Tevatron results on Electroweak, Top and Higgs

Avio Kharchilava (State University of New York at Buffalo) for the CDF and DØ Collaborations

"LHC days in Split"

October 2006

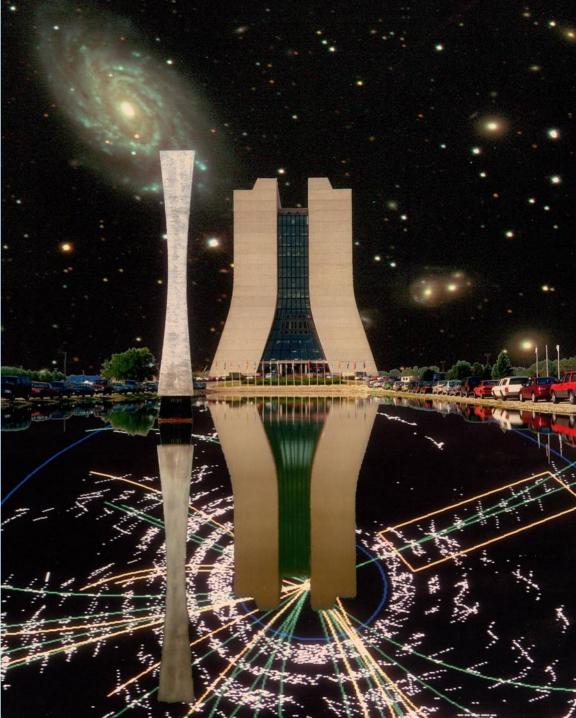
Outline

Introduction

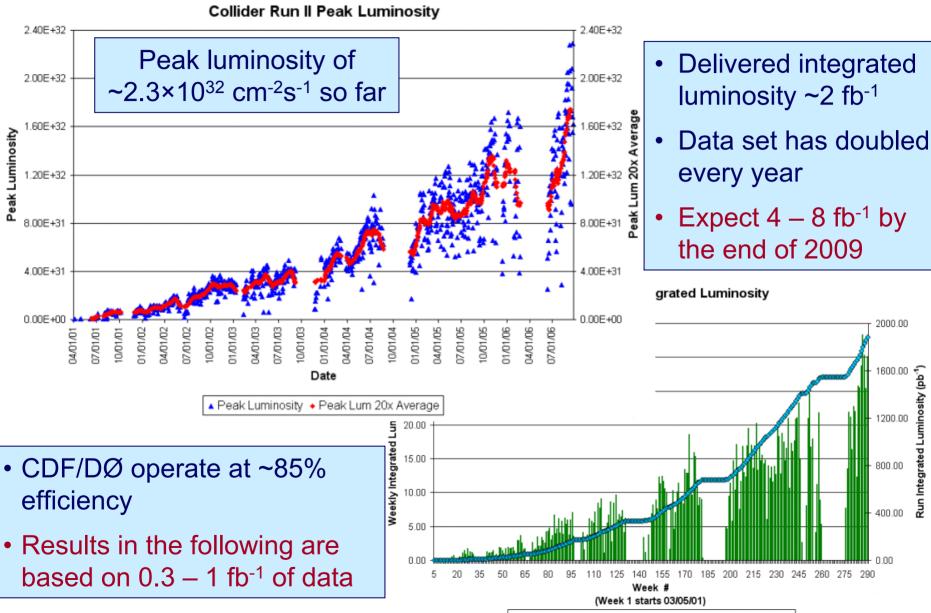
- Tevatron, CDF and DØ

Electroweak measurements

- W and Z properties
- Di-boson production

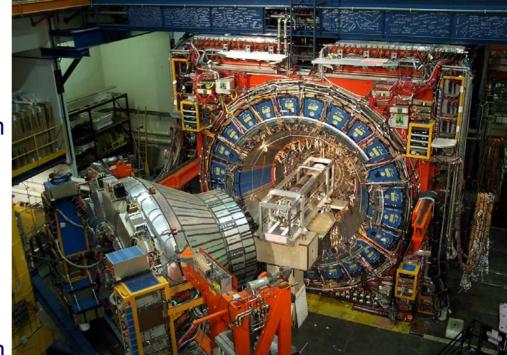

• Top physics

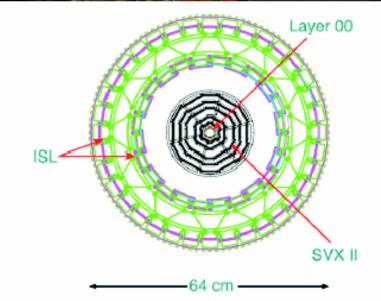
- Cross section, mass, charge
- Single top


Higgs searches

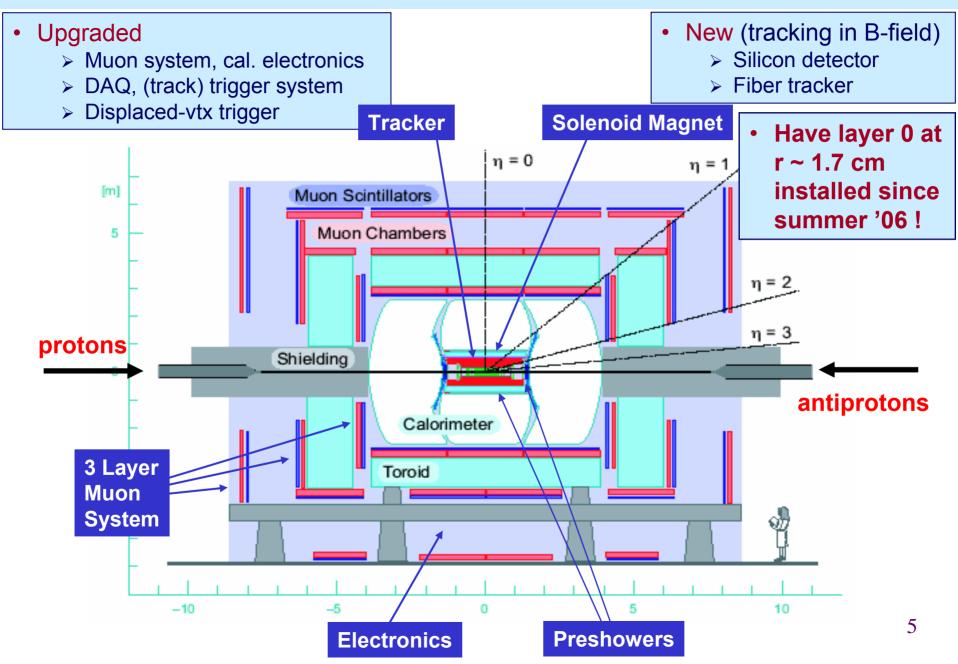
- The SM
 - ZH \rightarrow vvbb
 - WH \rightarrow evbb
 - WH \rightarrow WWW* $\rightarrow \ell^{\pm}\ell^{\pm}X$
 - $H \rightarrow WW^* \rightarrow \ell^+ \ell^- \nu \nu$
 - $ttH \rightarrow W(\rightarrow \ell_V)W(\rightarrow jj)bbbb$
- SUSY
 - bh/bbh(→bb)
 - $h \rightarrow \tau \tau$

Summary

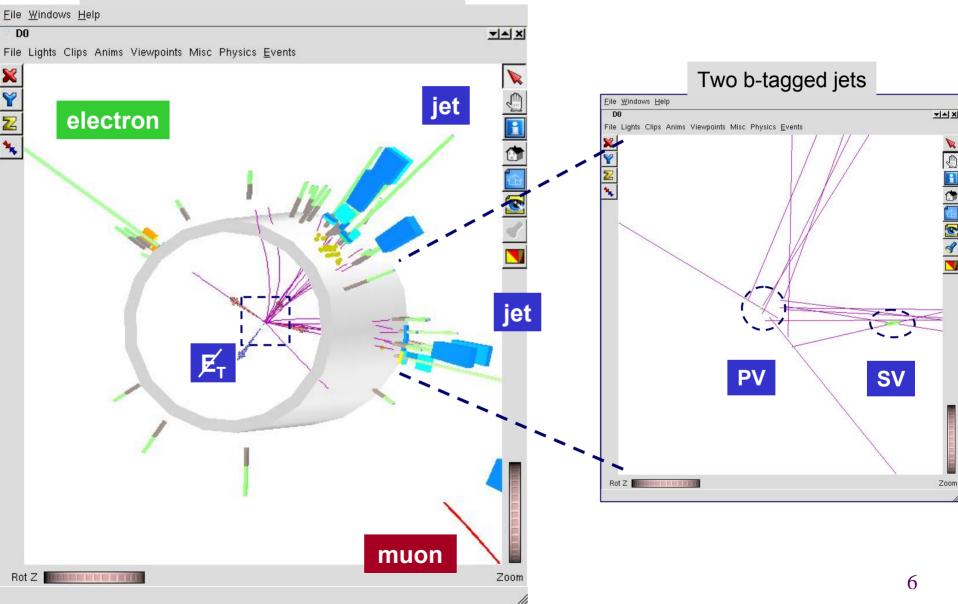

Tevatron peak and integrated luminosities, Sep '06



Weekly Integrated Luminosity --- Run Integrated Luminosity


The upgraded CDF II

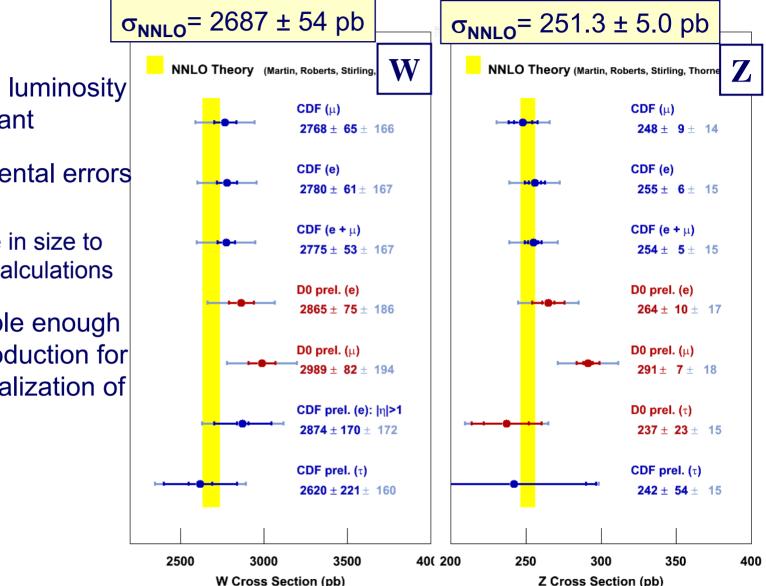
- Major upgrades for Run II:
 - Drift chamber: COT
 - Silicon: SVX, ISL, L00 at r ~ 1.5 cm
 - 8 layers
 - 700 k readout channels
 - 6 m²
 - material:15% X₀
 - Forward calorimeters
 - Forward muon system
 - Improved central muon system
 - Time-of-flight
 - Preshower detector
 - Timing in EM calorimeter
 - Trigger and DAQ



