Accessing generalized parton distributions via deeply virtual Compton scattering beyond NLO

Krešimir Kumerički

Department of Physics
University of Zagreb

Collaboration with:
Dieter Müller (Regensburg),
Kornelija Passek-Kumerički (Regensburg, Zagreb),
Andreas Schäfer (Regensburg)

Outline

Introduction to Generalized Parton Distributions (GPDs)
Proton Structure
Definition of GPDs
Relevance for LHC physics
Properties of GPDs
Conformal Approach to DVCS Beyond NLO
Deeply Virtual Compton Scattering (DVCS)
Conformal Approach
NNLO DVCS
Results
Choice of GPD Ansatz
Size of Radiative Corrections
Scale Dependence
Fitting GPDs to Data
Summary
Summary

Parton Distribution Functions

- Deeply inelastic scattering, $-q_{1}^{2} \rightarrow \infty, x_{B J} \equiv \frac{-q_{1}^{2}}{2 p \cdot q_{1}} \rightarrow$ const

Parton Distribution Functions

- Deeply inelastic scattering, $-q_{1}^{2} \rightarrow \infty, x_{B J} \equiv \frac{-q_{1}^{2}}{2 p \cdot q_{1}} \rightarrow$ const

Parton Distribution Functions

- Deeply inelastic scattering, $-q_{1}^{2} \rightarrow \infty, x_{B J} \equiv \frac{-q_{1}^{2}}{2 p \cdot q_{1}} \rightarrow$ const

Parton Distribution Functions

- Deeply inelastic scattering, $-q_{1}^{2} \rightarrow \infty, x_{B J} \equiv \frac{-q_{1}^{2}}{2 p \cdot q_{1}} \rightarrow$ const

- no information on spatial distribution of partons

Electromagnetic Form Factors

- Dirac and Pauli form factors:

$$
F_{1,2}\left(t=q_{1}^{2}\right)
$$

Electromagnetic Form Factors

- Dirac and Pauli form factors:

$$
q\left(b_{\perp}\right) \sim \int \mathrm{d} b_{\perp} e^{i q_{1} \cdot b_{\perp}} F_{1}\left(t=q_{1}^{2}\right)
$$

Electromagnetic Form Factors

- Dirac and Pauli form factors:

$$
q\left(b_{\perp}\right) \sim \int \mathrm{d} b_{\perp} e^{i q_{1} \cdot b_{\perp}} F_{1}\left(t=q_{1}^{2}\right)
$$

Electromagnetic Form Factors

- Dirac and Pauli form factors:

$$
q\left(b_{\perp}\right) \sim \int \mathrm{d} b_{\perp} e^{i q_{1} \cdot b_{\perp}} F_{1}\left(t=q_{1}^{2}\right)
$$

Electromagnetic Form Factors

- GPD: $H^{q}\left(x, 0, t=\Delta^{2}\right)=\int \mathrm{d} b_{\perp} e^{i \Delta \cdot b_{\perp}} q\left(x, b_{\perp}\right)$

Definition of GPDs

- In QCD GPDs are defined as [Müller '92, et al. '94, Ji, Radyushkin '96]

$$
\begin{aligned}
F^{q}\left(x, \eta, \Delta^{2}\right) & =\left.\int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P_{2}\right| \bar{q}(-z) \gamma^{+} q(z)\left|P_{1}\right\rangle\right|_{z^{+}=0, z_{\perp}=0} \\
F^{g}\left(x, \eta, \Delta^{2}\right) & =\left.\frac{4}{P^{+}} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P_{2}\right| G_{a}^{+\mu}(-z) G_{a \mu}^{+}(z)\left|P_{1}\right\rangle\right|_{\ldots}
\end{aligned}
$$

$$
\frac{1+\eta}{2} P^{+} \quad \frac{1-\eta}{2} P^{+}
$$

$$
P=P_{1}+P_{2} ; \quad \Delta=P_{2}-P_{1} ; \quad \eta=-\frac{\Delta^{+}}{P^{+}} \text {(skewedness) }
$$

Relevance for LHC Physics

- heavy particle production \Rightarrow larger probability for multiple parton collisions
- [Frankfurt, Strikman, Weiss '04]

Properties of GPDs

- Decomposing into helicity conserving and non-conserving part:

$$
F^{a}=\frac{\bar{u}\left(P_{2}\right) \gamma^{+} u\left(P_{1}\right)}{P^{+}} H^{a}+\frac{\bar{u}\left(P_{2}\right) i \sigma^{+\nu} u\left(P_{1}\right) \Delta_{\nu}}{2 M P^{+}} E^{a} \quad a=q, g
$$

Properties of GPDs

- Decomposing into helicity conserving and non-conserving part:

$$
F^{a}=\frac{\bar{u}\left(P_{2}\right) \gamma^{+} u\left(P_{1}\right)}{P^{+}} H^{a}+\frac{\bar{u}\left(P_{2}\right) i \sigma^{+\nu} u\left(P_{1}\right) \Delta_{\nu}}{2 M P^{+}} E^{a} \quad a=q, g
$$

- Forward limit $(\Delta \rightarrow 0): \Rightarrow$ GPD \rightarrow PDF

$$
F^{q}(x, 0,0)=H^{q}(x, 0,0)=\theta(x) q(x)-\theta(-x) \bar{q}(-x)
$$

Properties of GPDs

- Decomposing into helicity conserving and non-conserving part:

$$
F^{a}=\frac{\bar{u}\left(P_{2}\right) \gamma^{+} u\left(P_{1}\right)}{P^{+}} H^{a}+\frac{\bar{u}\left(P_{2}\right) i \sigma^{+\nu} u\left(P_{1}\right) \Delta_{\nu}}{2 M P^{+}} E^{a} \quad a=q, g
$$

