SUSY Studies at CMS

Salavat Abdullin

For CMS Collaboration

LHC Days in Split, October 2-7, 2006 Split, Croatia

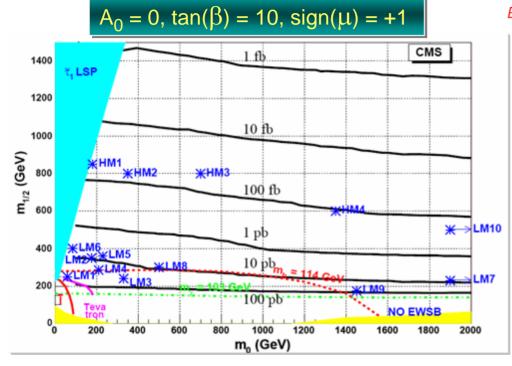
SUSY-related preamble

- Introduction
- Recent news : PTDR and TB'06
- Inclusive SUSY searches
 - Jets + missing E_T
 - Leptons + jets + missing E_T
 - Inclusive Higgs searches
 - Z0 + missing E_T
 - Top + missing E_T
- SUSY particle spectroscopy

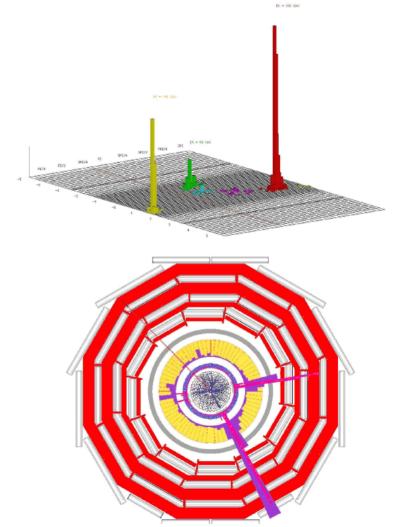
Conclusions

Implies a symmetry between fermions and bosons

 Avoids fine-tuning, can lead to GUTs, prerequisite for String Theories provides Dark Matter candidate (LSP)

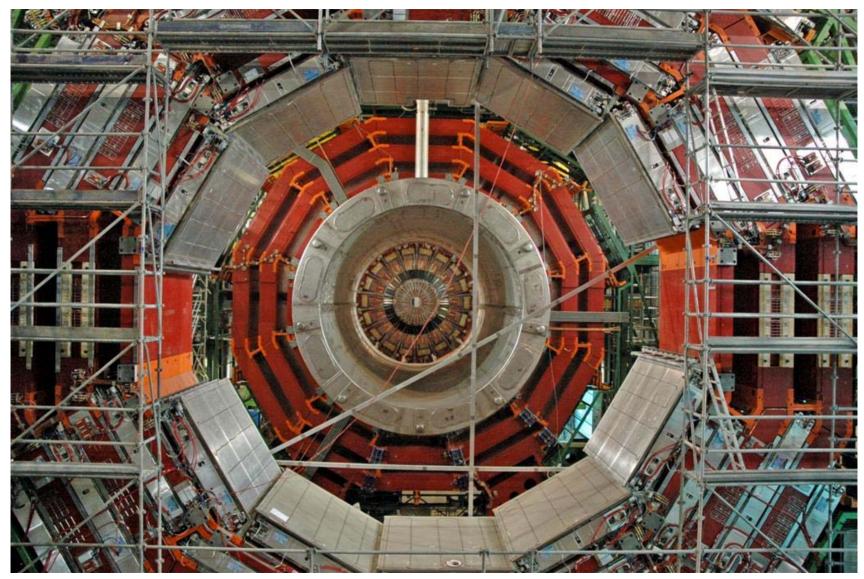

SM Particles	SUSY P	articles
quarks: q	q	squarks: \tilde{q}
leptons: <i>l</i>	l	sleptons: \tilde{l}
gluons: g	g	gluino: \tilde{g}
charged weak boson: W^{\pm}	W^{\pm}	Wino: \widetilde{W}^{\pm} ~±
Higgs: H [°]	$\begin{array}{c}H^{\pm}\\h^{0},A^{0},H^{0}\end{array}$	Wino: W charged higgsino: \widetilde{H}^{\pm} neutral higgsino: $\widetilde{h}^{\circ}, \widetilde{A}^{\circ}, \qquad \widetilde{H}^{\circ}$ higgsino
neutral weak boson: Z^{0}	Z^{o}	Zino: \widetilde{Z}^{0} $\overleftarrow{\chi}^{0}_{1,2,3,4}$ neutralino
photon: γ	γ	photino: γ