The upgraded DØ detector in Run II

... and how it works

Run / event: 169261 / 6854840


Electroweak measurements

W and Z bosons

proton proton Along with many interesting physics topics, W and Z provide excellent calibration signals for - Electron energy scale tiprotor antiproton Track momentum scale Lepton ID & trigger efficiencies – Missing E_{τ} resolution - Luminosity Z selection Electron Muon Two isolated leptons with E_T > 20 GeV Electron, muon, tau Neutrino Muon Underlying even Underlying event W selection Hadronic recoil Hadronic recoil One isolated lepton with E_{T} > 20 GeV – Large missing E_T >20 GeV due

to escaping neutrinos

W and Z production cross section

- Uncertainty on luminosity
 ~ 6% is dominant
- Other experimental errors
 ~ 2%
 - Comparable in size to theoretical calculations
- Is theory reliable enough to use W/Z production for absolute normalization of luminosity ?

W charge asymmetry

- Typically the u quark carries more of the proton momentum \rightarrow W⁺ is boosted in the direction of the proton
- **DØ:** Isolated μ , $p_T > 20$ GeV in $|\eta| < 2$, $E_{\tau}^{miss} > 20 \text{ GeV}, M_{\tau} > 40 \text{ GeV}$
- **CDF:** Isolated e, $p_T > 25$ GeV in $|\eta| < 2.5$, $E_{T}^{miss} > 25 \text{ GeV}, 50 < M_{T} < 100 \text{ GeV}$
- Charge mis-id ~ 0.01% (μ) and ~ 1% (e)

asymmetry

0.2

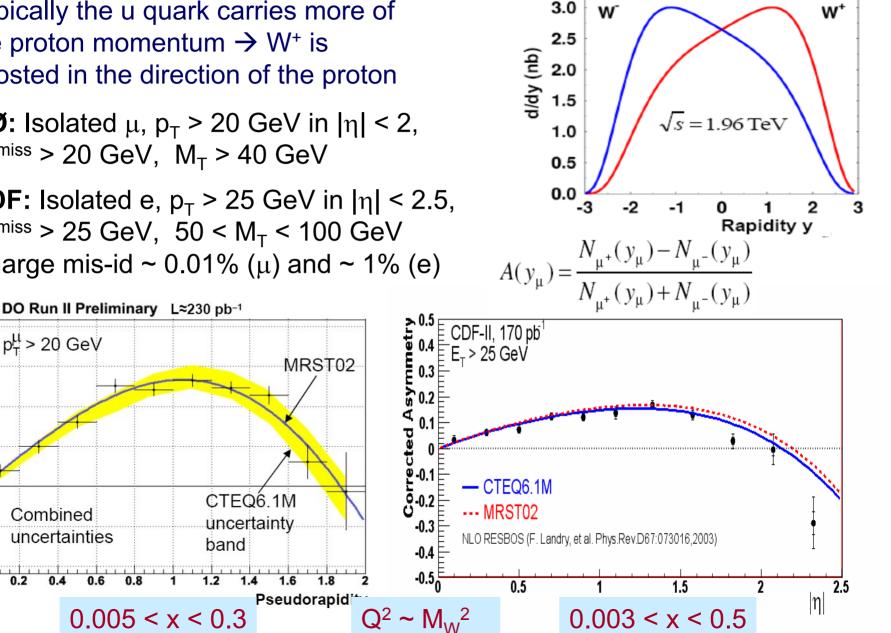
0.15

0.

0.05

-0.05

-0.1


 $p_{T}^{\mu} > 20 \text{ GeV}$

Combined

0.2

uncertainties

0.8

Di-boson production

p

 \bar{p}

- Measure cross sections and anomalous couplings
 - Probe non-Abelian nature of SU(2)_L⊗U(1)_Y gauge boson selfinteractions
 - Rate inconsistent with the SM expectation would indicate new physics
- Excursions from the SM can be described via effective Lagrangian:

$$L_{WWV}g_{WWV} = g_{V}^{T}(W_{\mu\nu}^{*}W^{\mu}V^{\nu} - W_{\mu}^{*}V_{\nu}W^{\mu\nu})$$

+ $\kappa_{V}W_{\mu}^{*}W_{\nu}V^{\mu\nu} + \frac{\lambda_{V}}{M_{W}^{2}}W_{\lambda\mu}^{*}W_{\nu}^{\nu}V^{\nu\lambda}$
• In SM:
• 0

 $g_V \equiv K_V \equiv I, \quad \Lambda_V$

$$q = \frac{q}{q}, Z, W$$

$$W, Z$$

$$q = \frac{q}{q}, Z, W$$

$$W, Z$$

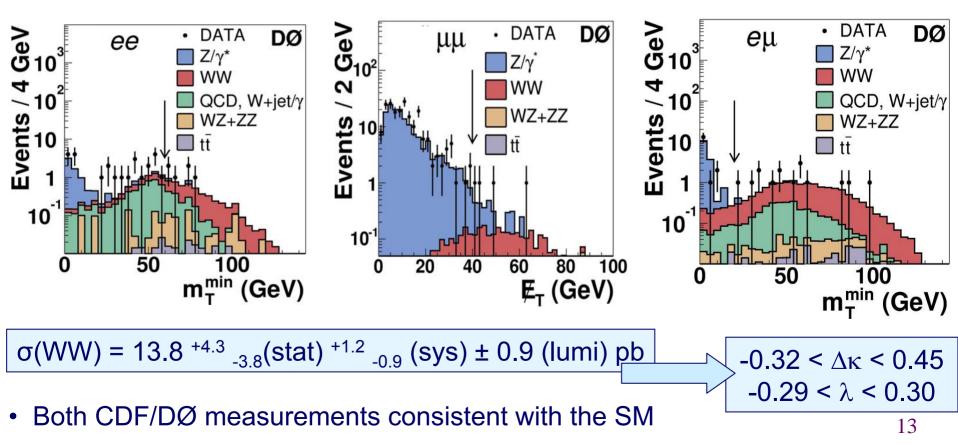
$$q = \frac{q}{q}, W, Z$$

$$W, Z$$

$$W,$$

where
$$V = Z$$
, γ

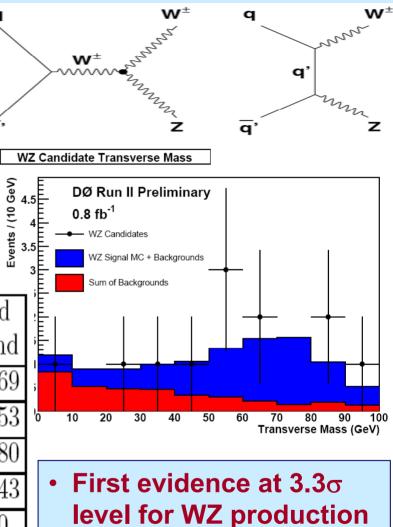
Determine deviation from SM values: $\Delta g_V^1 = g_V^1 - 1, \quad \lambda_V, \quad \Delta \kappa_V = \kappa_V - 1_{11}$


CDF: WW $\rightarrow \ell\ell + E_T^{miss}$ cross cection

CDF II Preliminary (825 pb⁻¹) Event selection rents/0.3 Data 16 • 2 opposite-sign leptons, e/μ , $p_T > 20 \text{ GeV}$ ww WZ+ZZ 14 • Missing transverse energy, MET > 25 GeV tt 12 • If both leptons are same flavor and $76 < M_{_{II}} < 106^{-10}$ Wγ 10 Drell-Yan GeV \rightarrow require MET/ $\sqrt{(\Sigma E_T)} > 3.0$ 8 • $\Delta \phi$ (MET, nearest ℓ) > 0.3 if MET < 50 GeV • No jets with $E_T > 15$ GeV in $|\eta| < 2.5$ • Observe 95 events; expect 52.4 ± 4.3 WW and 37.8 ± 4.8 bkgd. events 0.5 1.5 2 2.5 1 3 n min(((I,∉_T)) Mode 11 ee eμ μμ WW $12.8 \pm 0.1 \pm 1.1$ $28.8 \pm 0.1 \pm 2.4$ $10.7 \pm 0.1 \pm 0.9$ $52.4 \pm 0.1 \pm 4.3$ Drell-Yan $5.0 \pm 0.5 \pm 1.3$ $3.8 \pm 0.4 \pm 1.0$ $3.0 \pm 0.4 \pm 0.8$ $11.8 \pm 0.8 \pm 3.1$ tī $0.1 \pm 0.0 \pm 0.0$ $0.0 \pm 0.0 \pm 0.0$ $0.2 \pm 0.0 \pm 0.0$ $0.1 \pm 0.0 \pm 0.0$ $3.6 \pm 0.0 \pm 0.4$ $0.9 \pm 0.0 \pm 0.1$ $3.4 \pm 0.0 \pm 0.3$ $7.9 \pm 0.0 \pm 0.8$ WZ + ZZWγ $3.2 \pm 0.1 \pm 0.7$ $0.0 \pm 0.0 \pm 0.0$ $6.8 \pm 0.2 \pm 1.4$ $3.6 \pm 0.1 \pm 0.7$ $3.0 \pm 0.2 \pm 0.7$ $6.7 \pm 0.4 \pm 2.0$ $1.3 \pm 0.2 \pm 0.5$ $11.0 \pm 0.5 \pm 3.2$ W+jets $15.2 \pm 0.6 \pm 1.7$ $14.8 \pm 0.6 \pm 2.3$ $7.8 \pm 0.4 \pm 1.0$ $37.8 \pm 0.9 \pm 4.7$ Sum Bkg $18.5 \pm 0.4 \pm 1.3$ $90.2 \pm 0.9 \pm 6.4$ $28.0 \pm 0.6 \pm 2.0$ $43.7 \pm 0.6 \pm 3.3$ Expected Data 29 47 19 95

