COSMIC RAYS AT EXTREME ENERGIES:
 STATUS AND RECENT
 RESULTS OF THE PIERRE AUGER OBSERVATORY

Danilo Zavrtanik
Pierre Auger Collaboration University of Nova Gorica

Slovenia
2006 LHC days in Split, Croatia October 2-7, 2006

SPECTRUM

> Highest energy event: $3.2 \times 10^{20} \mathrm{eV}$
Fly's Bye in Utah in 1991

	LHC	Cosmos
E	$\mathbf{7 \times 1 0 ^ { 1 2 }} \mathbf{e V}$	$\sim 10^{20} \mathbf{e V}$
S	$1.4 \times 10^{13} \mathbf{e V}$	$\sim \mathbf{5 \times 1 0 ^ { 1 4 }} \mathbf{e V}$

> Low flux - large areas
$>$ No known astrophysical sources seem able to produce such enormous energies
$\leftarrow 1$ particle/km²/century
Energy (eV)

LJMITS TO ACCELERATION

Hillas plot

Maximal energy $\mathrm{E}_{\text {max }} \sim \beta \mathbf{Z B L}$

No good candidates for ZeV accelerators in the known Universe!

PROPAGATION

All known particles except neutrinos undergo interactions with Cosmic Microwave Background

Example:

$$
\begin{aligned}
\mathrm{p}+\gamma_{2.7 \mathrm{~K}} & \rightarrow \mathrm{p}+\pi^{0} \\
& \rightarrow \mathrm{n}+\pi^{+}
\end{aligned}
$$

For energy > 5×10^{19}

PROPAGATION

MAGNETIC FIELD DEFLECTION

Above $100 \mathrm{EeV} \Delta \phi<2^{0}$ - of the order of experimental resolution! A window to CR astronomy

PIERRE AUGER PROJECT

A cosmic ray observatory designed for a high statistics study of The Highest Energy Cosmic Rays ($\mathbf{1 0}^{19}-\mathbf{1 0}^{\mathbf{2 1}} \mathbf{e V}$)

using

Two Large Air Shower Detectors

Colorado, USA (in planning)

P. AUGER COLLABORATION

Argentina

France

Poland

USA

Australia

Germany

Portugal

Bolivia

Italy

Slovenia
~ 360 physicist from 63 institutions
17 countries

P. AUGER OBSERVATORY

Science Objectives

- Cosmic ray spectrum above $10^{19} \mathrm{eV}$
- Shape of the spectrum in the region of the GZK feature
- Arrival direction distribution
- Search for departure from isotropy - point sources
- Composition
- Light or heavy nuclei, protons, photons, neutrinos or exotics

Design Features

- High statistics (aperture $>7.000 \mathrm{~km}^{2}$ sr above $\mathbf{1 0}^{19} \mathrm{eV}$ in each hemisphere)
- Full sky coverage with uniform exposure
- Hybrid configuration surface array with fluorescence detector coverage

P. AUGER OBSERVATORY

The Hybrid Design

Surface detector array + Air fluorescence detectors

- Nearly calorimetric energy calibration of the fluorescence detector transferred to the event gathering power of the surface array.
- A complementary set of mass sensitive shower parameters.
- Different measurement techniques force understanding of systematic uncertainties.
- Determination of the angular and core position resolutions.

SOUTHERN OBSERVATORY - PLAN

SURFACE DETECTOR ARRAY

Event timing and direction determination

 - Particle density \square Shower energy - Pulse rise time

Measure of primary mass

WATER ČERENKOV DETECTOR

SURFAGE DETECTOR ARRAY

FLUORESCENCE DETECTOR

- Shower ~ 90\% electromagnetic
- Ionization of nitrogen measured directly

- Calorimetric energy measurement
- Measure of shower development

FLUORESCENCE DEJECTOR

FLUORESCENCE DETECTOR

ATMOSPHERIC MONITORING AND CALIBRATION

Absolute Calibration

[Calibrated (movable) light sources
풉 Cloud monitors
뭄 Balloon sondes

Monitoring

CURRENT STATUS

SA

- ~ 1100 surface detector stations deployed

■ ~ 1000 surface detector stations have electronics and are operational

FD

- 3 fluorescence buildings complete each with 6 telescopes (Los Leones, Coihueco, Los Morados)
- Fourth fluorescence building under construction (Loma Amarilla)

SD RECONSTRUCTION

time profile of a tank

Simulations: particle density at 1000 m provides good estimate of primary energy

FD RECONSTRUCTION

- Fit with empirical formula of Gaisser-Hillas
- Calorimetric measurement of the energy.