- Usually assume LSP is stable R-parity= (-1) ^{3(B-L)+2S} conservation
- SUSY breaking mechanism is unknown \Rightarrow many parameters (105)
- Gravity-inspired model mSUGRA : m0, m1/2, A0, tan β, Sign(μ)


Are Raklev. "Overview of SUSY Phenomenology at LHC" (Monday)

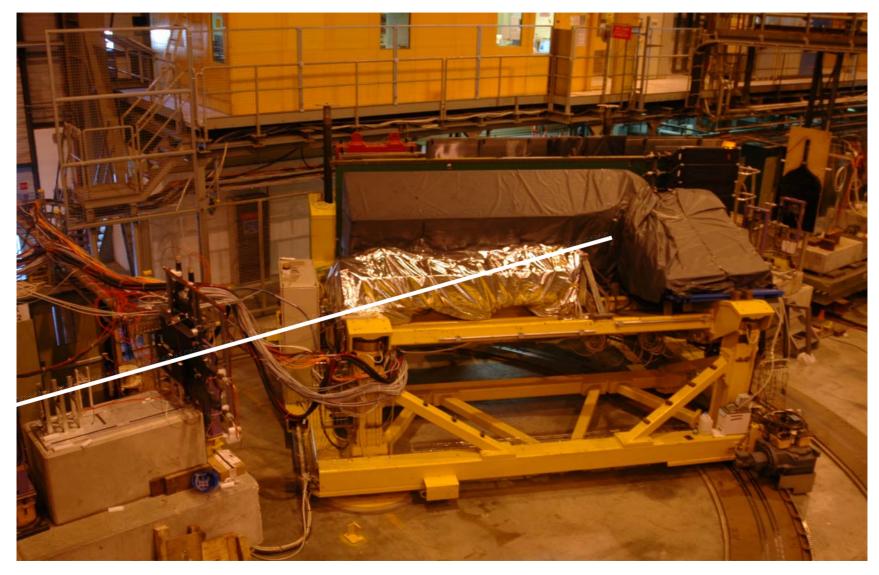
Cross Section and Signatures

E_T^{miss} =360 GeV, $E_T(1)$ =330 GeV, $E_T(2)$ =140 GeV, $E_T(3)$ =60 GeV

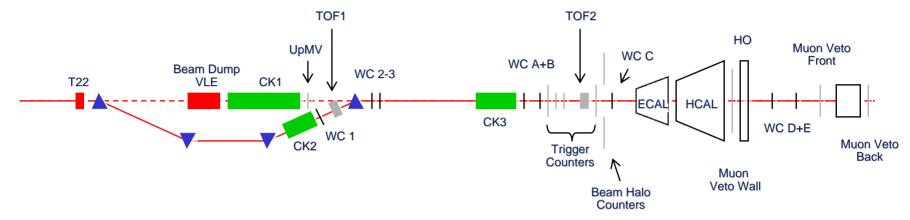


Complex decays chains

- MET (LSP)
- High PT jets (\tilde{q}, \tilde{g})
- Leptons $(\tilde{\chi}, \tilde{I}, W, Z)$
- Heavy flavor (high tanβ)