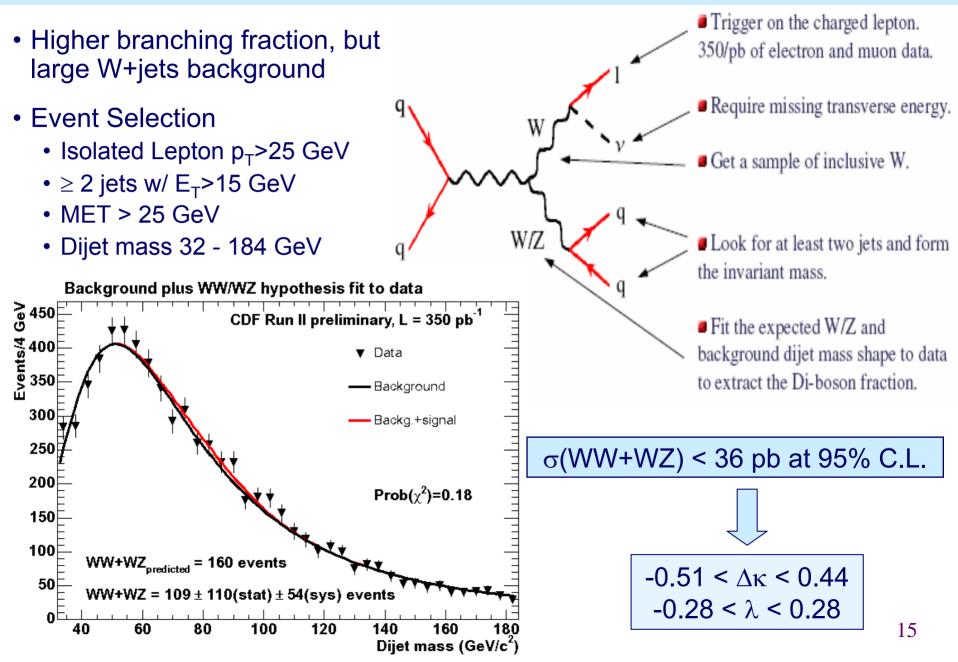
 σ = 13.6 \pm 2.3 (stat) \pm 1.6 (sys) \pm 1.2 (lumi) pb

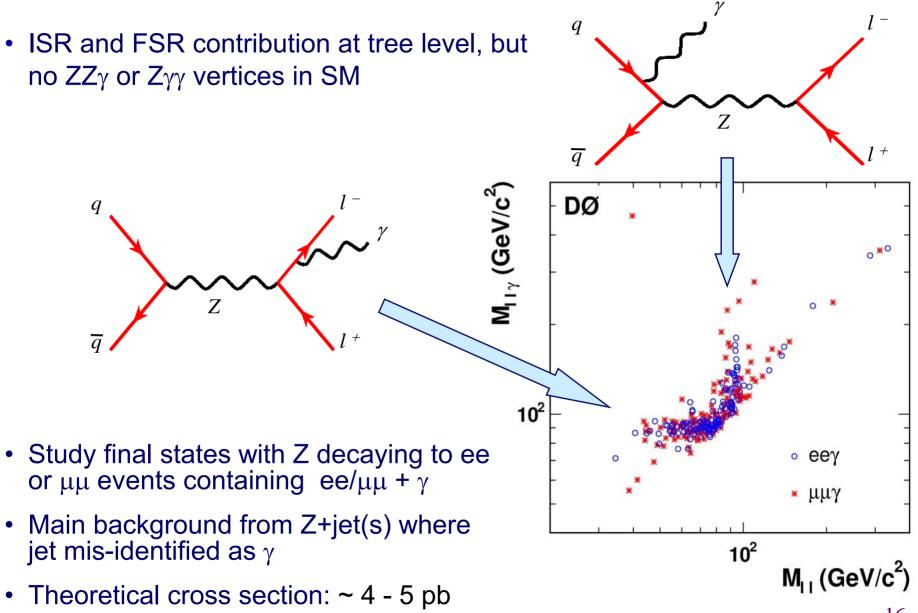
DØ: WW $\rightarrow \ell\ell + E_T^{miss}$ cross section


- Look for two oppositely charged leptons, e/μ plus missing E_T
- DØ and CDF selection for WW signal are similar
- Found 25 (6 ee, 4 $\mu\mu$, 15 e μ) candidates in ~ 240 pb⁻¹
- Expected bkgd 8.1 ± 0.6 (stat) ± 0.6 (sys) ± 0.5 (lumi)
- First 5.2σ observation of WW production at the Tevatron

DØ: WZ \rightarrow 3 ℓ (ℓ =e, μ) production

- Direct probe of the WWZ trilinear coupling
- Select 2 leptons $ee/\mu\mu$, $p_T > 15 GeV$
- E_T^{miss} > 20 GeV
- Additional high p_T lepton
- Reject top events by $E_T^{HAD} < 50 \text{ GeV}$
- Instrumental bkgd: Z+j from data
- Physics bkgd: ZZ, top, W+DY


Decay	Number of	Overall	Expected	Estimated	ـــــــــــــــــــــــــــــــــــــ
Channel	Candidates	Ŷ)	Background	
eee				$0.960 {\pm} 0.069$	
$ee\mu$				$0.485 {\pm} 0.053$	0 10
$\mu\mu e$	7	$0.175 {\pm} 0.043$	$1.77 {\pm} 0.66$	$0.963 {\pm} 0.080$	
$\mu\mu\mu$	2	$0.205 {\pm} 0.033$	$2.04 {\pm} 0.54$	$1.203 {\pm} 0.143$	
Total	12	-	7.5 ± 1.36	$3.61 {\pm} 0.20$	le

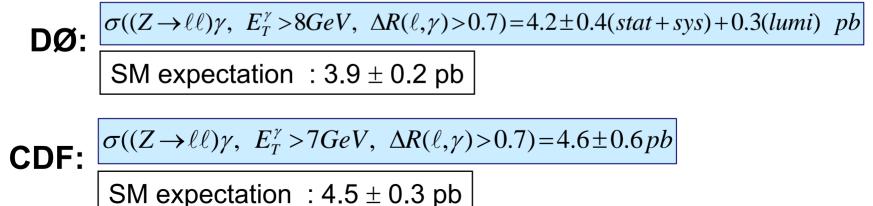

$$σ = 3.9 + 1.9 - 1.5 pb$$

 $σ_{SM} = 3.7 \pm 0.3 pb$

CDF preliminary with 825 pb⁻¹ of data: σ < 6.35 pb at 95% CL

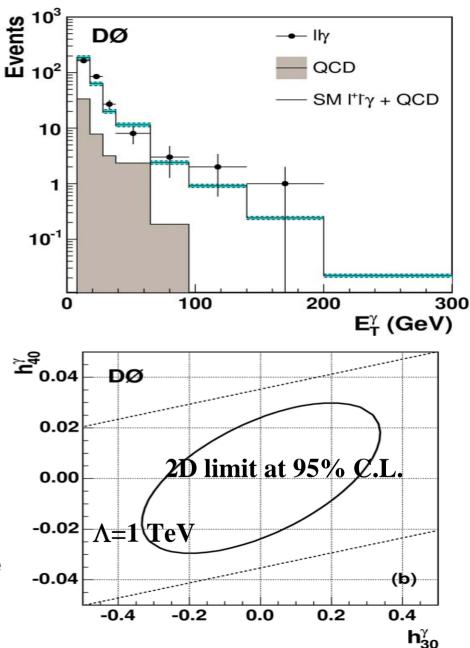
CDF: WW/WZ $\rightarrow \ell_{\rm Vjj}$ cross section

$Z\gamma$ production

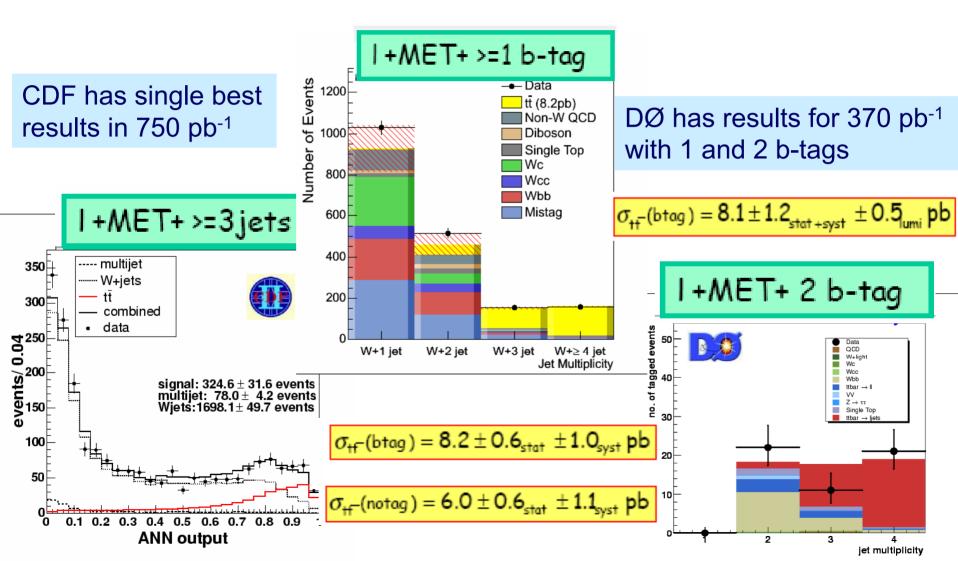

Z_γ production

Channel	ееү	μμγ	eeγ	μμγ
$\int L dt, pb^{-1}$	324	286	202	192
SM Ζγ	109 ± 7	128 ± 8	31.3 ± 1.6	33.6 ± 1.5
Total bkgd	23.6 ± 2.3	22.4 ± 3.0	2.8 ± 0.9	2.1 ± 0.7
Observed	138	152	36	35
Α×ε	11.3%	11.7%	3.4%	3.7%
$\sigma \times BR$, pb	-	-	4.8±0.8±0.3	4.4±0.8±0.2

