Overview of RHIC results

Jean Gosset

2006 LHC days in Split October 2, 2006

dapnia

Outline

- Intro: High-energy AA as a tool to study high-density QCD in the lab
- <u>RHIC</u>: Properties of quark-gluon matter in central AuAu (20-200 GeV):
 τ < 1 fm/c:
 - (1) Total multiplicities consistent w/ saturated nuclear low-x gluon distrib. $\Rightarrow dN_{ch}/d\eta$
 - (2) Very high initial parton densities: dN^g/dy ~ 1000 Large transport coefficient <q_{hat}> ~ O(10) GeV²/fm ⇒ high-p_T hadron dN/dp_T
 - (3) Speed of sound $\langle c_s \rangle \sim 0.3$ (?) \Rightarrow high-p_T hadron dN_{pair}/d ϕ
 - (4) Nearly "perfect-fluid" (hydro. radial & parton elliptic flows) \Rightarrow hadron v₂, dN_{soft}/dp_T "Strongly coupled" \Rightarrow charm-Q R_{AA}, v₂, ... (?)
 - (5) Deconfined (Debye-screened) (?) $\Rightarrow J/\psi$ yields
 - (6) Thermalized (T ~ 350 MeV) (?) \Rightarrow photon dN/dp_T
 - τ ~ 1 fm/c:
 - (7) Energy densities above ϵ_{crit} : $\epsilon \sim 5 \text{ GeV/fm}^3 \Rightarrow dE_T/d\eta$
 - (8) Constituent quark-number scalings at hadronization \Rightarrow interm. p_T baryon dN/dp_T

dapnia

τ > 5 fm/c:

œ

- (9) Chemically equilibrated at T ~ 160 MeV \Rightarrow hadron ratios
- <u>Outlook</u>

High-energy AA collisions: physics program (1)

1. Learn about 2 basic properties of strong interaction: (de)confinement, chiral symmetry breaking (restoration)

2. Study the phase diagram of QCD matter: especially produce and study the QGP

High-energy AA collisions: physics program (2)

3. Probe quark-hadron phase transition of the primordial Universe (few µs after the Big Bang)

4. Study the regime of non-linear (high density) many-body parton dynamics at small-x (Color Glass Condensate)

4/38

The "Little Bang" in the lab.

- High-energy nucleus-nucleus collisions: fixed-target ($\sqrt{s_{NN}}$ = 20 GeV, SPS) colliders ($\sqrt{s_{NN}}$ = 200 GeV @ RHIC, 5.5 TeV @ LHC)
- QGP expected to be formed in a tiny region (~10⁻¹⁴ m) and to last very short times (~10⁻²³ s)
- Collision dynamics:

Different observables sensitive to different reaction stages

saclay

da

Relativistic Heavy-Ion Collider (RHIC) @ BNL

• Specifications:

3.83 km circumference
2 independent rings

120 bunches/ring
106 ns crossing time

maximum √s_{NN}

200 GeV for A + A
500 GeV for p+p

• 4 experiments: BRAHMS, PHENIX, PHOBOS, STAR

 Runs 1 - 6 (2000 – 2006): beams and √s_{NN} in GeV Au+Au 200, 130, 62.4, 22 Cu+Cu 200, 62.4 d+Au 200 p+p (polarized) 200, 62, 22

dapnia

saclay Jean Gosset

The 4 RHIC experiments

(1) AuAu particle multiplicities (dN_{ch}/dη)

Hadron multiplicities consistent with released number of gluons from saturated nuclear low-x gluon distribution

dapnia

saclay Jean Gosset

AuAu collisions @ 200 GeV

Charged particle multiplicities at RHIC

Total AuAu particle multiplicity (plus its centrality evolution) related to released number of gluons:

saclay ^{Je}

Consistent with "jet quenching" (parton energy loss) calculations:

Initial parton medium densities: dN^g/dy ~ 1000

Large transport coefficient: $\langle q_{hat} \rangle \sim O(10) \text{ GeV}^2/\text{fm}$

dapnia

saclay Jean Gosset

"Jet quenching" predictions

• Comparison to nuclear DIS results needs correction for expanding system

dapnia

saclay Je

Jean Gosset

Suppressed high p_T hadroproduction in central AuAu

 $R_{AA}(p_T) = \frac{d^2 N_{AA}/dy dp_T}{\langle T_{AB}(b) \rangle \cdot d^2 \sigma_{pp}/dy dp_T}$ = "QCD medium"/ "QCD vacuum"

PHENIX PRL 88, 022301 (2002)

PHYSICAL

REVIEW

R_{AA}~ 1: Photon spectrum consistent w/ pQCD×N_{coll} (unaffected by FSI, incoherent sum of pp)
 R_{AA} << 1: Hadrons well below pQCD expectations.

