

NP?

Physics at Startup

2007: Commissioning with 450 GeV beam

• Detector calibration and alignment

2008: Expect to collect ~ 0.5 fb⁻¹

- Preparations for physics data taking:
 - Commissioning of HLT
 - Completion of momentum and particle ID calibration
- First physics includes:
 - ϕ_S with $B_S \rightarrow J/\psi \phi$ already with 0.2 fb⁻¹ can measure with accuracy of ~ 0.07
 - $B_S \rightarrow \mu\mu$ with 0.2 fb⁻¹ can exclude to 10^{-8} (same sensitivity as expected at Tevatron in 2009)
 - First CP Measurements: β with $B_d \rightarrow J/\psi K_S$
 - b and J/ψ production studies

rncb rhcb

Summary

- LHCb will collect high statistics samples of B hadrons
 - Including Bs and b baryons
- Measure CKM angles with increased precision
 - $\sigma(\gamma) \sim 5^{\circ}$ with 2 fb⁻¹
- Measure precisely the Bs oscillation parameters
 - ϕ_8 to accuracy of 0.02
- Search for rare decays such as $B_s \to \mu\mu$
- And much more

LHCb offers an excellent opportunity to spot New Physics signals beyond the Standard Model