Heavy lons theory overview

Carlos A. Salgado

Dipartimento di Fisica
Universit a degli Studi di Roma "La Sapienza”

LHC days in Split

carlos.salgado@cern.ch, http://home.cern.ch/csalgado

Split, October 2006 Heavy ions theory overview — p.1



Fundamental interactions
Searches — Higgs, SUSY, extra-dimensions...

pp @ LHC, LC??

Increase energy density
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Fundamental interactions
Searches — Higgs, SUSY, extra-dimensions...

pp @ LHC, LC??

Increase energy density

Increase extended energy density

AA @ RHIC and LHC

Collective properties
of the fundamental interactions
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Specific questions in heavy-ion collisions

What is the initial state of the system and how is it produced?
What is the structure of the colliding objects?
N What is the asymptotic limit of QCD?
What is the mechanism of thermalization?
How is thermal equilibrium reached?

What is the temperature of the created system?

What are the properties of the produced medium?

. How to measured them? — signals
What is the relation with lattice QCD?




Hard Probes

Provide a general framework

to answer these guestions
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Hard probes: heavy ion experiments

SPS /s =20 GeV (Q ~ 1 GeV) — marginal access to HP
RHIC /s = 200 GeV (Q ~ 10 GeV) — access to HP

LHC /s = 5500 GeV (Q = 100 GeV) — HP and QCD evolution

n
h
oPP—m = fp $1, ®fp $2, ZCl,ZCQ, Z Q2

RHIC SPS

Q? > 1 = short distances pieces not affected by the medium

Modification of long-distance parts f,(z, @*) and D(z, Q?)

= new dynamics (evolution egs.) — properties of the medium.




Kinematical regions studied
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In-medium QCD-evolution
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QCD at high densities

66 6 6

— New (non-linear) ev. equations
parton distributions: saturation

— Jet shapes modified
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QCD at high densities

— Jet shapes modified
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Saturation of partonic densities

iIncreasing energy (decreasing x)

Saturation scale Q.+ when interaction probab. O(1)
OzS( sat)xg(xv ant)/antﬂ-RQ ~ 1
Large occupation numbers n ~ 1/ag

N Semiclassical approach

Weak coupling as(Q2,,), Qsat > Aqcp

QCD-evolution modified by non-linear
terms: B-JIMWLK, Kovchegov equations

N Geometric scaling

Observables
Multiplicities in nucleus-nucleus
Proton-nucleus collisions
Correlations




Geometric scaling and data
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Saturation and data

Main properties of the CGC compatible with experimental data

saturation scale
™ gcaling solution

suppression at forward rapidity (small-z)
Accident??

++ Provides a general framework

Initial conditions for the dense medium

Fast thermalization? =, ~ Ql ~ 0.2 fm at RHIC

sat

™ Strong fields = Unruh (thermal) radiation [Kharzeev and Tuchin (2005)]

Other approaches predict slower thermalization times:

= bottom-up thermalization [Baier, Mueller, Schiff and Son (2001)]

Plasma instabilities [Mrowczynski 1994; Arnold, Lenaghan, Moore 2003;
Romatschke, Strickland 2003...]




Hydrodynamics
as a check of themalization

Split, October 2006 Heavy ions theory overview — p.11



Description of the medium as a fluid

In a fluid, the acceleration is given by the Euler equation

d 1 .
ap = —-VP foranidealgas ¢=3P
dt p
oo Full hydrodynamical simulation
reaction y SRIPO
particle

p; (GeVic)
T T T T

' p pbar ﬂ;ﬁ
fﬁ‘i

A0

P

Developing idea

| I | I |
0 05 1 15
P/Nquark (GeVIC)

= Early thermalization 7, < 1fm

= |deal liquid




QCD at high densities

66 6 6

— New (non-linear) ev. equations
parton distributions: saturation

— Jet shapes modified
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QCD at high densities

66 6 6

— New (non-linear) ev. equations
parton distributions: saturation
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Why high-p;?

Different scales studied
Unigque property of jet quenching as a probe of the medium

Radiation formation time Hadronization time
W 1 E plead
tform ~ k.t2 ~ p?ssoc sin O thad ~ ERhad ~ L Rhad

tiorm < L = shower in a medium
Ry .q not known for a medium
Intermediate p, — interplay radiation—thermalization—hadronization

Which part of the spectrum is thermalized?




The Medium-induced gluon radiation spectrum

[BDMPS (1996); Zakharov (1997); Wiedemann (2000); GLV (2000)]
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R 4 4 for light mesons at RHIC
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[Eskola, Honkanen, Salgado, Wiedemann (2004)]

Data favors a large time-averaged transport coefficient

GeV?
fm

[Gyulassy, Levai, Vitev 2002; Arleo 2002; Dainese, Loizides, Paic 2004; Wang, Wang 2005; Drees,
Feng, Jia 2005; Turbide, Gale, Jeon, Moore 2005...]