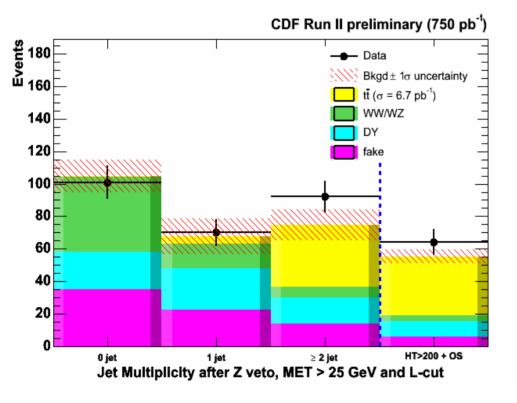
Cross section from combined electron and muon channels


Zγ: AC limits from DØ

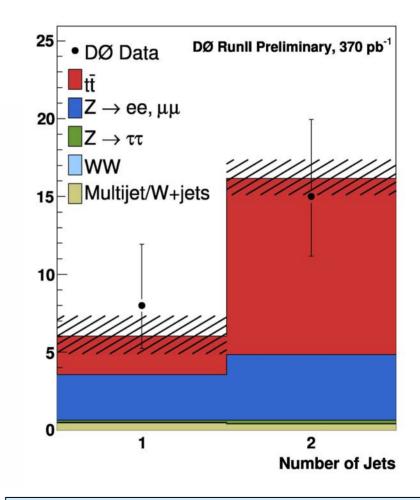
- $h_{10}^{V}, h_{20}^{V}, h_{30}^{V}, h_{40}^{V} (V=Z,\gamma)$
- All of these = 0 in SM
- Photon E_T sensitive to presence of anomalous coupling


1D limits at 95% C.L. for Λ =1 TeV | $h^{\gamma}_{10, 30}$ |< 0.23, | $h^{\gamma}_{20, 40}$ |< 0.019 | $h^{Z}_{10, 30}$ |< 0.23, | $h^{Z}_{20, 40}$ |< 0.020

Some are most stringent limits to date


Top physics

- Golden channel due to high yield and relative purity (after b-tag)
- Are used in top property measurements, single top and Higgs searches

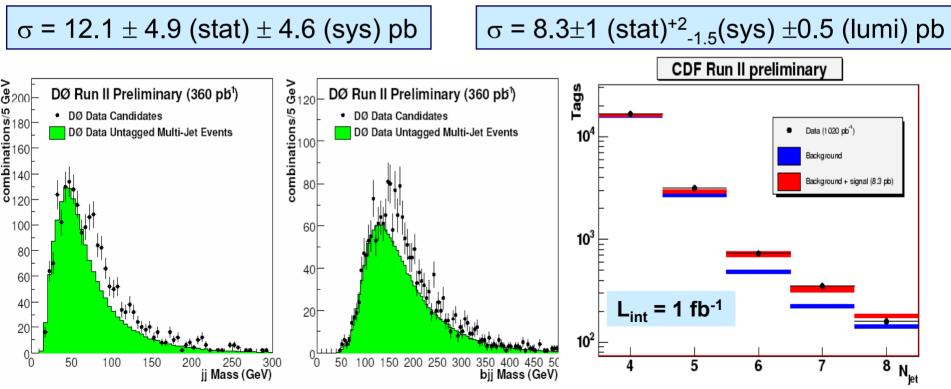


Di-lepton final states

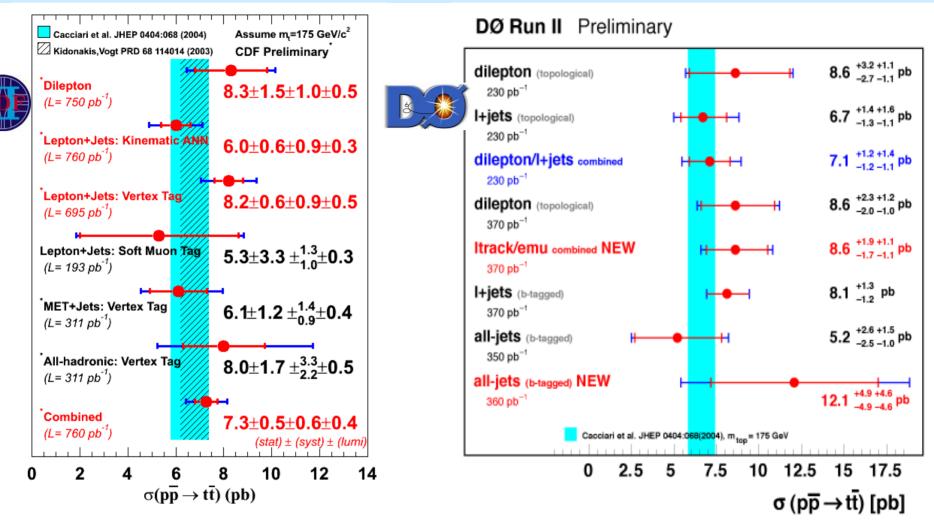
- Signal to background ratio already good enough with ℓ + MET + ≥2 jets
- Even more pure sample with b-tagging

 σ_{H} (notag) = 8.3 ± 1.5_{stat} ± 1.0_{syst} ± 0.5_{lumi} pb

 $\sigma(t\bar{t}) = 8.6^{+1.9}_{-1.7}(stat) \pm 1.3(syst)pb$

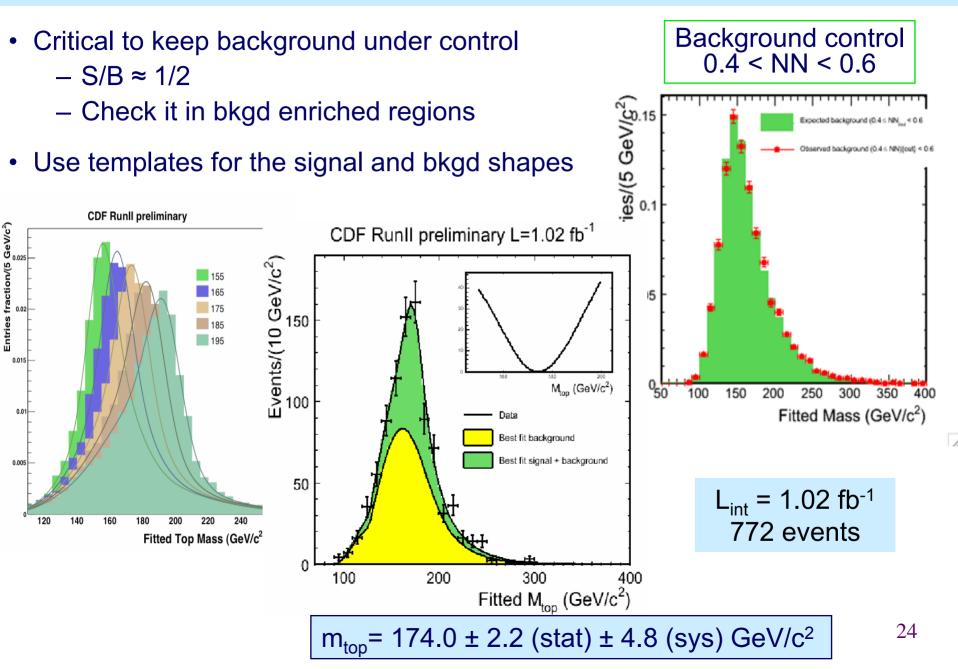

Cross section in all hadronic final states

- Start from a sample \geq 6 jets \rightarrow QCD multi-jet bkgd is huge
- Combine topological selection and b-tagging
- Evaluate the background (shape) from data



- Require 2 b-tags
- Fit the (un-tagged) di-jet and one b-tagged 3-jet distributions

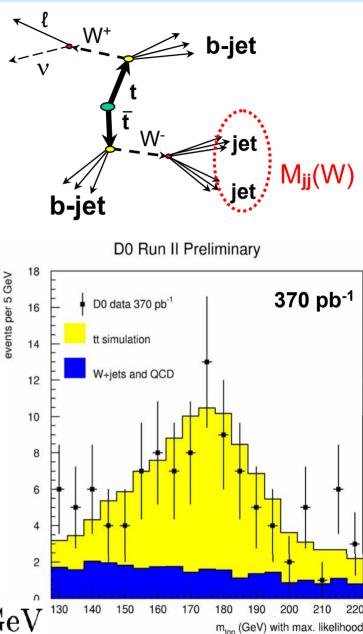
- NN discriminates between top and multi-jet bkgd
- Control in pre-tag sample and 4- and 5-jet bins


tt cross section summary

- Different channels and techniques all in agreement
- Precision at 14%. No combined result as of yet

Tevatron goal: 10% uncertainty/experiment with 2 fb⁻¹

CDF: top mass in all-jets final state

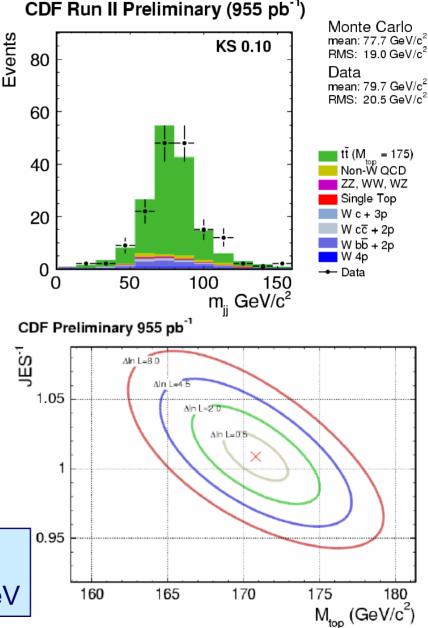

DØ: top mass in *l*+jets channel using ideogram method

Method

- Calculate a likelihood for each event based on kinematic fit that includes all possible jet assignments and probability that an event is signal or background
- Use b-tag information when available
- In situ calibration of JES using jets from W
- Selections
 - Lepton $p_T > 20$ GeV, MET > 20 GeV, ≥4jets with $p_T > 20$ GeV and $|\eta| < 2.5$

	electron+jets	muon+jets			
no. of events observed in data	116	114			
estimated sample composition:					
$t\bar{t}$	61.5 ± 8	45.6 ± 8			
W+jets	$35.6~\pm~5$	63.0 ± 8			
QCD	18.9 ± 3	5.4 ± 1			