- Forward limit $(\Delta \rightarrow 0)$: \Rightarrow GPD \rightarrow PDF

$$
F^{q}(x, 0,0)=H^{q}(x, 0,0)=\theta(x) q(x)-\theta(-x) \bar{q}(-x)
$$

- Sum rules:

$$
\int_{-1}^{1} d x\left\{\begin{array}{l}
H^{q}\left(x, \eta, \Delta^{2}\right) \\
E^{q}\left(x, \eta, \Delta^{2}\right)
\end{array}=\left\{\begin{array}{l}
F_{1}^{q}\left(\Delta^{2}\right) \\
F_{2}^{q}\left(\Delta^{2}\right)
\end{array}\right.\right.
$$

Properties of GPDs

- Decomposing into helicity conserving and non-conserving part:

$$
F^{a}=\frac{\bar{u}\left(P_{2}\right) \gamma^{+} u\left(P_{1}\right)}{P^{+}} H^{a}+\frac{\bar{u}\left(P_{2}\right) i \sigma^{+\nu} u\left(P_{1}\right) \Delta_{\nu}}{2 M P^{+}} E^{a} \quad a=q, g
$$

- Forward limit $(\Delta \rightarrow 0)$: \Rightarrow GPD \rightarrow PDF

$$
F^{q}(x, 0,0)=H^{q}(x, 0,0)=\theta(x) q(x)-\theta(-x) \bar{q}(-x)
$$

- Sum rules:

$$
\begin{array}{r}
\int_{-1}^{1} d x\left\{\begin{array}{r}
H^{q}\left(x, \eta, \Delta^{2}\right) \\
E^{q}\left(x, \eta, \Delta^{2}\right)
\end{array}=\left\{\begin{array}{l}
F_{1}^{q}\left(\Delta^{2}\right) \\
F_{2}^{q}\left(\Delta^{2}\right)
\end{array}\right.\right. \\
\frac{1}{2} \int_{-1}^{1} d x x\left[H^{q}\left(x, \eta, \Delta^{2}\right)+E^{q}\left(x, \eta, \Delta^{2}\right)\right]=J^{q}\left(\Delta^{2}\right) \tag{Ji'97}
\end{array}
$$

Deeply Virtual Compton Scattering (DVCS)

Generalized Bjorken limit:

$$
\mathcal{A}(\xi, t)=\sum_{i} \int \mathrm{~d} x C_{i}(x, \xi) \operatorname{GPD}_{i}(x, \xi, t)+\mathcal{A}_{\text {Bethe-Heitler }}
$$

- Measurements at DESY, JLab, CERN (COMPASS)

Deeply Virtual Compton Scattering (DVCS)

Generalized Bjorken limit:

$$
\mathcal{A}(\xi, t)=\sum_{i} \int \mathrm{~d} x C_{i}(x, \xi) \operatorname{GPD}_{i}(x, \xi, t)+\mathcal{A}_{\text {Bethe-Heitler }}
$$

- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate

Deeply Virtual Compton Scattering (DVCS)

Generalized Bjorken limit:

$$
\mathcal{A}(\xi, t)=\sum_{i} \int \mathrm{~d} x C_{i}(x, \xi) \operatorname{GPD}_{i}(x, \xi, t)+\mathcal{A}_{\text {Bethe-Heitler }}
$$

- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate
- gluon contribution to $C_{i}(x, \xi)$ starts at NLO
Deeply Virtual Compton Scattering (DVCS) $\gamma^{*} \quad \int^{\gamma} \quad P=P_{1}+P_{2} \quad q=\left(q_{1}+q_{2}\right) / 2$
Generalized Bjorken limit:
$\left.-q_{1}^{2}=\mathcal{Q}^{2}\right\} \rightarrow\left\{\begin{array}{l}q_{2}^{2}=0 \\ \rightarrow \longrightarrow\end{array}\right.$

$$
\begin{aligned}
-q^{2} & \simeq \mathcal{Q}^{2} / 2 \rightarrow \infty \\
\xi & =\frac{-q^{2}}{2 P \cdot q} \rightarrow \mathrm{const}
\end{aligned}
$$

$$
\mathcal{A}(\xi, t)=\sum_{i} \int \mathrm{~d} x C_{i}(x, \xi) \operatorname{GPD}_{i}(x, \xi, t)+\mathcal{A}_{\text {Bethe-Heitler }}
$$

- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate
- gluon contribution to $C_{i}(x, \xi)$ starts at NLO
- DIS experience at small x : gluons \gg sea quarks
Deeply Virtual Compton Scattering (DVCS)

$$
\gamma^{*}, \quad \gamma^{\gamma} \quad P=P_{1}+P_{2} \quad q=\left(q_{1}+q_{2}\right) / 2
$$

Generalized Bjorken limit:

$$
\begin{aligned}
-q^{2} & \simeq \mathcal{Q}^{2} / 2 \rightarrow \infty \\
\xi & =\frac{-q^{2}}{2 P \cdot q} \rightarrow \text { const }
\end{aligned}
$$

$$
\mathcal{A}(\xi, t)=\sum_{i} \int \mathrm{~d} x C_{i}(x, \xi) \operatorname{GPD}_{i}(x, \xi, t)+\mathcal{A}_{\text {Bethe-Heitler }}
$$

- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate
- gluon contribution to $C_{i}(x, \xi)$ starts at NLO
- DIS experience at small x : gluons \gg sea quarks
- \Rightarrow need NNLO to stabilize perturbation series and investigate convergence
Deeply Virtual Compton Scattering (DVCS)

$$
\gamma^{*}, \quad \gamma^{\gamma} \quad P=P_{1}+P_{2} \quad q=\left(q_{1}+q_{2}\right) / 2
$$

Generalized Bjorken limit:

$$
\begin{aligned}
-q^{2} & \simeq \mathcal{Q}^{2} / 2 \rightarrow \infty \\
\xi & =\frac{-q^{2}}{2 P \cdot q} \rightarrow \text { const }
\end{aligned}
$$

$$
\mathcal{A}(\xi, t)=\sum_{i} \int \mathrm{~d} x C_{i}(x, \xi) \operatorname{GPD}_{i}(x, \xi, t)+\mathcal{A}_{\text {Bethe-Heitler }}
$$

- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate
- gluon contribution to $C_{i}(x, \xi)$ starts at NLO
- DIS experience at small x : gluons \gg sea quarks
- \Rightarrow need NNLO to stabilize perturbation series and investigate convergence \Rightarrow conformal approach

Operator Product Expansion

$$
\begin{aligned}
& J_{\mathrm{em}}(x) J_{\mathrm{em}}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(\frac{1}{x^{2}}\right)^{2} x_{-}^{n+k+1} C_{n, k} O_{n, k} \\
& O_{n, k} \equiv\left(i \partial_{+}\right)^{k} \bar{\psi} \gamma^{+}\left(i \stackrel{\leftrightarrow}{D_{+}}\right)^{n} \psi \\
& \overleftrightarrow{D}_{+} \equiv \vec{D}_{+}-\overleftarrow{D}_{+}
\end{aligned}
$$

Operator Product Expansion

$$
\begin{aligned}
& J_{\mathrm{em}}(x) J_{\mathrm{em}}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(\frac{1}{x^{2}}\right)^{2} x_{-}^{n+k+1} C_{n, k} O_{n, k} \\
& k=0: \quad O_{n, 0} \equiv \quad \bar{\psi} \gamma^{+}\left(i \stackrel{\leftrightarrow}{D_{+}}\right)^{n} \psi \\
& \overleftrightarrow{D}_{+} \equiv \vec{D}_{+}-\overleftarrow{D}_{+}
\end{aligned}
$$

- $C_{n, 0}$ and γ_{n} of $O_{n, 0}$ well known from DIS

Operator Product Expansion

$$
\begin{aligned}
& J_{\mathrm{em}}(x) J_{\mathrm{em}}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(\frac{1}{x^{2}}\right)^{2} x_{-}^{n+k+1} C_{n, k} O_{n, k} \\
& k=0: \quad O_{n, 0} \equiv \quad \bar{\psi} \gamma^{+}\left(i \overleftrightarrow{D_{+}}\right)^{n} \psi \\
& \overleftrightarrow{D}_{+} \equiv \vec{D}_{+}-\overleftarrow{D}_{+}
\end{aligned}
$$

- $C_{n, 0}$ and γ_{n} of $O_{n, 0}$ well known from DIS
- matrix elements of $O_{n, 0}$ equal to Mellin moments of GPDs

$$
\left\langle P_{2}\right| O_{n, 0}\left|P_{1}\right\rangle=\left(P^{+}\right)^{n+1} \int_{-1}^{1} d x x^{n} F^{q}\left(x, \eta, \Delta^{2}\right)
$$

Operator Product Expansion

$$
\begin{aligned}
& J_{\mathrm{em}}(x) J_{\mathrm{em}}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(\frac{1}{x^{2}}\right)^{2} x_{-}^{n+k+1} C_{n, k} O_{n, k} \\
& O_{n, k} \equiv\left(i \partial_{+}\right)^{k} \bar{\psi} \gamma^{+}\left(i \stackrel{\leftrightarrow}{D_{+}}\right)^{n} \psi \quad i \partial_{+} \xrightarrow{\text { M.E. }}-\Delta_{+} \\
& \stackrel{\leftrightarrow}{D}_{+} \equiv \vec{D}_{+}-\stackrel{\overleftarrow{D}}{+}
\end{aligned}
$$

- $C_{n, 0}$ and γ_{n} of $O_{n, 0}$ well known from DIS
- matrix elements of $O_{n, 0}$ equal to Mellin moments of GPDs

$$
\left\langle P_{2}\right| O_{n, 0}\left|P_{1}\right\rangle=\left(P^{+}\right)^{n+1} \int_{-1}^{1} d x x^{n} F^{q}\left(x, \eta, \Delta^{2}\right)
$$

- $O_{n, k}$ (for fixed $n+k$) mix under evolution...

Operator Product Expansion

$$
\begin{aligned}
& J_{\mathrm{em}}(x) J_{\mathrm{em}}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(\frac{1}{x^{2}}\right)^{2} x_{-}^{n+k+1} C_{n, k} O_{n, k} \\
& O_{n, k} \equiv\left(i \partial_{+}\right)^{k} \bar{\psi} \gamma^{+}\left(i \stackrel{\leftrightarrow}{D_{+}}\right)^{n} \psi \quad i \partial_{+} \stackrel{\text { M.E. }}{\longrightarrow}-\Delta_{+} \\
& \overleftrightarrow{D}_{+}=\vec{D}_{+}-\overleftarrow{D}_{+}
\end{aligned}
$$