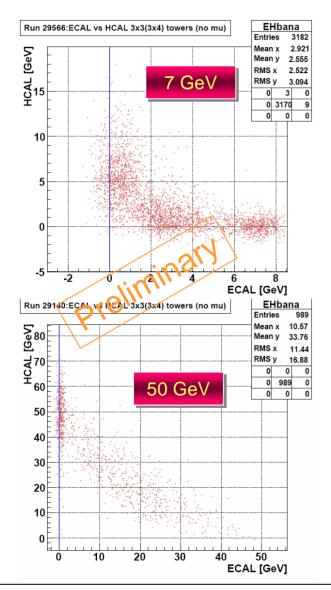


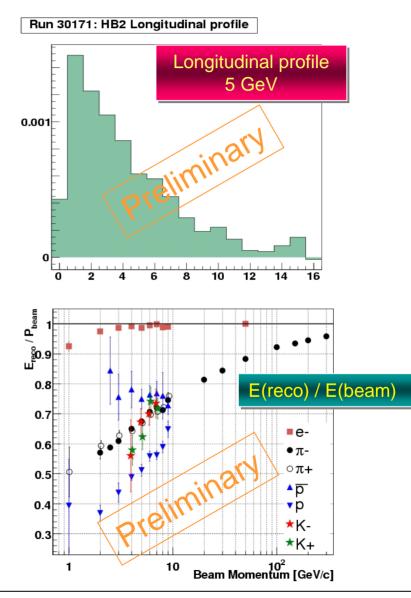
CMS at Surface Assembly Hall



CMS ECAL+HCAL Test Beam Setup

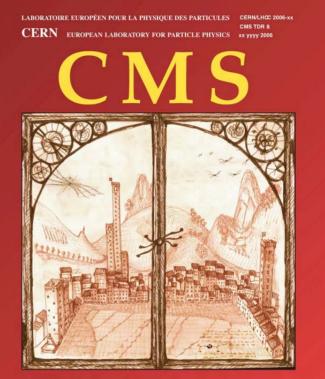
CMS ECAL+HCAL TB'06 Setup


- Very Low Energy (VLE) line is able to give 1 to 9 GeV/c h+, h-, e+ and ewith good rate, a few hundred/spill using a tertiary target (T22). At lower end of the range, particles are mostly electrons. There is a significant muon contamination as well.
- Particle ID is accomplished by TOFs, CKs and muon veto counters.


 High energy line covers a momentum range from 10 to 300 GeV/c for hadrons through secondary particle production.

For electrons/positrons, the range is 10 to 150 GeV/c.

Some ECAL+HCAL TB'06 Results



New Analysis Developments

LABORATOIRE EUROPÉEN POUR LA PHYSIQUE DES PARTICULES CERN EUROPEAN LABORATORY FOR PARTICLE PHYSICS 2F4

Detector Performance and Software Physics Technical Design Report, Volume I

Physics Performances Physics Technical Design Report Vol II

http://cmsdoc.cern.ch/cms/cpt/tdr/

CERN/LHCC 2006-001

CERN/LHCC 2006-021

October 5, 2006

Physics TDR

Volume 1:

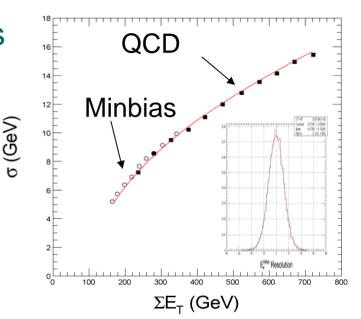
 Compendium of detector performance, calibration & alignment strategies, and reconstruction algorithms for physics objects (e, γ, μ, τ, b, jet, MET)

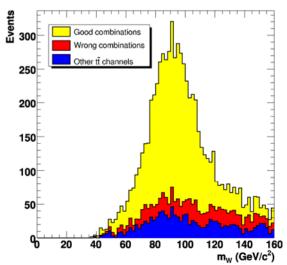
Volume 2:

- Detailed study of several benchmark analyses, including SUSY, to demonstrate key performances of the detector and including all the methodology of a real data analysis
- Background estimation, systematic uncertainties, etc.
- Comprehensive collection of analyses that span most final state topologies to determine overall reach (e.g. mSUGRA)
- Analyses based on GEANT4 detector simulations (or derived parameterizations) for backgrounds and signals and real reconstruction algorithms studied in Vol.1