 $m_{\rm t} = 173.7 \pm 4.4 \; ({\rm stat} + {\rm JES})^{+2.1}_{-2.0} \; ({\rm syst}) \; {\rm GeV}$

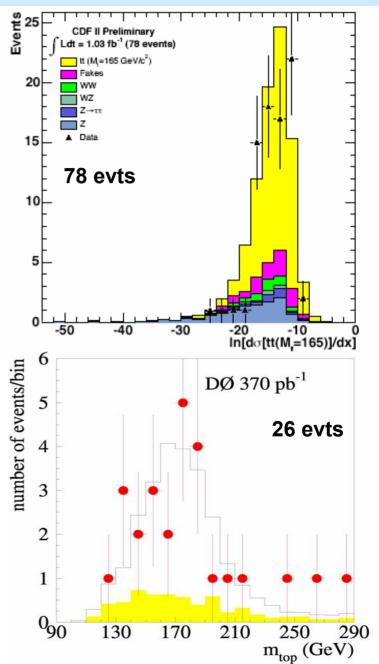


CDF: top mass in *l*+jets channel using ME method

- Matrix Element method
 - Calculate likelihood for each event using LO ME for tt and W+jets diff. cross section and parameterized parton showering
- Select events with ≥1 b-tag
 - Signal/Background = 4/1
- One unknown, three constraints
 Overconstrained
- Add jet energy scale as the 2nd unknown and fit for it
 - Obtain $\triangle JES = 0.99 \pm 0.02$
 - Consistent with a priori knowledge
 - Uncertainty only 2% !

Single most precise measurement:

 m_{top} = 170.9 ± 2.2 (stat+JES) ± 1.4 (sys) GeV

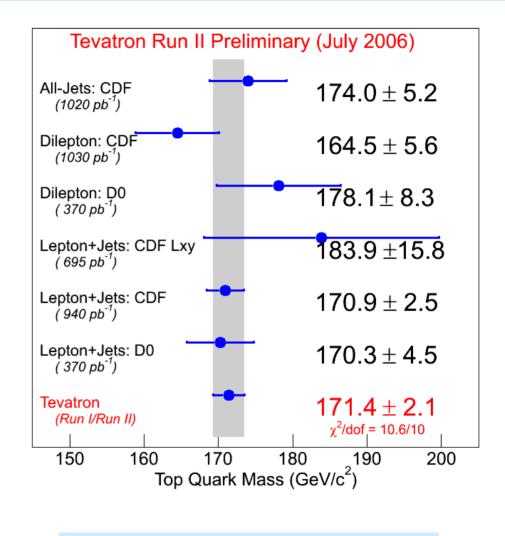


Top mass in di-lepton final states

- Underconstrained system
 - 2 neutrinos, 18 kinematic quantities
 - 14 measured + 3 constraints
- Both experiments use (among others)
- ME technique
 - Calculate event-by-event signal probability curve (rather than single m_{rec}) using decay matrix element and transfer functions
- Neutrino weighting technique
 - Start by ignoring observed missing E_T , assume top mass and η for each v and extract v 4-momenta. Weight each solution

CDF's best result with ee, $e\mu$ and $\mu\mu$: m_{top}=164.5±3.9 (stat) ±3.9 (sys) GeV

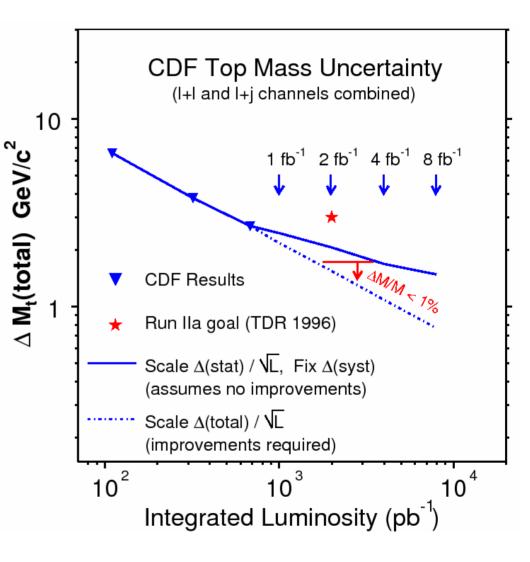
DØ's resent with ee, eµ, µµ and ℓ +track: m_{top}= 178.1±6.7 (stat) ±4.8 (sys) GeV



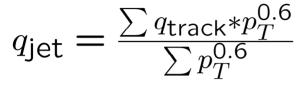
Top mass summary (July 2006)

- Excellent results in each channel
- Combine CDF + D0, Run I + Run II
- Account for all correlations
- m_{top} = 171.4 + 2.1 GeV
- Uncertainty:

 $\delta m_{top}(stat) = \pm 1.2 \text{ GeV}$ $\delta m_{top}(JES) = \pm 1.4 \text{ GeV}$ $\delta m_{top}(syst) = \pm 1.0 \text{ GeV}$

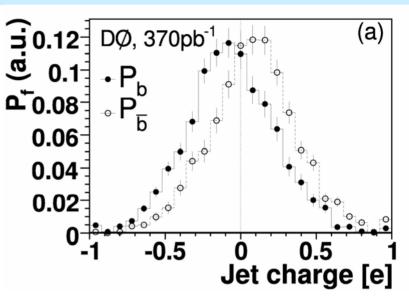

- Contributing factors
 - ISR, FSR, bkgd evaluation, PDF, NLO effects, b-tagging
- Jet Energy Scale is the leading systematic in all channels

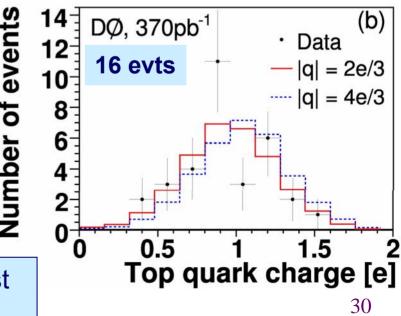
m_{top} determined to 1.2% !


Top mass: prospects

- Extrapolations based on present methods
 - Solid: pessimistic
 - Dash: optimistic
 - Reality: in between
- Have surpassed Run II goal
- The top mass at the Tevatron will be measured with < 1% precision

DØ: top quark charge

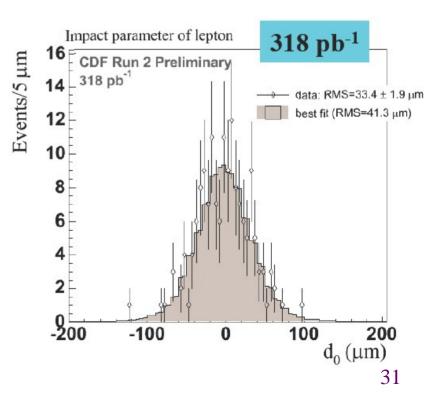

- t \rightarrow Wb could mean top has charge 4/3
- Jet charge estimator



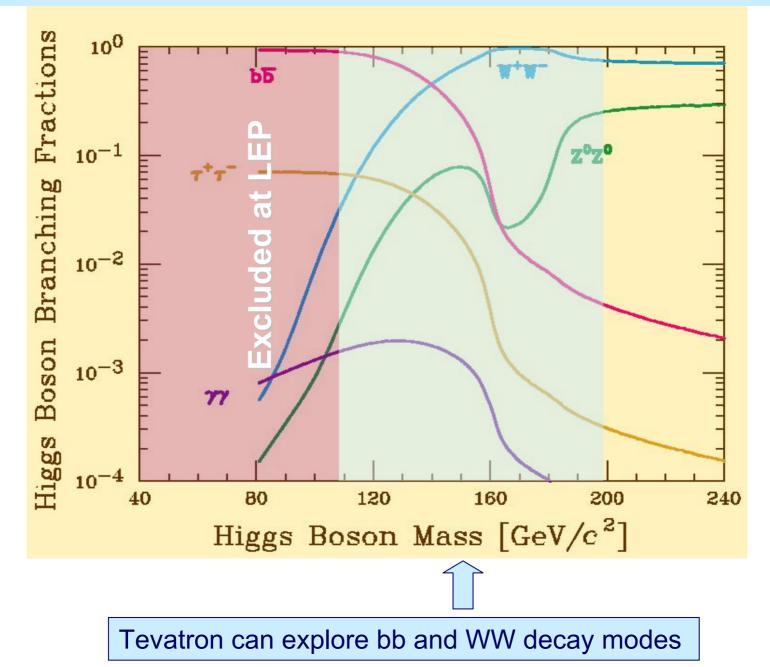
- b/c jet charge distributions derived from data → use them in simulations
- *l*+jet sample of double b-tag tt candidates
 - Use kinematic/mass constraint fit to pair lepton with the correct b jet
- Have two entries per event:

 $\begin{array}{l} Q_1 = |q_\ell + q_{b\ell}| & \leftarrow \text{ leptonic side of the evt} \\ Q_2 = |-q_\ell + q_{bh}| & \leftarrow \text{ hadronic side of the evt} \end{array}$

Exclude at 92% CL that the sample consist of only QQ pairs with charge |q| = 4e/3

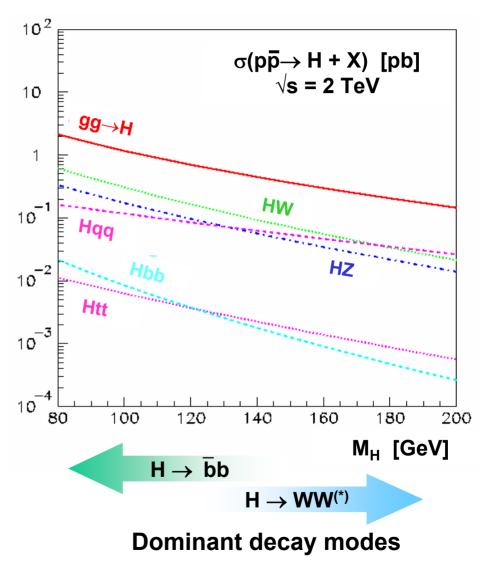


Other active top topics (not discussed here)