Parton energy-loss: $dN^{g}/dy \sim 1100$, $\langle q_{hat} \rangle \sim 14 \text{ GeV}^{2}/\text{fm}$

Unquenched high p_T hadroproduction in dAu

(3) Modified high p_T hadron azimuthal correlations

Absorbed away-side jet ("mono-jets" configuration) "Lost" energy redistributed at lower p_{τ}

> Double-peak structure: Mach cone effect in the plasma ? Speed of sound c_s~ 0.3 (?)

dapnia

saclay

Jean Gosset

High p_{T} di-hadron $\Delta \phi$ correlations in central AuAu

"Double peak" = Mach wave cone ?

• Double peak structure at $\pi \pm 1.2$ rad reminiscent of Mach wave conical shock ("sonic boom") speed of sound accessible through $\cos\theta_{\rm M} = c_{\rm s}$ Stoecker, Satarov, Mishutin, hep-ph/0505245 Casalderrey, Shuryak, Teaney, hep-ph/0411315 time averaged $c_{\rm s}^2 \sim 0.1$

 gluon Cerenkov-like emission also proposed medium index refraction accessible

dapnia

saclay

Jean Gosset

(4) Radial (dN_{soft}/dp_T) and elliptic (v_2) flows

"Perfect fluid" (zero viscosity) hydrodynamics description (with very short thermalization times) of radial (dN_{soft}/dp_{T}) and parton elliptic flows (v_{2})

"Strongly coupled" (liquid-like) plasma:

small charm-Q diffusion coefficient

dapnia

saclay Jean Gosset

Success of hydrodynamicals models at RHIC

"Perfect fluid" hydrodynamics (zero viscosity) with QGP EOS and fast thermalization times ($\tau_0 = 0.6$ fm/c) reproduces bulk of particle production:

Single hadron (π^{\pm} , K[±], p, pbar) spectra up to ~2 GeV/c (mass dependence from collective radial flow β_T ~0.6) Strong elliptic flow for all hadrons $(\pi^{\pm}, K^{\pm}, p, pbar)$ up to ~2 GeV/c

Elliptic flow

Initial anisotropy in x-space in non-central collisions (overlap) translates into final azimuthal asymmetry in p-space (w.r.t. reaction plane)

PHENIX: PRL 91, 181301(2003)

1) Truly collective effect (absent in p+p collisions)

2) Early-state phenomenon: develops in 1st (partonic) instants of reaction

3) Pure hadronic models predict small v_2

Elliptic flow at RHIC

Large v_2 signal at RHIC ! Exhausts hydro limit for p_{τ} < 2 GeV/c

Charm quark: suppression, v₂

Estimates of medium transport coefficients with heavy-Q Small diffusion coefficient (D= $2T^2/k$, k = mean Q² per time): strongly interacting medium: D ~ 3 / (2π T)

Many recent applications of "AdS/CFT" to compute medium properties (η /s, D, q_{hat} ...) in strongly-coupled SUSY Yang-Mills (QCD-like) from weakly coupled dual gravity

dapnia Estimate of plasma Coulomb coupling parameter at RHIC: M.Thoma

- $\Gamma = \langle \mathsf{E}_{\mathsf{pot}} \rangle / \langle \mathsf{E}_{\mathsf{kin}} \rangle \dots$
- Γ > 1 : strongly coupled plasma (liquid-like)

Moore & Teaney

(5) Suppressed J/ψ production

Suppressed J/ ψ yields observed at RHIC

Consistent with: Debye-screened (deconfined) medium (?) Recombination from ccbar pairs (?)

dapnia

saclay

Jean Gosset

J/ψ suppression

Debye screening predicted to destroy QQbar in a QGP with different states "melting" at different temperatures due to different binding energies.