- $C_{n, 0}$ and γ_{n} of $O_{n, 0}$ well known from DIS
- matrix elements of $O_{n, 0}$ equal to Mellin moments of GPDs

$$
\left\langle P_{2}\right| O_{n, 0}\left|P_{1}\right\rangle=\left(P^{+}\right)^{n+1} \int_{-1}^{1} d x x^{n} F^{q}\left(x, \eta, \Delta^{2}\right)
$$

- $O_{n, k}$ (for fixed $n+k$) mix under evolution...
- ... so instead of $O_{n, k}$ choose their linear combinations which diagonalize LO evolution operator

Conformal operators

$$
\mathbb{O}_{n, n+k}=\left(i \partial^{+}\right)^{n+k} \bar{\psi} \gamma^{+} C_{n}^{3 / 2}\left(\frac{\overleftrightarrow{D^{+}}}{\partial^{+}}\right) \psi
$$

- they have well-defined conformal spin $j=n+2$

Conformal operators

$$
\mathbb{O}_{n, n+k}=\left(i \partial^{+}\right)^{n+k} \bar{\psi} \gamma^{+} C_{n}^{3 / 2}\left(\frac{\overleftrightarrow{D^{+}}}{\partial^{+}}\right) \psi
$$

- they have well-defined conformal spin $j=n+2$
- massless QCD is conformally symmetric at the tree level \Rightarrow conformal spin is conserved
- mixing of operators with different n is forbidden by conformal symmetry, while mixing of those with different $n+k$ is forbidden by Lorentz symmetry

Conformal operators

$$
\mathbb{O}_{n, n+k}=\left(i \partial^{+}\right)^{n+k} \bar{\psi} \gamma^{+} C_{n}^{3 / 2}\left(\frac{\overleftrightarrow{D^{+}}}{\partial^{+}}\right) \psi
$$

- they have well-defined conformal spin $j=n+2$
- massless QCD is conformally symmetric at the tree level \Rightarrow conformal spin is conserved
- mixing of operators with different n is forbidden by conformal symmetry, while mixing of those with different $n+k$ is forbidden by Lorentz symmetry $\Rightarrow \mathbb{O}_{n, n+k}$ don't mix at LO

Conformal operators

$$
\mathbb{O}_{n, n+k}=\left(i \partial^{+}\right)^{n+k} \bar{\psi} \gamma^{+} C_{n}^{3 / 2}\left(\frac{\overleftrightarrow{D^{+}}}{\partial^{+}}\right) \psi
$$

- they have well-defined conformal spin $j=n+2$
- massless QCD is conformally symmetric at the tree level \Rightarrow conformal spin is conserved
- mixing of operators with different n is forbidden by conformal symmetry, while mixing of those with different $n+k$ is forbidden by Lorentz symmetry $\Rightarrow \mathbb{O}_{n, n+k}$ don't mix at LO
- conformal symmetry broken at the loop level (renormalization introduces mass scale, dimensional transmutation) \Rightarrow
- running of the coupling constant
- anomalous dimensions of operators $\gamma_{j k}=\delta_{j k} \gamma_{j}+\gamma_{j k}^{\mathrm{ND}}$

Conformal operators

$$
\mathbb{O}_{n, n+k}=\left(i \partial^{+}\right)^{n+k} \bar{\psi} \gamma^{+} C_{n}^{3 / 2}\left(\frac{\overleftrightarrow{D^{+}}}{\partial^{+}}\right) \psi
$$

- they have well-defined conformal spin $j=n+2$
- massless QCD is conformally symmetric at the tree level \Rightarrow conformal spin is conserved
- mixing of operators with different n is forbidden by conformal symmetry, while mixing of those with different $n+k$ is forbidden by Lorentz symmetry $\Rightarrow \mathbb{O}_{n, n+k}$ don't mix at LO
- conformal symmetry broken at the loop level (renormalization introduces mass scale, dimensional transmutation) \Rightarrow
- running of the coupling constant
- anomalous dimensions of operators $\gamma_{j k}=\delta_{j k} \gamma_{j}+\gamma_{j k}^{\mathrm{ND}}$
$\Rightarrow \mathbb{O}_{n, n+k}$ start to mix at NLO

Conformal Towers

Conformal Towers

Conformal Towers

Conformal Towers

- Diagonalize in artificial $\beta=0$ theory by changing scheme

$$
\mathbb{O}^{\mathrm{CS}}=B^{-1} \mathbb{O}^{\overline{\mathrm{MS}}} \quad \text { so that } \quad \gamma_{j k}^{\mathrm{CS}}=\delta_{j k} \gamma_{k}
$$

Conformal Towers

- Diagonalize in artificial $\beta=0$ theory by changing scheme

$$
\mathbb{O}^{\mathrm{CS}}=B^{-1} \mathbb{O}^{\overline{\mathrm{MS}}} \quad \text { so that } \quad \gamma_{j k}^{\mathrm{CS}}=\delta_{j k} \gamma_{k}
$$

Conformal Towers

- Diagonalize in artificial $\beta=0$ theory by changing scheme

$$
\mathbb{O}^{\mathrm{CS}}=B^{-1} \mathbb{O}^{\overline{\mathrm{MS}}} \quad \text { so that } \quad \gamma_{j k}^{\mathrm{CS}}=\delta_{j k} \gamma_{k}
$$

- $C_{n, k}=(-1)^{k} \frac{(n+2)_{k}}{k!(2 n+4)_{k}} C_{n, 0} \quad \Rightarrow$ summing complete tower