- Single top production
 - Current limits approach the SM expectations: $\sigma(t) < 2.9$ pb, $\sigma(s) < 3.2$ pb
 - The next step would be the observation, cross section measurement \rightarrow V_{tb}
- W helicity in top decays
 - SM: longitudinal fraction $f_0 \sim 0.7$, right-handed fraction $f_+ \sim 10^{-4}$
 - Several methods: lepton p_T , M_{lb}^2 , $\cos\theta^*$
 - $f_0 = 0.606 \pm 0.12(stat) \pm 0.06(sys)$ assuming f₊= 0; f₊< 0.09 at 95% CL
- BR(t \rightarrow Wb) / BR(W \rightarrow Wq)
 - 1.03 +0.19 -0.17
- Top quark lifetime
 - cτ < 52.5 μm (~1.8×10⁻¹³ s) at 95% CL
- Search for tt resonances
 m(X) > 725 GeV at 95% CL
- 4th generator t' quark

 m(t') > 258 GeV at 95% CL
- Search for W' \rightarrow tb decays
 - $m(W'_L/W'_R) > 610/630 \text{ GeV} \text{ at } 95\% \text{ CL}$

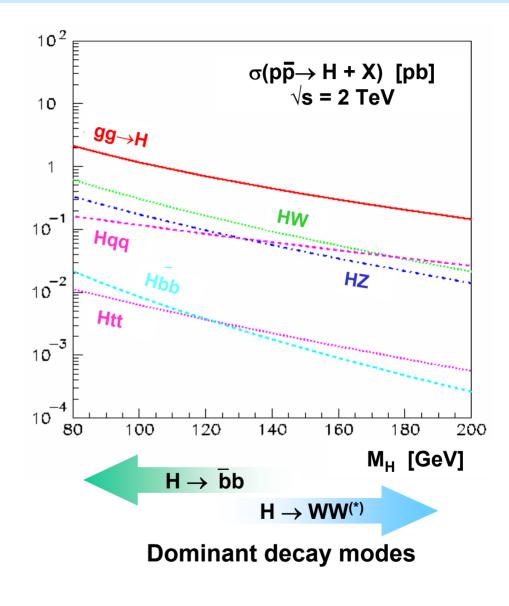
Higgs searches


The SM Higgs boson decays

Higgs search strategies: low mass region

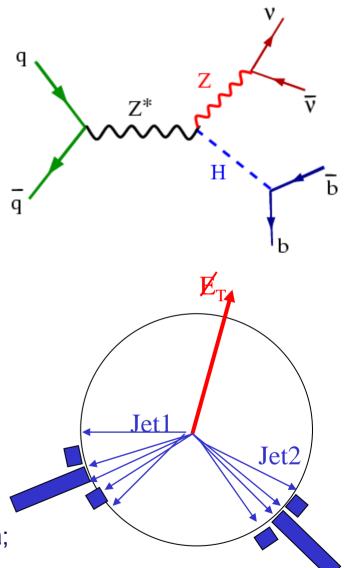
$M_H < 135 \text{ GeV}: H \rightarrow bb$

- Higgs produced in gluon fusion has too large QCD/bb background
- Search for (W/Z)H production where W/Z decay leptonically
 - qq' → W* → WH → ℓ_V bb
 - Bkgd: Wbb, WZ, tt, single top
 - qq → Z^{*} → ZH → $\ell^+\ell^-$ bb
 - Bkgd: Zbb, ZZ, tt
 - qq → Z^{*} → ZH → vvbb
 - Bkgd: QCD, Zbb, ZZ, tt
- Search for ttH associated production
 - Final states with ℓ+ ≥5 jets
- Identify leptons (e/µ) and missing transverse energy from neutrinos
- Tag b-jets
- Disentangle H → bb peak in di-b-jet mass spectrum

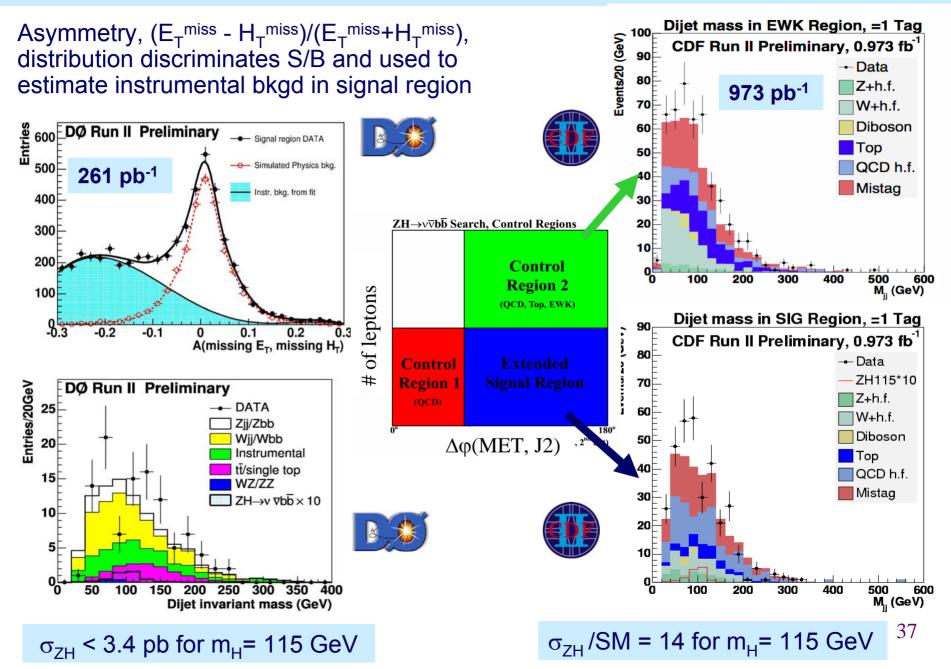

Higgs search strategies: high mass region

 $M_{H} > 135 \text{ GeV}: H \rightarrow W^{+}W^{-}$

- Higgs production in gluon fusion and leptonic decays of W's
 - gg \rightarrow H \rightarrow WW* \rightarrow $\ell^+\nu\ell^-\nu$
 - Bkgd: Drell-Yan, WW, WZ, ZZ, tt, tW, ττ
- Identify leptons (electrons/muons) and missing transverse energy from neutrinos
 - Explore angular correlations to separate signal from background

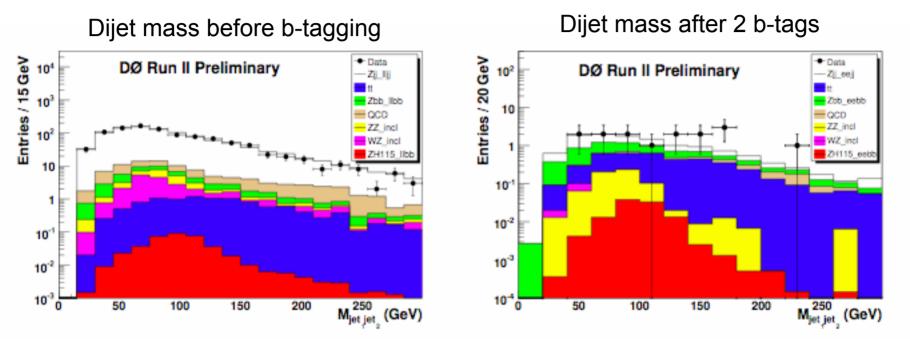

 $M_{\rm H} < 200 {
m ~GeV}$

- WH associated production
 - $\mathsf{WH} \rightarrow \mathsf{WWW}^* \rightarrow \ell^{\pm} \nu \ell^{\cdot \pm} \nu^{\cdot} + \mathsf{X}$
 - Bkgd: Charge flips, QCD, WZ, ZZ



$ZH \rightarrow vvbb$ searches

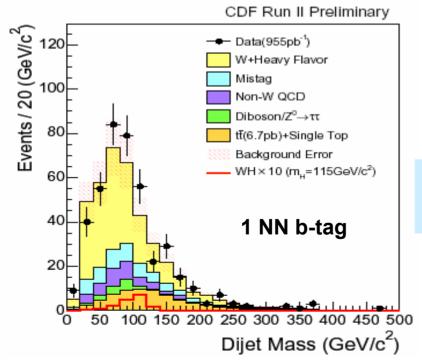
- Missing E_T from $Z \rightarrow vv$ and 2 b jets from $H \rightarrow bb$
 - Large missing $E_T > 25$ GeV
 - 2 acoplanar b-tagged jets, $E_{T}\!>$ 20 GeV, $|\eta|$ < 2.5
- Backgrounds
 - "physics"
 - W+jets, Z+jets, top, ZZ and WZ
 - "instrumental"
 - QCD multijet events with mismeasured jets
 - Huge cross section & small acceptance
- Strategy
 - **DØ:** trigger on events with large missing H_T
 - $H_{\rm T}$ defined as a vector sum of jets' $E_{\rm T}$
 - **CDF:** trigger on di-jet events with large E_T
 - DØ: estimate "instrumental" background from data;
 CDF: evaluate it with MC → control in data
 - Search for an event excess in di-b-jet mass distribution

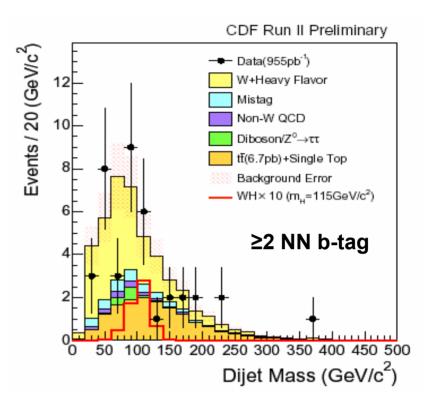


$ZH \rightarrow vvbb$ searches

DØ: $ZH \rightarrow \ell\ell bb$ searches

Analysis with 389 pb⁻¹ (Z \rightarrow ee), 320 pb⁻¹ (Z $\rightarrow \mu^+\mu^-$)

