2006 LHC DAYS IN SPLIT

2 - 7 October 2006

Application of Expert Systems Technology for the CMS Event Filter Farm

Kristina Marasović University of Split, Croatia

E-mail: Kristina.Marasovic@pmfst.hr

Kristina.Marasovic@cern.ch

WWW: http://www.pmfst.hr/~kim/

Presentation Agenda

- Event Filter Farm Towards Problem Solving Research
- Expert Systems Technology to the Rescue
 - When to use
 - Rule-Based Expert Systems
 - Jess: Expert System Shell
- Problem Solver
 - How Stuff Works
 - Performance Analysis
- Summary

Event Filter Farm

Towards Problem Solving Research

Trigger and Data Acquisition System (TriDAS)

- Collects electrical signals from all subparts of the CMS detector
- Carries out the on-line data filtering process in two steps
 - Level-1 Trigger
 - High-Level Trigger (HLT)

Event Filter Farm

- Consists of 1000 dual-CPU PCs called Filter Units (FU)
- Carries out high level filtering of collision data
- Writes collision data to persistent storage for off-line analysis

Trigger and Data Acquisition Structure

Event Filter Farm

Towards Problem Solving Research

Expert Systems Technology to the Rescue When to use?

How would you write a computer program to solve the following problem?
 [Friedman-Hille, E. 2003, Jess in Action, Manning Publications, Greenwich]

A foursome of golfers is standing at a tee, in a line from left to right. Each golfer wears different colored pants.

- One is wearing red pants.
- The golfer to Fred's immediate right is wearing blue pants.
- Joe is second in line.
- Bob is wearing plaid pants.
- Tom isn't in position one or four, and he isn't wearing the hideous orange pants.

In what order will the four golfers tee off, and what color are each golfer's pants?

Expert Systems Technology to the Rescue When to use?

Programs = Data Structures + Algorithms

Expert Systems (ES) = Knowledge + Inference

Expert System

Expert Systems Technology to the Rescue

Rule-Based Expert Systems

Expert Systems Technology to the Rescue

Rule-Based Expert Systems

Expert Systems Technology to the Rescue Jess - Java Expert System Shell

Rule engine for the Java platform by Ernest Friedman-Hill at Sandia National Laboratories, Livermore [http://herzberg.ca.sandia.gov/jess/]

- Can access all Java classes and libraries from Jess
- Extendable by writing Java code
- Can be embedded in Java applications

Can therefore be used in:

- Command-line applications
- GUI applications
- Servlets
- Applets

Software Environment

- Apache Jakarta Tomcat Servlet container
- RCMS
 Responsible for controlling and monitoring
 CMS experiment during data taking
- CMSSW
 Components for simulation, calibration and alignment, and reconstruction modules that process event data so that physicists can perform analysis
- XDAQ
 Framework/middleware for local and remote inter-process communication, configuration, control, and data storage

Collector

Performance Analysis

Heap Usage Chart of the Tomcat server hosting RCMS & Problem Solver

Maximum heap size: 256MB
Problem Solver's cumulative size: 9.4MB
Jess's WM (1050 facts -> 1050 FUs): 409.5KB

State transition: steep spikes in the Heap usage chart - a lot of SOAP Messages (short-lived objects)

are being sent by a Subfarm Manager to Filter Units

Steady state: increasing growth – retrieval and processing of the monitor data collection

Assertion & Update of Problem Solver's Sensors

Inference Engine Performance

Performance Analysis

Monitor Data Collection Retrieval & Processing

Confidence Level(95.0%) 72.669 Count 472 Mean Minimum 17 Media

Minimum 17 Median 31 Maximum 9201 Mode 19

122.479

Other test cases: Count 6056 Data Loss 1.8%
Count 6919 Data Loss 3.37%

Summary

- Application of the Problem Solver with a large quantity of information in its working memory does not slow the whole system down.
- Inferencing which includes pattern matching with thousands of facts and forming an agenda with more than ten thousands of activated rules is not a time consuming task. Execution time of each activated rule depends on the rule's action part.
- Retrieval and processing time of Monitor's data collection is under 1s, and depends on the network load.