Inclusive Search Strategies for Final Sates with MET

- Use Missing Transverse Energy (MET) a key signature For SUSY in analyses presented here
 - R-parity conservation, neutral LSP
- SUSY benchmark points studied in details using GEANTbased detector simulation and full reconstruction algorithms
- Consider all backgrounds as well as lepton fakes
 - QCD multi-jets, W/Z+jets, t-tbar, diboson
- Optimize significance to determine cuts at particular benchmark point(s)
- Determine 5σ reach in mSUGRA parameter space using fast simulation (FAMOS)

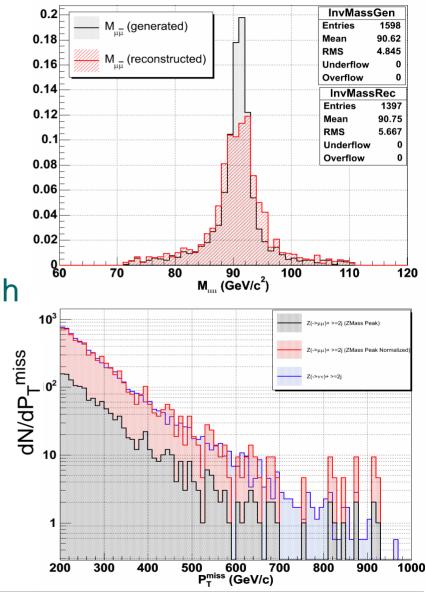

MET Reconstruction

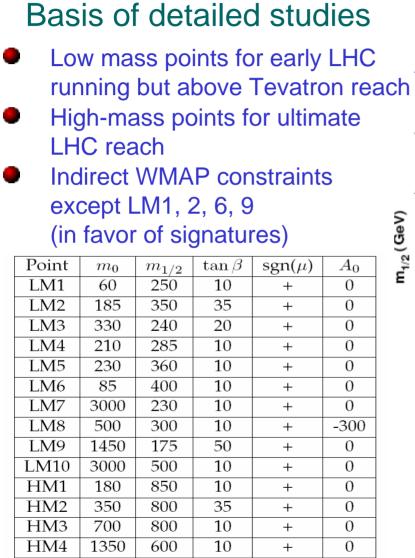

Sum of tr.momentum over calo towers

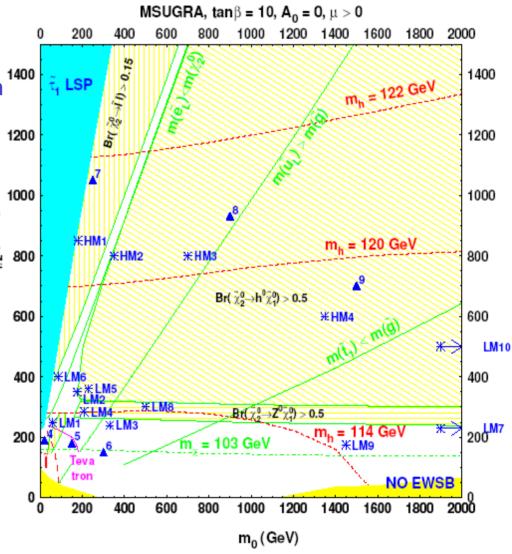
- MET is a measure of imbalance
- Can be corrected for jets, muons