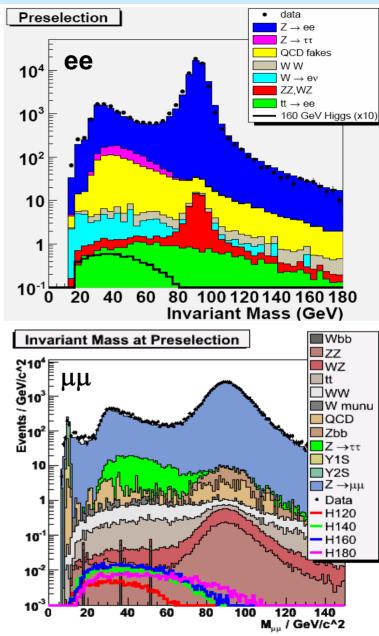

 $ZH_{M=115} = 0.1 \text{ evts}$ Total bkgd 13 evts


Process	before b-tag	after 2 tags
Z+bb	17	3
Z+jj	937	5
ttbar	11	4
ZZ+ZW	26	0.6
QCD	44	0.6

 $\begin{array}{ll} \mbox{Result: di-jet mass fit} \\ \sigma_{ZH} &< 7.9 \mbox{ pb } (Z{\mbox{->ee}}) \\ \sigma_{ZH} &< 11 \mbox{ pb } (Z{\mbox{->}\mu\mu}) \\ \mbox{for } m_{H} &= 115 \mbox{ GeV} \end{array}$

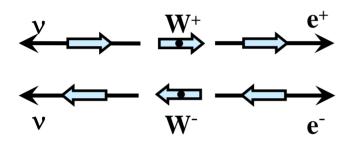
CDF: WH $\rightarrow \ell_{\rm V}$ bb channel

- Lepton, missing E_T and 2 jets
 - One or two b-tags
- New since last year
 - NN b-tagger
 - Include double-tag
 - Include full 1 fb⁻¹ dataset
 - Luminosity equivalent gain
 - (S/√B)²=1.25²=1.6

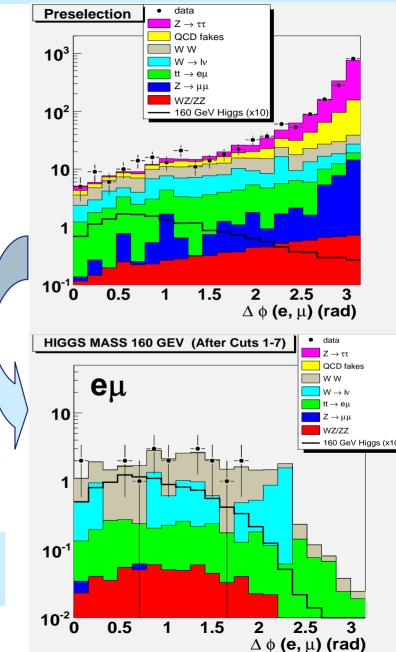

 σ_{WH} < 3.9 - 1.3 pb for m_H= 110 - 150 GeV Measured limit/SM rate = 23 (m_H=115 GeV)

DØ: $H \rightarrow WW^* \rightarrow \ell^+ \ell^- \nu \nu$ decays; $\ell = e, \mu(1)$

- Event selection include
 - Isolated lepton
 - p_T(l₁) > 15 GeV, p_T(l₂) > 10 GeV
 - Missing $E_T > 20 \text{ GeV}$
 - Scaled missing $E_T > 15$ (suppress evts. with mismeasured jet energy)

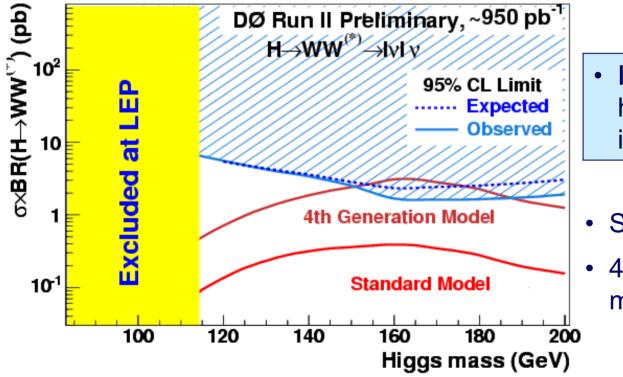

 $E_T^{Sc} = \frac{E_T}{\sqrt{\sum_{jets} (\Delta E^{jet} \cdot \sin \theta^{jet} \cdot \cos \Delta \phi (jet, E_T))^2}}$ - Veto onData vs MC after evt. preselection

- Z resonance
- Energetic jets
- Data correspond to integrated lumi. of 950-930 pb⁻¹ depending on the final states

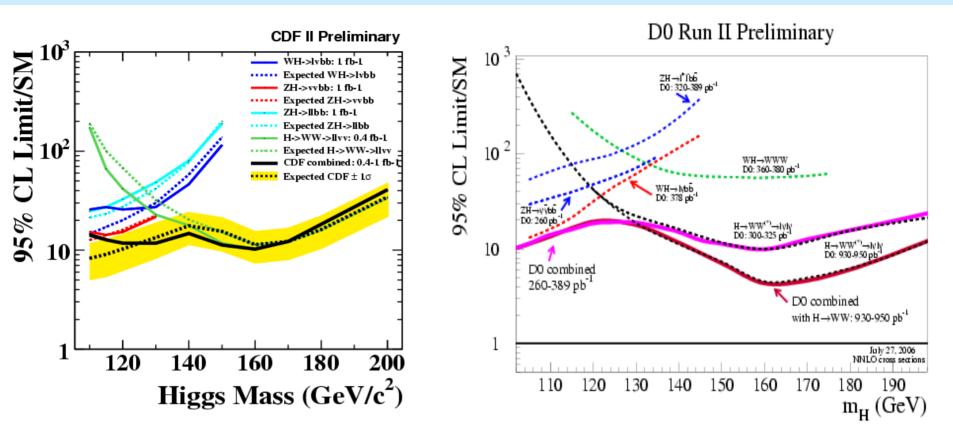

DØ: $H \rightarrow WW^* \rightarrow \ell^+ \ell^- \nu \nu$ decays (2)

- Higgs mass reconstruction not possible due to two neutrions
- Employ spin correlations to suppress the bkgd.
 - > $\Delta \phi(\ell)$ variable is particularly useful

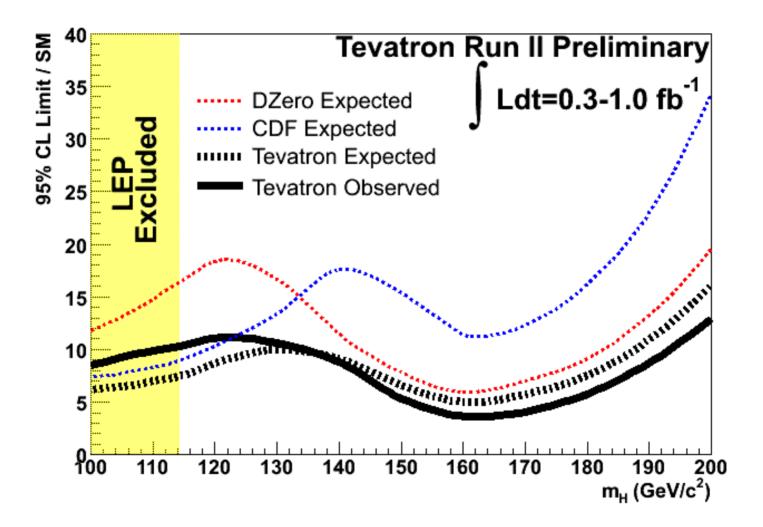
· Leptons from Higgs tend to be collinear


Good agreement between data and MC after all selections and in all final states

DØ: results on $H \rightarrow WW^*$


Expected/Observed # of events for $m_H = 160 \text{ GeV} (L \sim 950 \text{ pb}^{-1})$

	Data	Sum BGND	WW	W+jet/γ	Ζ <i>ί</i> γ*	tt(bar)	WZ I ZZ	QCD	H> WW*
e e	10	10.3 ± 0.6	7.0 ± 0.2	1.4 ± 0.6	0.0 ± 0.0	1.1±0.1	0.8 ± 0.1	0.06±0.02	0.415
eμ	18	24.4 ± 1.5	16.4 ± 0.1	5.3 ± 1.5	0.02 ± 0.01	2.1±0.1	0.6±0.1	0.1±0.05	0.97
μμ	9	9.8±0.8	6.6±0.1	1.0 ± 0.4	0.6 ± 0.4	0.5 ± 0.1	0.5 ± 0.1	0.6 ± 0.6	0.35


- If m_H= 160 GeV then might have a couple of Higgses in our sample already !
- SM only a factor 4 away
- 4th generation models with m_H=150-185 GeV excluded

Limits from CDF and DØ

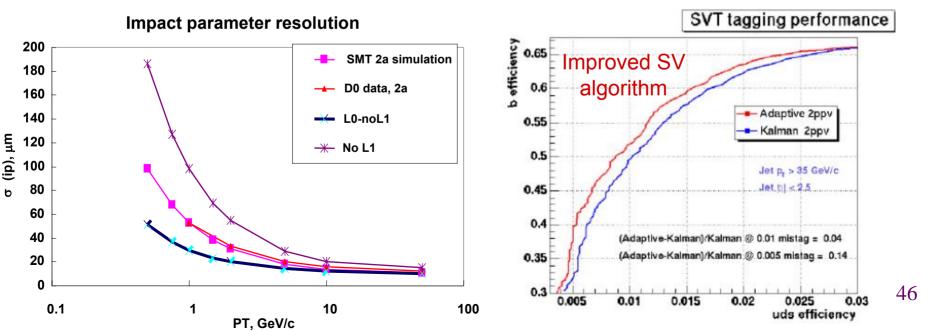
Analysis	CDF , M _H = 115 GeV	DØ , M _H = 115 GeV
	(factor above SM)	(factor above SM)
$ZH \rightarrow vvbb$	Includes WH w/ miss { (14)	3.4 pb (41)
$WH \rightarrow \ell_V bb$	3.4 pb <mark>(23)</mark>	2.4 pb (16)
ZH → ℓℓbb	2.2 pb (27)	6.1 pb (75)

Limits from CDF and DØ combined

Can we close the gap ?