$\beta \neq 0$

- In full QCD $\beta \neq 0$ and NLO diagonalization is spoiled:

$$
\gamma_{j k}^{\mathrm{cs}}=\delta_{j k} \gamma_{k}+\frac{\beta}{g} \Delta_{j k}
$$

$$
\beta \neq 0
$$

- In full QCD $\beta \neq 0$ and NLO diagonalization is spoiled:

$$
\gamma_{j k}^{\mathrm{CS}}=\delta_{j k} \gamma_{k}+\frac{\beta}{g} \Delta_{j k}
$$

- However, there is also ambiguity in $\overline{\mathrm{MS}} \rightarrow \mathrm{CS}$ rotation matrix:

$$
B=B^{(\beta=0)}+\frac{\beta}{g} \delta B
$$

$$
\beta \neq 0
$$

- In full QCD $\beta \neq 0$ and NLO diagonalization is spoiled:

$$
\gamma_{j k}^{\mathrm{CS}}=\delta_{j k} \gamma_{k}+\frac{\beta}{g} \Delta_{j k}
$$

- However, there is also ambiguity in $\overline{\mathrm{MS}} \rightarrow \mathrm{CS}$ rotation matrix:

$$
B=B^{(\beta=0)}+\frac{\beta}{g} \delta B
$$

- By judicious choice of δB one can "push" mixing to NNLO ($\overline{\mathrm{CS}}$ scheme, [Melic et al. '03])

$$
\beta \neq 0
$$

- In full QCD $\beta \neq 0$ and NLO diagonalization is spoiled:

$$
\gamma_{j k}^{\mathrm{CS}}=\delta_{j k} \gamma_{k}+\frac{\beta}{g} \Delta_{j k}
$$

- However, there is also ambiguity in $\overline{\mathrm{MS}} \rightarrow \mathrm{CS}$ rotation matrix:

$$
B=B^{(\beta=0)}+\frac{\beta}{g} \delta B
$$

- By judicious choice of δB one can "push" mixing to NNLO ($\overline{\mathrm{CS}}$ scheme, [Melic et al. '03])
- The $B^{(\beta=0)}$ is constrained by conformal Ward identities

$$
B_{j k}^{(\beta=0) \mathrm{NLO}}=\delta_{j k}-\frac{\alpha_{s}}{2 \pi} \theta(j>k) \frac{\gamma_{j k}^{\text {scT, LO }}}{a_{j k}} \quad \begin{aligned}
& \text { (ajk }- \text { known matrix }) \\
& {[\text { Müller '94] }}
\end{aligned}
$$

NNLO DVCS

- DVCS amplitude in terms of conformal moments:

$$
\begin{aligned}
\mathrm{s}_{\mathcal{H}}\left(\xi, \Delta^{2}, \mathcal{Q}^{2}\right) & =2 \sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}\left(\mathcal{Q}^{2} / \mu^{2}, \alpha_{s}(\mu)\right) \mathbf{H}_{j}\left(\xi=\eta, \Delta^{2}, \mu^{2}\right) \\
H_{j}^{q}(\eta, \ldots) & =\frac{\Gamma(3 / 2) \Gamma(j+1)}{2^{j+1} \Gamma(j+3 / 2)} \int_{-1}^{1} \mathrm{~d} x \eta^{j-1} C_{j}^{3 / 2}(x / \eta) H^{q}(x, \eta, \ldots)
\end{aligned}
$$

NNLO DVCS

- DVCS amplitude in terms of conformal moments:

$$
\begin{aligned}
\mathrm{s}_{\mathcal{H}}\left(\xi, \Delta^{2}, \mathcal{Q}^{2}\right) & =2 \sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}\left(\mathcal{Q}^{2} / \mu^{2}, \alpha_{s}(\mu)\right) \mathbf{H}_{j}\left(\xi=\eta, \Delta^{2}, \mu^{2}\right) \\
H_{j}^{q}(\eta, \ldots) & =\frac{\Gamma(3 / 2) \Gamma(j+1)}{2^{j+1} \Gamma(j+3 / 2)} \int_{-1}^{1} \mathrm{~d} x \eta^{j-1} C_{j}^{3 / 2}(x / \eta) H^{q}(x, \eta, \ldots)
\end{aligned}
$$

-analogous to Mellin moments in DIS: $x^{n} \rightarrow C_{n}^{3 / 2}(x)$

NNLO DVCS

- DVCS amplitude in terms of conformal moments:

$$
\begin{aligned}
\mathrm{s}_{\mathcal{H}\left(\xi, \Delta^{2}, \mathcal{Q}^{2}\right)} & =2 \sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}\left(\mathcal{Q}^{2} / \mu^{2}, \alpha_{s}(\mu)\right) \mathbf{H}_{j}\left(\xi=\eta, \Delta^{2}, \mu^{2}\right) \\
H_{j}^{q}(\eta, \ldots) & =\frac{\Gamma(3 / 2) \Gamma(j+1)}{2^{j+1} \Gamma(j+3 / 2)} \int_{-1}^{1} \mathrm{~d} x \eta^{j-1} C_{j}^{3 / 2}(x / \eta) H^{q}(x, \eta, \ldots)
\end{aligned}
$$

- analogous to Mellin moments in DIS: $x^{n} \rightarrow C_{n}^{3 / 2}(x)$
- Here, Wilson coefficients C_{j} read...