(للله) پ⁰ (لل

0.5

 χ_{c} (0.59 fm)

V (0.56 fm)

(6) Thermal (?) photon dN/dp_T spectrum

Excess of direct photons at $p_T \sim 1-4$ GeV/c over primary (pQCD) contribution is consistent with hydro predictions for a hot radiating source ($T_0 \sim 590$ MeV, $< T_0 > \sim 350$ MeV)

dapnia

saclay

Jean Gosset

"Thermal" (?) photon "excess" at p_T~1-4 GeV/c ?

Central AuAu direct photons excess over pQCD observed at $p_T \sim 1-4$ GeV/c:

"Thermal" (?) photon "excess" at $p_T \sim 1-4$ GeV/c ?

Central AuAu direct photons excess over pQCD observed at $p_T \sim 1-4$ GeV/c:

New method:

Very low mass e⁺e⁻ pairs Subtraction of Dalitz decays of all sources

(7) Energy densities $(dE_T/d\eta)$

Energy densities $\epsilon \sim 5 \text{ GeV/fm}^3$ from transverse energy and "Bjorken estimate" at $\tau \sim 1 \text{ fm/c}$: above ϵ_{crit}

dapnia

saclay Jean Gosset

(8) Baryon spectra (dN/dp_T) and v_2 at intermediate p_T

Consistent with

constituent quark-number scaling at hadronization

dapnia

saclay Jean Gosset

Enhanced baryon spectra and v₂ at intermediate p_T

2006 LHC days in Split

Jean Gosset

saclay

Simpler v_2 scaling behaviour normalizing v_2 and p_T by

number of constituent quarks:

"Quark recombination" models vs. data

 Hadronization at intermediate p_T at RHIC via "quark recombination" (coalescence) in dense (thermal) medium :

Quark number scaling: v₂ versus KE_T

2006 LHC days in Split

Jean Gosset

(9) Final AuAu hadron ratios

Chemically equilibrated system:

hadron abundances freezed-out at T~160 MeV

dapnia

saclay Jean Gosset

Ratios of particle yields

dapnia

Hadron composition (even for strange had., γ_s =1) "fixed" at hadronization

(Comprehensive) overview

- **<u>RHIC</u>**: Properties of quark-gluon matter in central AuAu (20-200 GeV):
 - $\tau < 1$ fm/c:
 - (1) Total multiplicities consistent w/ saturated nuclear low-x gluon distrib. $\Rightarrow dN_{ch}/d\eta$
 - (2) Very high initial parton densities: dNg/dy ~ 1000 Large transport coefficient $<q_{hat}> \sim O(10) \text{ GeV}^2/\text{fm}$ \Rightarrow high-p_T hadron dN/dp_T
 - (3) Speed of sound $\langle c_s \rangle \sim 0.3$ (?) \Rightarrow high-p_T hadron dN_{pair}/d ϕ
 - (4) Nearly "perfect-fluid" (hydro. radial & parton elliptic flows) \Rightarrow hadron v₂, dN_{soft}/dp_T "Strongly coupled" \Rightarrow charm-Q R_{AA}, v₂, ... (?)
 - (5) Deconfined (Debye-screened) (?) \Rightarrow J/ ψ yields
 - (6) Thermalized (T ~ 350 MeV) (?) \Rightarrow photon dN/dp_T

$\tau \sim 1$ fm/c:

- (7) Energy densities above ε_{crit} : $\varepsilon \sim 5 \text{ GeV/fm}^3 \Rightarrow dE_T/d\eta$
- (8) Constituent quark-number scalings at hadronization \Rightarrow interm. p_T baryon dN/dp_T

dapnia

- $\tau > 5$ fm/c:
- (9) Chemically equilibrated at T ~ 160 MeV \Rightarrow hadron ratios

Future

- RHIC
 - Use improved luminosities (Au+Au)
 - Detector upgrades
 - PHENIX Hadron Blind Detector
 - e^+e^- pairs in $\rho\omega$ region : chiral symmetry restoration ?
 - Vertex detectors
 - Charm signature
 - etc
- LHC
 - QGP and CGC studies in different regimes
 - more jets, heavier quarks, smaller x

Backup slides

dapnia

