Quark Compositeness in ATLAS

Lukáš Přibyl FZÚ, Prague

LHC Days in Split

Quark compositeness in ATLAS

To describe quark compositeness a simple isoscalar left-left four-fermion contact interaction was added to QCD (as an analogy to Fermi approximation):

$$L_{qqqq} = \frac{\eta g^2}{2\Lambda_q^2} \overline{\Psi_q^L} \gamma^{\mu} \Psi_q^L \overline{\Psi_q^L} \gamma^{\mu} \Psi_q^L,$$

$$L = L_{QCD} + L_{qqqq}$$

- □ Λ (TeV) scale, η interference sign (+1 used here, destructive), $g^2 = 4\pi$.
- Are quark composite? Tevatron Run I: not up to $\Lambda \sim 2$ TeV.
- □ ATLAS detector with $E_{CMS} = 14$ TeV, calorimeter $\eta_{max} = 4.9$ and ability to measure high- p_T jets is especially suitable to extend our knowledge further.

Quark compositeness

Simulated samples:

- $\Lambda = 3, 5, 10, 20 \text{ and } 40 \text{ TeV, QCD.}$
- All quarks composite
- Events generated in Pythia (Rome settings), fast simulation done in Athena 11.0.41 framework, using Atlfast. Analysis done on Analysis Object Data (AOD).

What is investigated:

- Inclusive jet production cross-section $d\sigma/dp_T$. For high p_T the contact term above (CT) causes excess of events above standard QCD p_T spectrum. p_T spectrum is sensitive to PDF uncertainties and systematics (e.g. calorimeter nonlinearity). This effect can mask or fake compositeness scenario.
- Dijet angular distribution. Contact term causes excess of events with small pseudorapidity. Smaller dependance on systematics.

About Pythia

- Switch MSEL=51 used
 - problem with ISR encountered
 - thanks to T. Davidek for help
 - solved in 6.404 (thanks to T.Sjostrand)
 - solution compiled to Athena 11.0.41

Inclusive jet production cross-section

- Inclusive leading dijet p_T spectrum for various Λ .
- Integral luminosity 20 fb⁻¹.

Inclusive jet production cross-section

■ In order to cover such a large p_T range (from trigger 2j350 to TeV scale), the data had to be sewn from several p_T slices.

Inclusive jet production cross-section

To characterize the excess of high-pT events one can use:

$$R = \left(\frac{N(E_T > E_T^0)}{N(E_T < E_T^0)}\right)_{CT + QCD} \left(\frac{N(E_T > E_T^0)}{N(E_T < E_T^0)}\right)_{QCL}$$

 \blacksquare E_T⁰:=1100 GeV to optimize R_{dist}. For 10 fb⁻¹:

Λ (TeV)	R	σR	R _{dist}
3	3.39	0.02	145
5	1.81	0.01	78
10	1.05	<0.01	8.0
20	1.01	<0.01	2.2
40	1.004	0.006	0.62

To quantify the distance from QCD spectrum:

$$R_{dist} = \frac{R(\Lambda) - R(SM)}{\sigma_{R(\Lambda)}}$$

Inclusive jets – discovery limits

□ Int. luminosities to achieve $R_{dist} = 3$

Λ (TeV)	3	5	10	20	40
L (fb ⁻¹)	4.3 pb ⁻¹	15 pb ⁻¹	1.4 fb ⁻¹	19 fb ⁻¹	234 fb ⁻¹

 \blacksquare R_{dist} values for L = 300 fb⁻¹.

Λ (TeV)	3	5	10	20	40
R _{dist}	794	427	44	12	3.4

- \triangle Λ = 3, 5, 10 TeV might be rulled out or verified with first tens of pb⁻¹ of good data.
- But no systematics is included (PDF, nonlinearity,...)
- □ Therefore the required L will be larger, in case of $\Lambda = 40$ TeV the discovery is still unclear.

Inclusive jets – calorimeter nonlinearity

- What effect a calorimeter nonlinearity will make?
- To parametrize nonlinearity of ATLAS hadronic calorimeter (simple method):
 1

$$E_T(meas.) = E_T \frac{1}{c(1 + (e/h - 1)b \ln E_T)}$$

- e/h noncompensation, b nonlinearity (smaller values achievable by e.g. weighting method)
- c makes nonlin. and lin. spectra equal at 500 GeV.