NNLO DVCS II

$$
\begin{aligned}
& C_{j}\left(Q^{2} / \mu^{2}, Q^{2} / \mu^{* 2}, \alpha_{s}(\mu)\right)= \\
& \qquad \sum_{k=j}^{\infty} C_{k}\left(1, \alpha_{s}(Q)\right) \mathcal{P} \exp \left\{\int_{Q}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}}\right. \\
& \left.\quad\left[\gamma_{j}\left(\alpha_{s}\left(\mu^{\prime}\right)\right) \delta_{k j}+\frac{\beta}{g} \Delta_{k j}\left(\alpha_{s}\left(\mu^{\prime}\right), \mu^{\prime} / \mu^{*}\right)\right]\right\}
\end{aligned}
$$

with

$$
C_{j}\left(1, \alpha_{s}(Q)\right)=\frac{2^{1+j+\gamma_{j}\left(\alpha_{s}\right) / 2} \Gamma\left(\frac{5}{2}+j+\gamma_{j}\left(\alpha_{s}\right) / 2\right)}{\Gamma(3 / 2) \Gamma\left(3+j+\gamma_{j}\left(\alpha_{s}\right) / 2\right)} c_{j}^{\overline{\mathrm{MS}}, \mathrm{DIS}}\left(\alpha_{s}\right)
$$

$\frac{2 \cdots \Gamma(\cdots)}{\Gamma(3 / 2) \Gamma(\ldots)}$ is result of resumming the conformal tower j

NNLO DVCS II

$$
\begin{aligned}
& C_{j}\left(Q^{2} / \mu^{2}, Q^{2} / \mu^{* 2}, \alpha_{s}(\mu)\right)= \\
& \qquad \sum_{k=j}^{\infty} C_{k}\left(1, \alpha_{s}(Q)\right) \mathcal{P} \exp \left\{\int_{Q}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}}\right. \\
& \left.\quad\left[\gamma_{j}\left(\alpha_{s}\left(\mu^{\prime}\right)\right) \delta_{k j}+\frac{\beta}{g} \Delta_{k j}\left(\alpha_{s}\left(\mu^{\prime}\right), \mu^{\prime} / \mu^{*}\right)\right]\right\}
\end{aligned}
$$

with

$$
C_{j}\left(1, \alpha_{s}(Q)\right)=\frac{2^{1+j+\gamma_{j}\left(\alpha_{s}\right) / 2} \Gamma\left(\frac{5}{2}+j+\gamma_{j}\left(\alpha_{s}\right) / 2\right)}{\Gamma(3 / 2) \Gamma\left(3+j+\gamma_{j}\left(\alpha_{s}\right) / 2\right)} c_{j}^{\overline{\mathrm{MS}}, \mathrm{DIS}}\left(\alpha_{s}\right)
$$

- $\frac{2 \cdots \Gamma(\ldots)}{\Gamma(3 / 2) \Gamma(\ldots)}$ is result of resumming the conformal tower j
- $c_{j}^{\overline{\mathrm{MS}}, \mathrm{DIS}}\left(\alpha_{s}\right)$ from [Zijlstra, v. Neerven '92,'94, v. Neerven and Vogt '00]

NNLO DVCS II

$$
\begin{aligned}
& C_{j}\left(Q^{2} / \mu^{2}, Q^{2} / \mu^{* 2}, \alpha_{s}(\mu)\right)= \\
& \qquad \sum_{k=j}^{\infty} C_{k}\left(1, \alpha_{s}(Q)\right) \mathcal{P} \exp \left\{\int_{Q}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}}\right. \\
& \left.\quad\left[\gamma_{j}\left(\alpha_{s}\left(\mu^{\prime}\right)\right) \delta_{k j}+\frac{\beta}{g} \Delta_{k j}\left(\alpha_{s}\left(\mu^{\prime}\right), \mu^{\prime} / \mu^{*}\right)\right]\right\}
\end{aligned}
$$

with

$$
C_{j}\left(1, \alpha_{s}(Q)\right)=\frac{2^{1+j+\gamma_{j}\left(\alpha_{s}\right) / 2} \Gamma\left(\frac{5}{2}+j+\gamma_{j}\left(\alpha_{s}\right) / 2\right)}{\Gamma(3 / 2) \Gamma\left(3+j+\gamma_{j}\left(\alpha_{s}\right) / 2\right)} c_{j}^{\overline{\mathrm{MS}}, \mathrm{DIS}}\left(\alpha_{s}\right)
$$

- $\frac{2 \cdots \Gamma(\ldots)}{\Gamma(3 / 2) \Gamma(\cdots)}$ is result of resumming the conformal tower j
- $c_{j}^{\overline{M S}, \mathrm{DIS}}\left(\alpha_{s}\right)$ from [Zijistra, v. Neerven '92,'94, v. Neerven and Vogt '00]
- Finally, evolution of conformal moments is given by

NNLO DVCS III

$$
\begin{aligned}
\mu \frac{d}{d \mu} H_{j}\left(\cdots, \mu^{2}\right) & =-\gamma_{j}\left(\alpha_{s}(\mu)\right) H_{j}\left(\cdots, \mu^{2}\right) \\
& -\frac{\beta\left(\alpha_{s}(\mu)\right)}{g(\mu)} \sum_{k=0}^{j-2} \eta^{j-k} \Delta_{j k}\left(\alpha_{s}(\mu), \frac{\mu}{\mu^{*}}\right) H_{k}\left(\cdots, \mu^{2}\right)
\end{aligned}
$$

- $\Delta_{j k}$ - unknown correction, starts at NNLO, and can be suppressed by choice initial condition - neglected
- γ_{j} from [Vogt, Moch and Vermaseren '04]

NNLO DVCS III

$$
\begin{aligned}
\mu \frac{d}{d \mu} H_{j}\left(\cdots, \mu^{2}\right) & =-\gamma_{j}\left(\alpha_{s}(\mu)\right) H_{j}\left(\cdots, \mu^{2}\right) \\
& -\frac{\beta\left(\alpha_{s}(\mu)\right)}{g(\mu)} \sum_{k=0}^{j-2} \eta^{j-k} \Delta_{j k}\left(\alpha_{s}(\mu), \frac{\mu}{\mu^{*}}\right) H_{k}\left(\cdots, \mu^{2}\right)
\end{aligned}
$$

