CMS ECAL Calibration and Test Beam Results

- Goals for ECAL
- Final calibration with LHC
- Light monitoring system for short term variations
- Initial calibration in lab and with cosmics
- Calibration with test beam
- Noise, time- and energy resolution
- Shower containment correction
- Conclusion

Main goal: precise energy and position measurement of e, γ Benchmark for $m_H < 150 \text{ GeV} / c^2$: $H \Rightarrow \gamma \gamma (\Gamma_H/m_H \text{ small and large background})$ for higher $m_H : H \Rightarrow ZZ$, $WW \Rightarrow X$ +leptons

Energy resolution for calorimeter:

a: Stochastic term: shower fluctuations, photo-statistics, fluctuations of transverse leakage

b: Noise term (5x5): electronics noise, dark current, pile-up

c: Constant term: calibration, non-uniformities, fluctuations due to T, HV, longitudinal leakage

06/10/2006-LHC-days-Split

Φ symmetry calibration with minimum bias events and Jet triggers:

Final calibration with LHC:

- Intercalibration of rings of Xtals at equal η, with min. bias. events or with Jet triggers and the energy flow from opposite (2nd) jet, to avoid trigger bias.
- Use $Z \rightarrow e^+e^-$ events to intercalibrate rings.
- Precision of better than 2% within a few days.
- Energy in Xtals up to 6 GeV.

Ultimate calibration with W \rightarrow e v using E/p:

- Depends weakly on starting calibration constants.
- Accuracy of 0.5% within 6 months at $L=10^{33}$ (5-7 fb⁻¹ needed).
- Need Tracker operational and aligned.

- Short term variations of calibration constants monitored with laser system.
- Light transmission of Xtals changes with radiation.
- Change depends on dose rate and on individual crystal.
- Difference of variation after irradiation between electrons and laser can be described by a universal α for a given producer (tested in beam).

Light monitoring system (2):

- Transmission in CMS frequently monitored (every 20min entire ECAL) with laser light (440nm,796nm) injected through fibers into the front (Barrel) or rear (Endcap) of each Xtal.
- Blue laser monitors radiation effect at emission peak.
- Infrared laser monitors light distribution system and read-out chain.
- Stability of system monitored with PN diodes (0.1%).

Initial calibration in Lab and with cosmics:

Intercalibration with light yield measurement in the Lab:

- Light yield measured with radioactive source for each Xtal.
- By comparison to test beam data of same Xtals, 4.6% precision achieved.
- Since light yield and longitudinal transmission at 360nm are correlated, combination of both measurements improves intercalibration (4.1%).

Calibration with cosmic muons :

- Each SM passes cosmic muon stand before final installation in CMS.
- During 1-2 weeks up to 600k useful events.
- Cosmic muons aligned to Xtal axis deposit 250 MeV in Xtal.
- APD gain increased from 50 to 200.
- Signal to noise ratio: 30.
- Precision on inter-calibration ~2% (depending on η).
- ~22 SM already calibrated.

only for a few SMs possible:

- Goal is to have a < 2% accuracy for initial inter-calibration in CMS.
- Electrons of 120 GeV.
- Goal is to calibrate \geq 10 SMs (1 twice).

- Noise of ~ 40 MeV/Xtal.
- No coherent noise, if pedestal is subtracted event by event.

Time resolution:

Time difference between 2 Xtals hit by same shower

- Signal timing must be stable in CMS.
 If E > 2 GeV, σ(δt) < 1 ns.
- If E > 40 GeV, $\sigma(\delta t) \approx 0.11$ ns.

Energy resolution:

Central impact (4×4 mm2) :

Shower containment correction:

- Energy in a 3x3 cluster varies of ~3% with position of cluster in central Xtal.
- Containment effect decreases with matrix size.
- Correction developed using the energy distribution deposit in this 3X3 array.

"Uniform" impact

- Energy resolution $\leq 0.5\%$ at 120 GeV for any electron impact.
- Same shower containment correction applied (for all E and all Xtals).

- Beam position centered at many locations of a 3x3 matrix .
- Uniform impact, best simulation of situation in CMS.
- Resolution of 0.5% achieved at 120 GeV.
- Same shower containment correction applied (for all E and all Xtals).

Uniform impact

Conclusions:

- Electromagnetic calorimetry with high resolution is central design feature of CMS.
- Final calibration in LHC with data and laser system.
- Light monitoring system is working as expected.
- Inter-calibration constants predetermined in lab, with cosmics and with test beam.
- Test beam results for noise, time and energy resolution confirm the ambitious design goals of ECAL.

References:

- E resolution: CMS Note 2006/140
- Cluster containment: CMS Note 2006/045