
ISOTDAQ 2018

Lab Book

ISOTDAQ2018
INTERNATIONAL SCHOOL OF
TRIGGER & DATA ACQUISITION

14–22 FEBRUARY 2018
VIENNA, AUSTRIA

9TH EDITION

2

Tutors and their labs
1. VMEbus programming – Markus Joos
2. NIM – Francesca Pastore, Andrea Negri
3. NIM & Scintillator – Kostas Kordas, Roberto Ferrari
4. Muon DAQ – Enrico Pasqualucci, Bransilav Ristic
5. FPGA Basics – Dominique Gigi, Petr Zejdl
6. MicroTCA – Hannes Sakulin, Bernhard Arnold
7. LabView DAQ – Cristovao Barreto
8. ADC Basics for TDAQ – Manoel Barros Marin
9. Network Programming – Fabrice Le Goff
10. Microcontrollers – Mauricio Feo, Barthélémy von Haller
11. Storage Systems – Paolo Durante, Tommaso Colombo, Niko Neufeld
12. Control of DAQ Systems – Enrico Gamberini
13. SoC FPGA – Patryk Oleniuk

The main page of the 2018 ISOTDAQ School is http://isotdaq.hephy.at

For up-to-date information on times and places, please see
https://indico.cern.ch/event/643308/timetable

Local Organizing Committee
Bernhard Arnold (HEPHY)
Brigitte DeMonte (HEPHY) – emergency phone: +43 664 88476542
Markus Friedl (HEPHY) – emergency phone: +43 699 17251085
Christian Irmler (HEPHY)
Richard Thalmeier (HEPHY)
Claudia Wulz (HEPHY/CERN)

CERN Organizing Committee
Paolo Durante (CERN)
Markus Joos (CERN)
Hannes Sakulin (CERN)
Barthélémy von Haller (CERN)

3

Table of Contents

Exercise 1: VME Programming . 4
Exercise 2: NIM . 6
Exercise 3: NIM & Scintillator . 17
Exercise 4: Muon DAQ . 22
Exercise 5: FPGA Basics . 29
Exercise 6: MicroTCA . 34
Exercise 7: LabView DAQ . 43
Exercise 8: ADC Basics for TDAQ . 60
Exercise 9: Network Programming 70
Exercise 10: Microcontrollers . 77
Exercise 11: Storage Systems . 83
Exercise 12: Control of DAQ Systems 87
Exercise 13: SoC FPGA . 94

4

Student instruction sheet for Exercise 1 --- VMEbus programming

Introduction

For the moment forget what you (hopefully) have learnt about the VMEbus
protocol and the details of the H/W. For this exercise you have to look at a
VMEbus slave as if it was a piece of memory in your PC. The purpose of this
exercise is to demonstrate that in some respects there is little difference
between internal and external memory; as far as the programming is
concerned. The exercise also shows the differences between the two types of
memory.

What is important to understand is that the VMEbus memory has to be
mapped into the (virtual) address space of a user process before it can be
accessed. This ties 3 busses together: CPU, PCI and VMEbus as shown in
the picture below.

The first part of the exercise is to figure out how to create the appropriate
mappings for the type of VMEbus access that you have to do. Then you
actually transfer the data. This is done in single cycle mode which means that
the CPU controls the data transfer.

Exercise 1: VME Programming

In the second part of the exercise you will perform block transfers (DMA). This
requires a different programming technique since it is not the CPU that moves
the data but an external device (a DMA controller). Such DMA controllers are
not VMEbus specific. You find them everywhere (e.g. in Network interfaces,
disk controllers, USB devices, etc.)

Before you start you should be able to answer these questions:

1) What does the acronym A24D32 mean?
2) What is endianness and how do you deal with it?
3) What are the advantages of block transfers?

1. On the VMEbus single board computer log on with the DAQ school account
(daqschool / g0ldenhorn).

2. Run “source setup” and then change directory to exercise1/groupX
3. Open the file solution.cpp with an editor of your choice (vi, nedit).
4. Add the missing code to “solution.cpp” to execute the VMEbus cycles listed

below:
1. Write 0x12345678 to address 0x08000000 in A32 / D32 mode. Use

the "safe" cycles
2. Read the data back from address 0x08000000 and compare it
3. Write 0x87654321 to address 0x08000004 in A32 / D32 mode. Use

the "fast" cycles
4. Read the data back from address 0x08000004 and compare it
5. Write a block of 1 KB to address 0x08001000 in A32 / D32 / BLT

mode. You have to prepare the data in a cmem_rcc buffer.
6. Read the data back from 0x08001000 in A32 / D64 / MBLT mode and

compare it
5. Run “make” to compile the application
6. Run “solution” and catch the VMEbus transfers with the VMEtro VBT325

analyser

Good practice:

 Check all error codes
 Do not forget to undo all initialization steps (return memory, close libraries)

before you exit from an application

5

Student instruction sheet for Exercise 1 --- VMEbus programming

Introduction

For the moment forget what you (hopefully) have learnt about the VMEbus
protocol and the details of the H/W. For this exercise you have to look at a
VMEbus slave as if it was a piece of memory in your PC. The purpose of this
exercise is to demonstrate that in some respects there is little difference
between internal and external memory; as far as the programming is
concerned. The exercise also shows the differences between the two types of
memory.