- CDF's view (most of these are valid for DØ too)
 - Assume current analyses as starting point
 - Scale current systematic uncertainties by $1/\sqrt{L}$
 - Reevaluated all improvements using latest knowledge

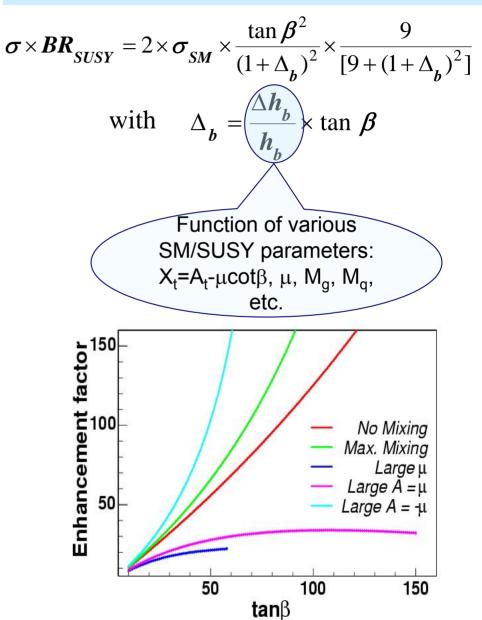
			\ /
Improvement	WH→Ivbb	ZH→vvbb	ZH→ℓℓbb
Mass resolution	1.7	1.7	1.7
Continuous b-tag (NN)	1.5	1.5	1.5
Forward b-tag	1.1	1.1	1.1
Forward leptons	1.3	Ι	1.6
Track-only leptons	1.4	-	1.6
NN Selection	1.75	1.75	1.0
WH signal in ZH	—	2.7	-
Product of above	8.9	13.3	7.2
CDF+DØ combination	2.0	2.0	2.0
All combined	17.8	26.6	14.4


Luminosity equivalent $(s/\sqrt{b})^2$

Expect ~10 times more luminosity per channel

DØ: improvements in the object ID

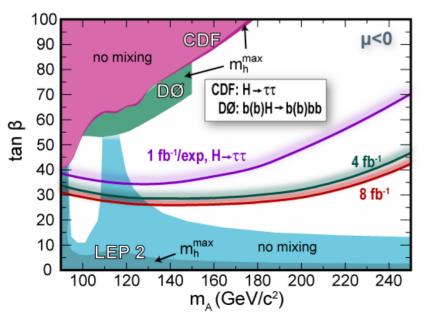
- Jet energy resolution (using track-jet algorithm)
 - Subtract expected energy deposition in calo.
 - Add the track momentum
 - Add the energy of out-of-cone tracks
- Improve the jet energy resolution by ~10% →
- b-tagging capability
 - Improvements would come from L0 of the Silicon Tracker (DØ) and the use of more sophisticated algorithms

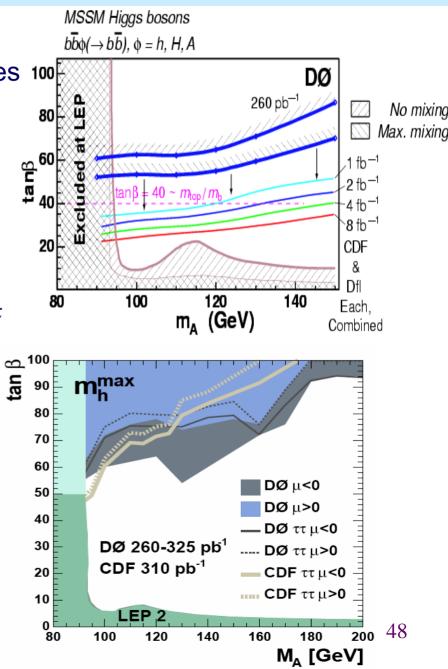


Searches for SUSY Higgs bosons

- In MSSM have two Higgs doublet fields
 - H_u (H_d) couple to up- (down-) type fermions
 - The ratio of their VEV's
 - $\tan\beta = \langle H_u \rangle / \langle H_d \rangle$
 - 5 Higgs particles after EWSB
 h, H, A, H⁺, H⁻
 - h is 'guaranteed' to be light
 m_h <~ 130-140 GeV
- At large tanβ, coupling to down-type quarks, i.e. b's, is enhanced wrt SM
 - At tree level ~ tanβ → production cross section rise as tanβ²
- CP conservation is assumed in the following analyses

Loop level corrections to x-section and BR


MSSM higgs searches


Associated production with b quarks

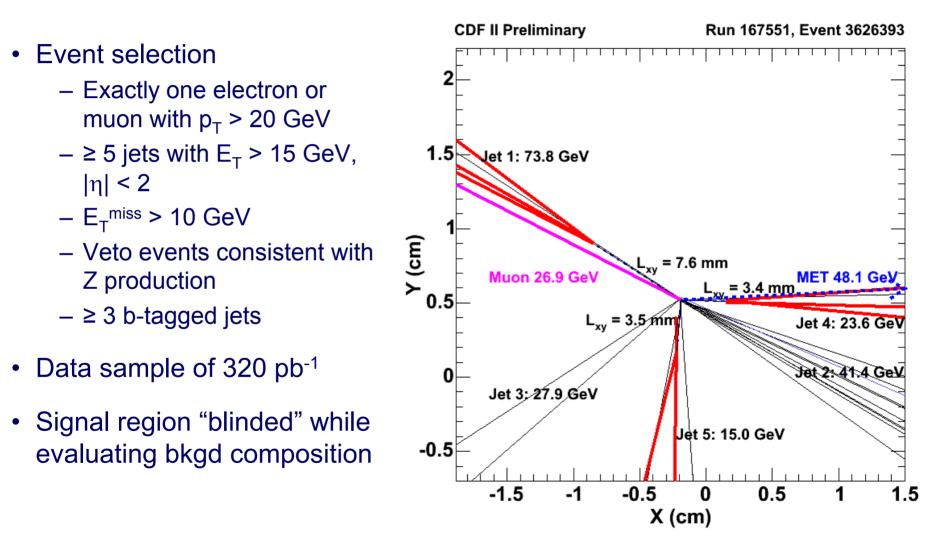
- DØ: bh/bbh(\rightarrow bb) \rightarrow 3/4 b's in final states 100
 - Require ≥ 3 b-tagged jets
 - Background evaluated from data
 - Look for excess in di-jet mass window

Inclusive production

- CDF and DØ: $h \rightarrow \tau\tau \rightarrow e\tau_h$, $\mu\tau_h$, or $e\mu$
 - Look for excess in M_{vis} (= mass of visible τ decay products and missing E_T) spectrum

Summary

- Upgraded for Run II Tevatron, CDF and DØ are performing well and contribute to world class physics results
- Most of Run I Electroweak measurements are improved and new processes are established, such as di-boson production
 - Good agreement with the SM so far
- Both experiments are in the era of precision top quark measurements – Many results are now systematics limited that will improve with more data
- In coming years, the CDF and DØ concerted efforts will offer a real opportunity to find the SM, or non-SM, Higgs boson or exclude a very interesting low-mass region
- Tevatron will bring more order to many scenarios before the LHC start up !

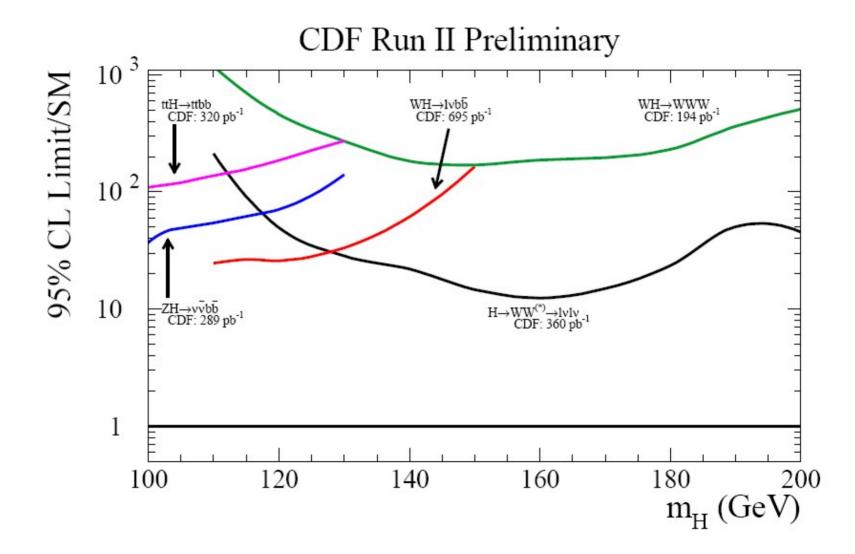


Top mass: individual channels

	{+jets	All-jets	Di-lepton
m _{top}	170.9	174.0	164.5
δ(JES)	1.6	4.5	3.5
δ (signal)	1.1	0.7	0.7
δ (bkgd)	0.2	0.9	0.9
δ (other)	0.5	1.0	1.3
δ(syst)	1.9	4.7	3.9
δ(stat)	1.6	2.2	3.9
δ(total)	2.5	5.2	5.5

Higgs searches in ttH associated production

Final states with $W(\rightarrow \ell_V)W(\rightarrow jj)bbbb$


Higgs searches in ttH associated production

Exepected signal and bkgd evts				
Source	Event Yield			
Mistag	0.49 ± 0.10			
Irreducible	0.36 ± 0.07			
QCD	0.04 ± 0.04			
Total Background	0.89 ± 0.12			
Signal (m _H =115 GeV)	0.024±0.005			
Observed	1			

Systematic uncertainties

Source	Uncertainty (%)	
Jet Energy Scale	4.2	
PDF	1.0	
ISR/FSR	1.6	
MC Modelling	0.5	
Lepton ID Efficiency	5.1	
BTag Efficiency	18	
MC Stats	1	
Total	19	

ttH in CDF