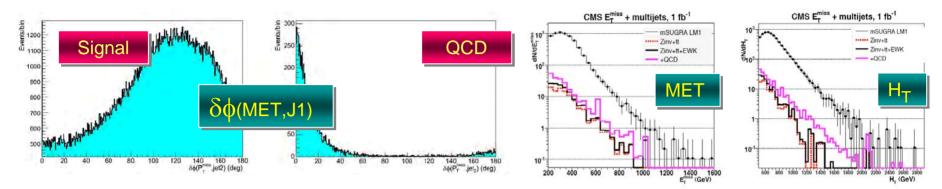
MET resolution

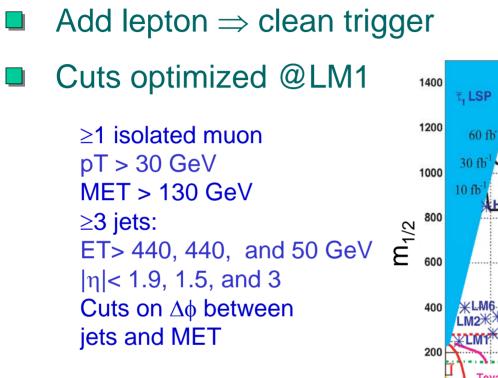
- Measure from data: min.bias and prescaled jet triggers
- CMS stochastic term ~ 0.6-0.7
- Jet calibration important to improve resolution and reduce systematic uncertainties, variety of techniques
 - γ -jet balancing, di-jet balancing
 - W-mass constraint in hadronic decays of W in top-pair production
 - CMS achieve 3% of JES uncertainty for $E_T > 50$ GeV with 1-10 fb⁻¹

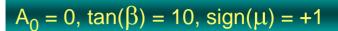


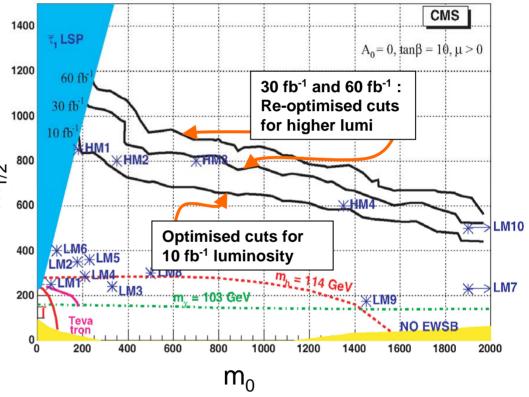

MET Calibration Using Z-Candle


- Measure Z+jets with Z→µµ in data to normalize Z→vv (invisible) contribution and calibrate MET spectrum
- With ~1fb-1 we will have enough Z+jets in the PT(Z)>200 GeV region of interest to normalize within 5% the invisible Z process as well as W+jets through the W/Z ratio and lepton universality


Benchmark Points




Inclusive MET + Jets Example (LM1)

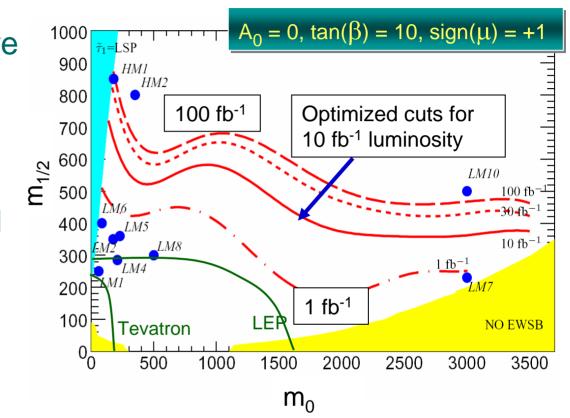


Requirement	Remark	
Level 1	Level-1 trigger eff. parameter.	
HLT, $E_T^{miss} > 200 \text{GeV}$	trigger/signal signature	
primary vertex ≥ 1	primary cleanup	
$F_{em} \geq 0.175, F_{ch} \geq 0.1$	primary cleanup	
$N_j \ge 3, \eta_d^{1j} < 1.7$	signal signature	
$\delta\phi_{min}(E_T^{miss} - jet) \ge 0.3 \text{ rad}, R1, R2 > 0.5 \text{ rad},$		
$\delta\phi(E_T^{miss} - j(2)) > 20^\circ$	QCD rejection	
$Iso^{ltrk} = 0$	ILV (I) $W/Z/t\bar{t}$ rejection	
$f_{em(j(1))}, f_{em(j(2))} < 0.9$	ILV (II), $W/Z/t\bar{t}$ rejection	
$E_{T,j(1)} > 180 \text{GeV}, E_{T,j(2)} > 110 \text{GeV}$	signal/background optimisation	
$H_T > 500 \mathrm{GeV}$	signal/background optimisation	
SUSY LM1 signal efficiency 13%		