- $\Delta_{j k}$ - unknown correction, starts at NNLO, and can be suppressed by choice initial condition - neglected
- γ_{j} from [Vogt, Moch and Vermaseren '04]
- We have used these expressions to

1. investigate size of NNLO corrections to non-singlet [Müller '06] and singlet [K.K., Müller, Passek-Kumerǐ̌ki and Schäfer '06] Compton form factors
2. perform fits to DVCS (and DIS) data and extract information about GPDs [Müller et al., in preparation]

Results on NNLO DVCS

- We use simple Regge-inspired ansatz for GPDs...

$$
\begin{aligned}
& \mathbf{H}_{j}\left(\xi, \Delta^{2}, \mathcal{Q}_{0}^{2}\right)=\binom{N_{\Sigma}^{\prime} F_{\Sigma}\left(\Delta^{2}\right) \mathrm{B}\left(1+j-\alpha_{\Sigma}\left(\Delta^{2}\right), 8\right)}{N_{\mathrm{G}}^{\prime} F_{\mathrm{G}}\left(\Delta^{2}\right) \mathrm{B}\left(1+j-\alpha_{\mathrm{G}}\left(\Delta^{2}\right), 6\right)} \\
& \alpha_{a}\left(\Delta^{2}\right)=\alpha_{a}(0)+0.25 \Delta^{2} \quad F_{a}\left(\Delta^{2}\right)=\left(1-\frac{\Delta^{2}}{m_{a}^{2}}\right)^{-3}
\end{aligned}
$$

Results on NNLO DVCS

- We use simple Regge-inspired ansatz for GPDs ...

$$
\begin{aligned}
& \mathbf{H}_{j}\left(\xi, \Delta^{2}, \mathcal{Q}_{0}^{2}\right)=\binom{N_{\Sigma}^{\prime} F_{\Sigma}\left(\Delta^{2}\right) \mathrm{B}\left(1+j-\alpha_{\Sigma}\left(\Delta^{2}\right), 8\right)}{N_{\mathrm{G}}^{\prime} F_{\mathrm{G}}\left(\Delta^{2}\right) \mathrm{B}\left(1+j-\alpha_{\mathrm{G}}\left(\Delta^{2}\right), 6\right)} \\
& \alpha_{a}\left(\Delta^{2}\right)=\alpha_{a}(0)+0.25 \Delta^{2} \quad F_{a}\left(\Delta^{2}\right)=\left(1-\frac{\Delta^{2}}{m_{a}^{2}}\right)^{-3}
\end{aligned}
$$

- ... corresponding in forward case $(\Delta=0)$ to PDFs of form

$$
\Sigma(x)=N_{\Sigma}^{\prime} x^{-\alpha_{\Sigma}(0)}(1-x)^{7} ; \quad G(x)=N_{G}^{\prime} x^{-\alpha_{G}(0)}(1-x)^{5}
$$

Results on NNLO DVCS

- We use simple Regge-inspired ansatz for GPDs ...

$$
\begin{aligned}
& \mathbf{H}_{j}\left(\xi, \Delta^{2}, \mathcal{Q}_{0}^{2}\right)=\binom{N_{\Sigma}^{\prime} F_{\Sigma}\left(\Delta^{2}\right) \mathrm{B}\left(1+j-\alpha_{\Sigma}\left(\Delta^{2}\right), 8\right)}{N_{\mathrm{G}}^{\prime} F_{\mathrm{G}}\left(\Delta^{2}\right) \mathrm{B}\left(1+j-\alpha_{\mathrm{G}}\left(\Delta^{2}\right), 6\right)} \\
& \alpha_{a}\left(\Delta^{2}\right)=\alpha_{a}(0)+0.25 \Delta^{2} \quad F_{a}\left(\Delta^{2}\right)=\left(1-\frac{\Delta^{2}}{m_{a}^{2}}\right)^{-3}
\end{aligned}
$$

- ... corresponding in forward case $(\Delta=0)$ to PDFs of form

$$
\Sigma(x)=N_{\Sigma}^{\prime} x^{-\alpha_{\Sigma}(0)}(1-x)^{7} ; \quad G(x)=N_{G}^{\prime} x^{-\alpha_{G}(0)}(1-x)^{5}
$$

- small $\xi($ small $x) \Rightarrow$ neglect valence quarks contribution

Results on NNLO DVCS

- We use simple Regge-inspired ansatz for GPDs ...

$$
\begin{aligned}
& \mathbf{H}_{j}\left(\xi, \Delta^{2}, \mathcal{Q}_{0}^{2}\right)=\binom{N_{\Sigma}^{\prime} F_{\Sigma}\left(\Delta^{2}\right) \mathrm{B}\left(1+j-\alpha_{\Sigma}\left(\Delta^{2}\right), 8\right)}{N_{\mathrm{G}}^{\prime} F_{\mathrm{G}}\left(\Delta^{2}\right) \mathrm{B}\left(1+j-\alpha_{\mathrm{G}}\left(\Delta^{2}\right), 6\right)} \\
& \alpha_{a}\left(\Delta^{2}\right)=\alpha_{a}(0)+0.25 \Delta^{2} \quad F_{a}\left(\Delta^{2}\right)=\left(1-\frac{\Delta^{2}}{m_{a}^{2}}\right)^{-3}
\end{aligned}
$$