HYBRID DATA

Hybrid Event $\Theta \sim 30^{\circ}, \sim 8$ EeV

Angle χ in the shower-detector plane

STEREO HYBRID OBSERVATIONS

Advantage of Hybrid:
Shower axis reconstr. improved by footprint (timing) of SD

HYBRID RECONSTRUCTION

PERFORMANCE: Angular Resolution

Angle in laser beam /FD detector plane

Hybrid-SD only space angle difference

Hybrid angular resolution (68\% CL)
0.6 degrees (mean)

Surface array angular resolution (68\% CL)
$<2.2^{\circ}$ for 3 station events ($E<3 E e V, \theta<60^{\circ}$)
$<1.7^{\circ}$ for 4 station events ($3<E<10$ EeV)
$<1.4^{\circ}$ for 5 or more station events (E>10 EeV)

ENERGY DETERMINATION

The energy scale is based on fluorescence measurements without reliance on a specific interaction model or assumptions about the composition.

The detector signal size at 1000 meters from the shower core - called the ground parameter or $\mathrm{S}(1000)$ - is determined for each surface detector event using the lateral density function. $S(1000)$ is proportional to the primary energy.

ENERGY DETERMINATION

Zenith angle dependence of the energy estimator S(1000)

ENERGY DETERMINATION

The energy converter:

Compare ground parameter S(1000) with the
fluorescence detector energy.

Transfer the energy converter to the surface array only events.

Simulation not needed.

SPECTRUM

1) M. Takeda et al. Astroparticle Physics 19, 447 (2003)
2) R.U. Abbasi et al. Phys Lett B (to be published)

ARRIVAL DIRECTIONS

GALACTIC CENTER

AGASA Collaboration

- $\mathrm{E}=10^{18}-10^{18.4} \mathrm{eV}$
- 4.5 sigma excess ($\sim 22 \%$) from direction of Galactic Centre
- Astropart. Phys. 10 (1999)

SUGAR Collaboration

- $\mathrm{E}=10^{17.9}-10^{18.5} \mathrm{eV}$
- stronger excess
- weaker significance
- Astropart. Phys. 15 (2001)

SUGAR Col. Astropart.Phys. 15 (2001)
SUGAR galactic center search
$\left(10^{17.9}-10^{18.5} \mathrm{eV}\right)$
$\frac{\text { observed }}{\text { expected }}=\frac{21.8}{11.8}(+2.9 \sigma)$ (85\% excess)

GALACTIC CENTER

AUGER Collaboration

Figure 1: Map of CR overdensity significances near the GC region on angular scales of 5° radius. The GC location is indicated with a cross, lying along the galactic plane (solid line). Also the regions where the AGASA experiment found their largest excess as well as the region of the SUGAR excess are indicated.

GALACTIC CENTER

Comparison to AGASA

- Energy interval (1.0-2.5 EeV)
- Angular scale 20°
$2116 / 2159.5$ ratio $=0.98 \pm 0.02 \pm 0.01$
22% excess would give 2634 ard al 10 orexcess
Comparison to SUGAR
- Energy interval (0.8-3.2 EeV)
- Angular scale 5°

$$
286 / 289.7 \text { ratio }=0.98 \pm 0.06 \pm 0.0
$$

PHOTON LJMITT

Position of shower maximum
\Leftrightarrow primary mass

- Constraint on top-down non-aceleration models
- End of 2009:
- $\approx 2 \%$ limit at 10 EeV
- $\approx 15 \%$ limit at 35 Eev

CONCLUSIONS

- The Observatory is now well over half finished.
- With data collected from January 2004, we have:
- Defined our empirical spectrum analysis strategy and produced our first model-independent spectrum
- Performed first studies of anisotropies in the sky
- Set limits on photon primaries

CONCLUSIONS

Future Plans

- Complete Auger South by mid 2007
- Fully understand our instiruments.
- Use rapidly expanding data set (x7 in two years) to enable
- Improvement in the energy assignment
- High statistics study of the spectrum in the GZK region
- Anisotropy studies and point source searches.
- Composition studies
- Reduce systematic uncertainties.
- Exploit events beyond a zenith angle of 60°
- search for neutrinos and exotics
- Begin work on Auger North