Background (10 fb⁻¹)

2.5 ev, systematic uncertainty ~20%

Sample(s)	Events	Sample	Events	Sample	Events
SM	2.54	LM4	246	LM6	277
LM1	311	LM5	165	HM1	13

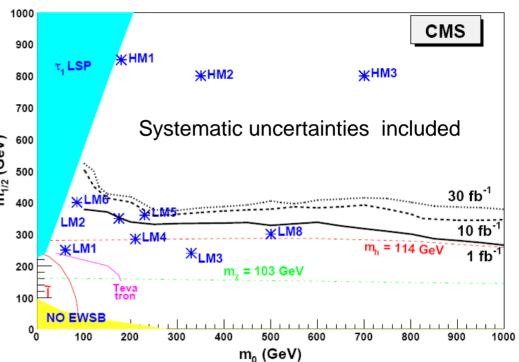


Same-Sign Muon Reach

- Even cleaner signature with low background due to same-sign requirement
- Cuts optimized @LM1
 - 2 SS isolated muons pT > 10 GeV MET > 200 GeV ≥3 jets: ET1>175 GeV ET2>130 GeV ET3>55 GeV

Background (10 fb⁻¹)

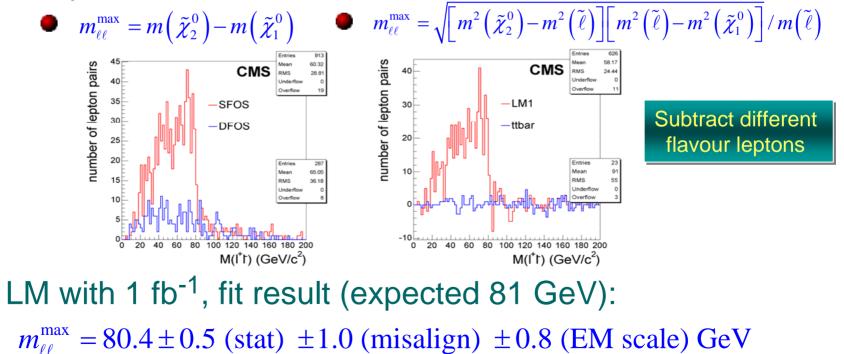
 1.5 ev, systematic uncertainty ~23%



Sample(s)	Events	Sample	Events	Sample	Events
SM	1.5	LM5	61	LM10	4
LM1	341	LM6	140	HM1	4
LM2	94	LM7	82	HM2	2
LM4	90	LM8	294		

MET + Opposite Sign Leptons

Background (1 fb⁻¹)


- 200 events, ttbar : WW+jets : Z+jets : others = 6:1:1:1 Systematic uncertainty 20%
- Signal (1 fb⁻¹)
 - 850 events
 5 σ discovery at 20 pb⁻¹

Measure invariant mass distribution of same-flavor opposite-sign (SFOS) leptons as evidence for

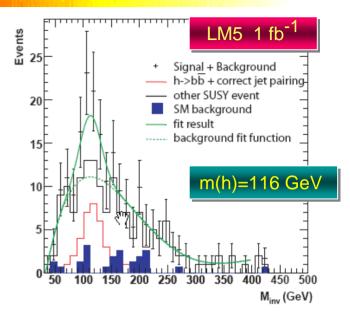
•
$$\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 \ell^+ \ell^-$$
 • $\tilde{\chi}_2^0 \to \tilde{\ell}^+ \ell^- \to \tilde{\chi}_1^0 \ell^+ \ell^-$

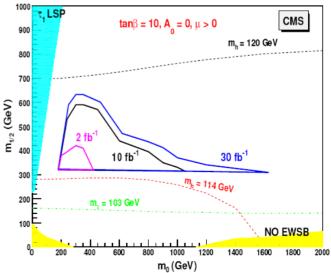
Endpoint in mass spectrum exhibits sharp edge dependent on sparticle masses