G~5...15




Jets in HIC?
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N Alice event: 0, Run:0
Nparticles = 36276 Nhits = 1943104
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Jets in HIC?
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Multiplicity background for RHIC (LHC)

EP8 ~ 20 (100) GeV in a cone R=0.3
EP8 ~ 50 (250) GeV in a cone R=0.5

Intrinsic uncertainties for jet-energy calibration

Out-of-cone fluctuations — decrease with R
Background fluctuations — increase with R

Compromise, LHC, R ~ 0.3+ 0.5 + small-p; cuts
+ different methods of background substraction

kr jet algorithm? [Cacciari, Salam 2005]

o v | ALICE @ LHC 4

Split, October 2006 Heavy ions theory overview — p.17



Jet heating at the LHC

o(R)

Medium-modification of jet shapes, F;=100 GeV [salgado, Wiedemann 2004]
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News from RHIC

Au+Au, 0-5%

d+Au Au+Au, 20-40%
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[STAR: D. Magestro QMO05]

Data can be understood in the formalism [Dainese, Loizides 2005]




Removing the cut-off at RHIC

Interplay between the soft bulk and high-p,
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[STAR Collaboration 2005] [PHENIX Collaboration 2005]

4 < pt'® < 6GeV
Associated particles are softer

Large broadening (two-peaks?) in the away side




Removing the cut-off at RHIC: Interpretations

Shock waves: measure sound velocity in the medium
[Satarov,Stoeker,Mishustin 2005; Casalderrey-Solana,Shuryak, Teaney 2004; Ruppert,Muller 2005]

Gluon radiation
Cherenkov radiation [Dremin 2005; Koch, Majumder, Wang 2005]

Parton shower for opaque media [Polosa, Salgado 2006]

Two opposite assumptions

All energy transferred to medium:

Hydrodynémical»evo;lgt\i\(\)n Negligible energy transferred:

C Energy loss is radiated as gluons

trigger jet



Parton Shower for opagque media

Probability of one splitting for w < §/3 ~ 3 GeV [coherent limit]
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[Polosa, Salgado hep-ph/0607295]

A perturbative mechanism, the medium-induced gluon radiation, is
able to reproduce the observed 2-peak structure in the away side jet.




Interpretation of the value of ¢

RHIC data Opacity problem
~__ . 3/4 QGP _
o saep F— / G=cet, oy =2
| QGP
QGP 4 € > 9Cijeal
) 1.0
§ |
% I . Why??
bl
e v\ __ Interaction much stronger than
I . ’ in an ideal gas
[ = Pion gas
SQGP hypothesis
Cold nuclear matter
B i B g sensitive to flow g(7"")

i
~ =

Theory needs to be improved




The ADS/CFT correspondence
and HIC observables
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Shock waves and AdS/CFT

TH*” computed for a quark moving with constant velocity in a medium

a) Kp|Qs(Kg, Kp) | for v=0.75 b) Kp|Q:(Kg, Ky) | for v=0.9

2 ~1 2
1.5 1.5
¥ o1 ¥ o1
0.5 0.5
///
0 1 }%1 3 4 1 él 3 4
c) Kp|Q:(Kyg, Kp) | for v=0.95 d) Kp|Q: (K, Kp) | for v=0.99

—

Yet, despite the potential stumbling blocks, it is exciting to see a simple type 1IB string theory
construction approaching quantitative comparisons with a data-rich experimental field.

[Friess, Gubser, Michalogiorgakis, Pufu hep-th/0607022]




The transport coefficientg in AAS/CFT

g defined by the small-distance behavior of the expectation value of
two Wilson lines

1

<T1C[I/VA+ (y)WA(X)]> A exp {—ZQAL_ (x — y)2}

Use AdS/CFT correspondence

mT(3)

dsym =
V2I'(3)

VAT ~ 18.87v/agym N, T3

g measures T', not energy density

Putting some numbers (N, = 3, agynm = 1)

§=3.2,7.5 14.7GeV?/fm for T = 300, 400, 500 MeV

[Liu, Rajagopal, Wiedemann hep-ph/0605178]




fo resonance at highg;

A strong probe for the quark structure of fy: [qql(Gq]| VS qq
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[STAR 2003]
[Maiani, Polosa, Riquer, Salgado 2006]

Measure v, for f;(980) [Nonaka et al. (2003) for pentaquarks]
Measure Rop and R 4 for f;(980)




Perspectives for the future

b e

« LHC: New reglmes Whé'r_.
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Perspectives for the future

e LHC: New regimes where QCD evolution dominant
— Hard probes provide the general framework

e Close interplay theo'ry¥experiment
b Main open gquestions/lines
'« What fixes initial conditions? CGC?
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Perspectives for the future

e LHC: New regimes where QCD evolution dominant
— Hard probes provide the general framework

e Close interplay theo'ry¥experiment
h Main open gquestions/lines
« What fixes initial conditions? CGC?
_o___Mechan'ism of thermalization. Why Hydro works?
= Relation with CGC? Plasma instabilities? "
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Perspectives for the future

e LHC: New regimes where QCD evolution dominant
— Hard probes provide the general framework

« Close interplay theory—experiment
B Main open guestions/lines
« What fixes initial conditions? CGC?
_o___Me(_:han'i'sm'o'f thermalization. Why Hydro works?
= Relation with CGC? Plasma instabilities?

o Modification of final state QCD evolution
= Interplay between soft bulk-and hard.processes
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Perspectives for the future

e LHC: New regimes where QCD evolution dominant
— Hard probes provide the general framework

« Close interplay theory—experiment
B Main open guestions/lines
« What fixes initial conditions? CGC?
_o___Me(_:han'i'sm'o'f thermalization. Why Hydro works?
= Relation with CGC? Plasma instabilities?

o Modification of final state QCD evolution
= Interplay between soft bulk-and hard.processes

» What is-the nature of the (created) medium?
e Ample new window for first principle calculations
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