- ... corresponding in forward case $(\Delta=0)$ to PDFs of form

$$
\Sigma(x)=N_{\Sigma}^{\prime} x^{-\alpha_{\Sigma}(0)}(1-x)^{7} ; \quad G(x)=N_{G}^{\prime} x^{-\alpha_{G}(0)}(1-x)^{5}
$$

- small ξ (small x) \Rightarrow neglect valence quarks contribution
- We calculate K-factors

$$
K_{\mathrm{abs}}^{P}=\frac{\left|{ }^{\mathrm{S}} \mathcal{H}^{\mathrm{N}^{P} \mathrm{LO}}\right|}{\left|\mathrm{S}^{\mathrm{H}^{P-1} \mathrm{LO}}\right|} ; \quad K_{\mathrm{arg}}^{P}=\frac{\arg \left(\mathrm{S}^{\mathrm{S}} \mathcal{H}^{\mathrm{N}^{P} \mathrm{LO}}\right)}{\arg \left({ }^{\mathrm{S}} \mathcal{H}^{\mathrm{N}^{P-1} \mathrm{LO}}\right)}
$$

Size of Radiative Corrections - Modulus

- NLO: up to $40-70 \% ~(\overline{\mathrm{MS}})$; up to $30-55 \%(\overline{\mathrm{CS}})$
- NNLO: 8-14\% ("hard"); 1-4\% ("soft")
["hard"]
[$\overline{\mathrm{CS}}$]

Scale Dependence

Same K-factors, but with $\mathcal{H} \rightarrow \mathrm{d} \mathcal{H} / \mathrm{d} \ln \mathcal{Q}^{2}$

> Thick lines:
> "hard" gluon
> $N_{G}=0.4$
> $\alpha_{G}(0)=\alpha_{\Sigma}(0)+0.1$

Thin lines:
"soft" gluon
$N_{G}=0.3$
$\alpha_{G}(0)=\alpha_{\Sigma}(0)$

- NLO: even 100%
- NNLO: somewhat smaller, but acceptable only for larger ξ

GPD Fits

- $N_{\Sigma}=0.143, \alpha_{\Sigma}(0)=1.10, m_{\Sigma}=1.26, N_{G}=0.549, \alpha_{G}(0)=0.915, m_{G}=1.66, \mathcal{Q}_{0}^{2}=2.5 \mathrm{GeV}^{2}$
- $\chi^{2} /($ number of degrees of freedom $)=54 / 64$

Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.

Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.

Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.

Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.

Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.
- scale dependence not so conclusive, large NNLO effects for $\xi \lesssim 10^{-3}$.

Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.
- scale dependence not so conclusive, large NNLO effects for $\xi \lesssim 10^{-3}$.

Relation to distribution amplitudes

- In QCD GPDs are defined as [Müller '92, et al. '94, Ji, Radyushkin '96]

$$
\begin{aligned}
& F^{q}\left(x, \eta, \Delta^{2}\right)=\left.\int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P_{2}\right| \bar{q}(-z) \gamma^{+} q(z)\left|P_{1}\right\rangle\right|_{z^{+}=0, z_{\perp}=0} \\
& F^{g}\left(x, \eta, \Delta^{2}\right)=\left.\frac{4}{P^{+}} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P_{2}\right| G_{a}^{+\mu}(-z) G_{a \mu}^{+}(z)\left|P_{1}\right\rangle\right|_{\ldots}
\end{aligned}
$$

$$
\frac{x+\eta}{2} P^{+} / \frac{x-\eta}{2} P^{+}
$$

$\frac{1+\eta}{2} P^{+}$

$$
\frac{1-\eta}{2} P^{+}
$$

$\frac{1+\eta}{2} P^{+}$
$\frac{1-\eta}{2} P^{+}$
$P=P_{1}+P_{2} ; \quad \Delta=P_{2}-P_{1} ;$
$\eta=-\frac{\Delta^{+}}{P^{+}}$
(skewedness)

Conformal algebra

- Conformal group restricted to light-cone $\sim O(2,1)$ $L_{+}=-i P_{+} \quad\left[L_{0}, L_{\mp}\right]=\mp L_{\mp} \quad$ conf.spin j :
$L_{-}=\frac{i}{2} K_{-}$
$\left[L_{-}, L_{+}\right]=-2 L_{0}$
Casimir:

$$
\left[L^{2}, \mathbb{O}_{n, n+k}\right]=
$$

$$
L_{0}=\frac{i}{2}\left(D+M_{-+}\right) \quad L^{2}=L_{0}^{2}-L_{0}+L_{-} L_{+}
$$

(D - dilatations, K_{-}- special conformal transformation (SCT))

Size of Radiative Corrections - phase

Thick lines:
"hard" gluon
$N_{G}=0.4$
$\alpha_{G}(0)=\alpha_{\Sigma}(0)+0.1$
Thin lines:
"soft" gluon
$N_{G}=0.3$
$\alpha_{G}(0)=\alpha_{\Sigma}(0)$

- NLO: up to $24 \% ~(\overline{\mathrm{MS}})$; up to $13 \%(\overline{\mathrm{CS}})$
["hard"]
- NNLO and "soft" NLO - less than 5\%

Scale Dependence - Modulus

Thick lines:
"hard" gluon
$N_{G}=0.4$
$\alpha_{G}(0)=\alpha_{\Sigma}(0)+0.1$

Thin lines:
"soft" gluon
$N_{G}=0.3$
$\alpha_{G}(0)=\alpha_{\Sigma}(0)$

- NLO: even 100%
- NNLO: smaller (largest for "hard" gluons)