Inclusive Higgs Search

 $\widetilde{\chi}^{0}_{2}$

 $\widetilde{\chi}^{0}_{1}$


Consider


a **`**h **Dominant** squark decay chain in a significant domain of mSUGRA parameter space

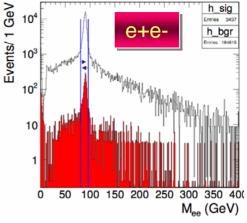
 \widetilde{q}_{I}

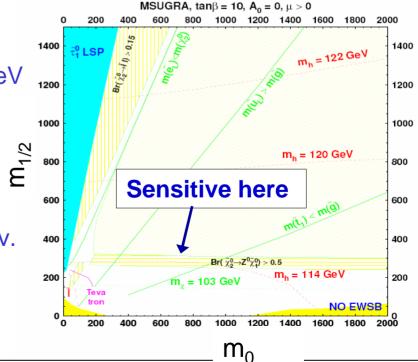
LM5 full simulation selection

- MET > 200 GeV E_T (jet 1,2,3,4) > 200,150,50,30 GeV 2 tagged hi-quality b-jets in the same hemisphere closest in η - ϕ -space
- Signal efficiency ~ 8%, main bkgd. ttbar
- 5 σ excess with 1.5 fb⁻¹
- $m(h) = 112.9 \pm 6.6(stat.) \pm 7.5(syst.)$ GeV

Inclusive MET + Z⁰

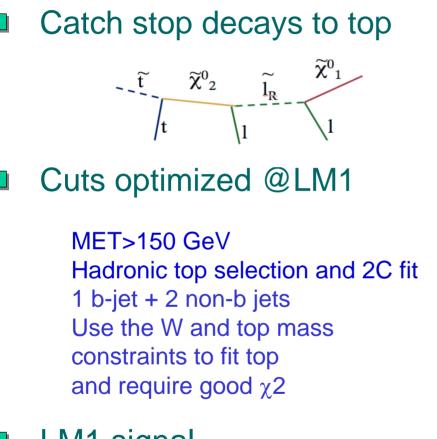
- Mostly from squark-gluino decays
- Z0 gives extra handle against non-resonant di-lepton background

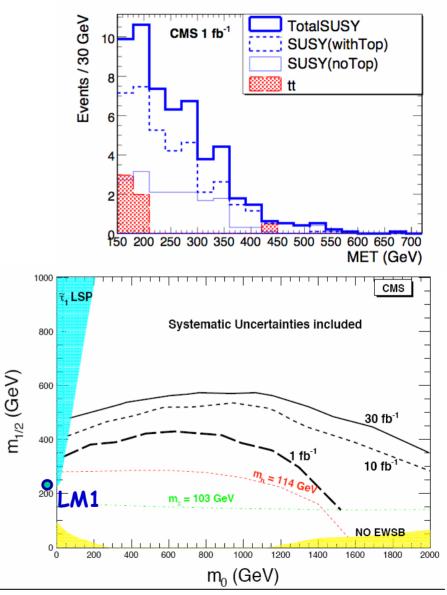

MET > 230 GeV 2 OS SF leptons $p_T(e) > 17$ GeV, or $p_T(\mu) > 7$ GeV 81 < MII < 96.5 GeV $\Delta \phi < 2.65$ rad


Background (10 fb⁻¹)