PDF uncertainty studies

- For the purpose of uncertainty calculations CTEQ6M PDFs were used. These are based on NLO calculations fitted to DIS data.
- The global fit of data is 20 parametric, thanks to that we have 40 error PDFs (+ one central value) that were used to generate the data below.
- PDF uncertainty studies done with Pythia 6.326, but repaired for ISR, p_T > 1 TeV.

Lukáš Přibyl, FZÚ,

PDF uncertainty studies

R_{dist} can be calculated for each PDF:

Systematic error due to PDF uncertainties in this case $\sigma_{PDF}(R_{dist}) = 1.40$. Compare it to $R_{dist}(\Lambda = 40 \text{TeV}, 300 \text{ fb}^{-1}) = 3.40$.

Dijet angular distibution - Rχ

- We need a variable less sensitive to calo nonlinearity and more unique to compositeness (inclusive jet c.s is similar to graviton)- dijet angular distribution.
- Two leading jets with η_1, η_2 .

$$\chi = e^{|\eta_{1-}\eta_2|}$$

To characterize this distribution:

$$R_{\chi} = N(\chi < \chi_{cut}) / N(\chi > \chi_{cut})$$

 \square χ_{cut} = 2.8 (to get the largest difference between Λ and SM)

Dijet angular distibution

■ It is worth using again pT > 350 GeV (see later).

R1

■ Way to quantify difference between SM QCD and QCD+CT:

$$R_{1} = \frac{R_{\chi}(\Lambda) - R_{\chi}(SM)}{\sqrt{\sigma_{\Lambda}^{2} + \sigma_{SM}^{2}}}$$

□ For 20 fb⁻¹:

Λ(TeV)	R1 ₃₅₀	R1 ₁₀₀₀
3	646	100
5	172	71
10	16	10
20	2.3	0.7
40	0.65	<0.1

Dijet invariant mass (m_{jj}) lower cut tuned also to optimum for each Λ .

R1 – discovery limits

□ Int. luminosities to achieve R1 = 3

Λ (TeV)	3	5	10	20	40
L (fb ⁻¹)	< 1 pb ⁻¹	6 pb ⁻¹	0.7 fb ⁻¹	34 fb ⁻¹	426 fb ⁻¹

 \blacksquare R1 values for L = 300 fb⁻¹.

Λ (TeV)	3	5	10	20	40
R _{dist}	2500	665	62	8.9	2.5

- $\Lambda = 3$, 5, 10 TeV might be rulled out or verified with first tens of pb⁻¹ of good data.
- But no systematics is included (PDF, nonlinearity,...)
- □ Therefore the required L will be larger, in case of $\Lambda = 40$ TeV the discovery is unclear.

R1 – attempt without gluons

□ Gluons do not enter the CT. When omitting the gluon jets, the discovery potential increases (20 fb⁻¹):

Λ(TeV)	R1	R1
	no gluons	w/ gluons
3	700	646
5	210	172
10	18	16
20	2.5	2.3
40	0.70	0.65

Gluon jets have different jet shapes. The efficiency of spotting such a jet still has to be studied.

No systematic errors included.

PDF uncertainties (R1)

- R1 from Pythia (2 partons with highest p_T), $\Lambda = 10$ TeV, $m_{jj} = 4$ TeV, $p_T > 1$ TeV.
- Systematic error due to PDF uncertainties in this case $\sigma_{PDF}(R1) = 0.88$. That is comparable to $R1(\Lambda=40\text{TeV}, 30 \text{ fb}^{-1}) = 0.80$.
- □ Preliminary to say it is less sensitive than R_{dist}.

Lukáš Přibyl, FZÚ, Prague

Conclusions

- □ Early limits: Λ ~ 10 TeV might be discovered or rulled out with first tens of pb⁻¹ of good data.
- □ Λ ~ 20 TeV still should be visible with larger int. luminosity.
- □ Discovering \(\Lambda \) ~ 40 TeV requires better energy linearity than 2% @ 2TeV.
- Systematic errors still need to be understood in this study.
- To be continued ...