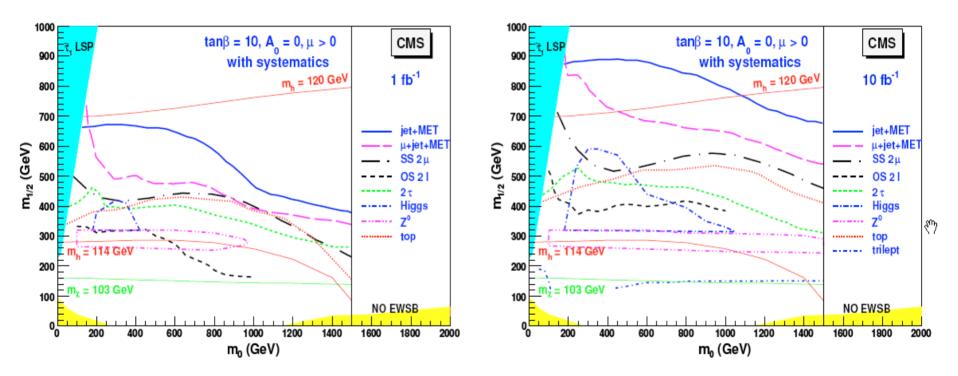
 200 ± 40 (top pairs + di-bosons) ev.

LM1 signal (10 fb⁻¹)

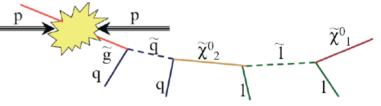

1550 ± 30 events



Inclusive MET + Top

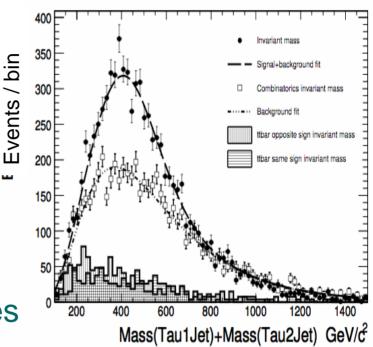

LM1 signal

 ~200 pb⁻¹ for 5σ observation sys. uncertainty ~12%


Discovery map including background systematics

SUSY Particle Spectroscopy

With stable LSP cannot fully reconstruct squark or gluino decay chains in general But endpoints in invariant mass distributions give information on sparticle masses


These and other combinations (e.g. mlq) have endpoints that are functions of the sparticle masses

One Example : Di-Tau Ananlysis

Consider $\tilde{q} \to q \tilde{\chi}_2^0 \to q \tau \tilde{\tau} \to q \tau \tilde{\tau} \tilde{\chi}_1^0$

- Measure di-tau endpoint and infer sparticle masses
- But no sharp reconstructed endpoint due to v_{τ}
 - Fit to signal + background can be translated to endpoint measurement
- Measure several invariant masses
 - 2-tau, tau1+jet, tau2+jet, tau1+tau2+jet
- Extract the masses of the sparticles by solving for the kinematics of the decay chain; example measurement at 40 fb-1 at LM2

	LM2 benchmark point			
	measured	theory		
$M(\chi_1^0)$	$147 \pm 23 (\mathrm{stat}) \pm 19 (\mathrm{sys})$	138.2		
$M(\chi^0_2)$	$265 \pm 10(\mathrm{stat}) \pm 25(\mathrm{sys})$	265.5		
$M(ilde{ au})$	$165 \pm 10(\mathrm{stat}) \pm 20(\mathrm{sys})$	153.9		
$M(ilde{q})$	$763 \pm 33(\mathrm{stat}) \pm 58(\mathrm{sys})$	753-783 (light \tilde{q})		

General Stategy

Maria Spiropulu, "SUSY at the Large Hadron Collider" (plenary talk, Physics at LHC, Krakow, 3-8 July 2006)

- Choose signatures identifying well defined decay chains
- Extract constraints on masses, couplings, spin from decay kinematics/rates (especially for spin, need clever ideas!)
- try to match emerging pattern to tentative template models
- having adjusted template models to measurements, try to find additional signatures to discriminate different options

- LHC opens up a very large energy frontier for SUSY searches
- Low-mass SUSY visible almost immediately in many channels according to the latest detailed simulations taking into account all backgrounds and systematic uncertainties
- Difficult part is to disentangle decay chains and measure spins, but constraints from endpoints and asymmetries are available (not to mention cross section measurements as well)
- LHC is coming soon focus on commissioning and startup scenarios

- Jim Freeman (Fermilab)
- Maria Spiropulu (CERN)
- Darin Acosta (UF)
- Shuichi Kunori (UMD)