What is important to understand is that the VMEbus memory has to be
mapped into the (virtual) address space of a user process before it can be
accessed. This ties 3 busses together: CPU, PCI and VMEbus as shown in
the picture below.

The first part of the exercise is to figure out how to create the appropriate
mappings for the type of VMEbus access that you have to do. Then you
actually transfer the data. This is done in single cycle mode which means that
the CPU controls the data transfer.

In the second part of the exercise you will perform block transfers (DMA). This
requires a different programming technique since it is not the CPU that moves
the data but an external device (a DMA controller). Such DMA controllers are
not VMEbus specific. You find them everywhere (e.g. in Network interfaces,
disk controllers, USB devices, etc.)

Before you start you should be able to answer these questions:

1) What does the acronym A24D32 mean?
2) What is endianness and how do you deal with it?
3) What are the advantages of block transfers?

1. On the VMEbus single board computer log on with the DAQ school account
(daqschool / g0ldenhorn).

2. Run “source setup” and then change directory to exercise1/groupX
3. Open the file solution.cpp with an editor of your choice (vi, nedit).
4. Add the missing code to “solution.cpp” to execute the VMEbus cycles listed

below:
1. Write 0x12345678 to address 0x08000000 in A32 / D32 mode. Use

the "safe" cycles
2. Read the data back from address 0x08000000 and compare it
3. Write 0x87654321 to address 0x08000004 in A32 / D32 mode. Use

the "fast" cycles
4. Read the data back from address 0x08000004 and compare it
5. Write a block of 1 KB to address 0x08001000 in A32 / D32 / BLT

mode. You have to prepare the data in a cmem_rcc buffer.
6. Read the data back from 0x08001000 in A32 / D64 / MBLT mode and

compare it
5. Run “make” to compile the application
6. Run “solution” and catch the VMEbus transfers with the VMEtro VBT325

analyser

Good practice:

 Check all error codes
 Do not forget to undo all initialization steps (return memory, close libraries)

before you exit from an application

Exercise 1: VME Programming

Exercise 2: the Trigger

Introduction

Figure 1: NIM modules.

This is a basic exercise based on the trigger lecture. It introduces all the elements
and concepts needed in exercise 3 and 4. The available NIM modules are showed in
Fig.1. The exercise is composed of 4 parts. At each step, look at the corresponding
schema and follow the instructions.

Isotdaq 2017 Exercise 2

A trigger is given by the transition of a signal from the logical 0 to 1. Before
setting up any trigger system, you must have decided the levels corresponding to
these logical levels and all the components of the system need to be coherently
configured.

Ch2

Ch1

Trigger

Ch2

Ch1

Trigger

M

Threshold
Discriminator

Constant−Fraction
Discriminator

scaler

pulse generator
Edge−triggered
discriminator pulse generator

scaler

delay

CFD

Figure 2: Scheme of threshold and constant fraction discriminators.

Part 1a: Threshold Discriminator
The Signal Generator is pre-configured to provide a triangular pulse with a
period of 300 µs. Look at the signal (Channel Output) with the oscilloscope
(CH1), using the Trigger Output of the generator as oscilloscope trigger (EXT).
The Trigger Output is TTL signal.

How do you expect it?

Why do we use it?

Now try to characterize the signal:

Leading edge time:

Trailing edge time:

Width:

Using the LEMO cables, try to implement the schema shown in the left part of
Fig. 2, i.e.:

2/11

Isotdaq 2017 Exercise 2

• Split the generator output signal: connect the two parts to the input of the
Threshold Discriminator and to the oscilloscope.

• Connect one output signal of the discriminator to the scaler module and a
second output to the oscilloscope (CH2).

We have set-up a simple trigger system: you have a digital answer based on the
amplitude of a signal. Reproduce the oscilloscope display shown in Fig. 3 and
observe the amplitude of both the signal and its corresponding trigger.

Can you modify their amplitude?

Figure 3: Input signal and threshold discriminator output.

The threshold set on the discriminator can be measured with a Voltmeter (x10
output) and changed with a screwdriver. Change the threshold value: observe the
behaviour of the discriminated signal on the scope and its rate on the scaler.

Can you relate them to the threshold values?

3/11

Isotdaq 2017 Exercise 2

In real experiments, how is the best threshold value found?

Part 1b: Threshold Discriminator, the jitter
Using the above set-up, set the discriminator threshold to 60 mV and change the
amplitude of the input signal.

Which is the effect on the discriminated signal?

How does it affect a timing measurement?

Measure the discriminated signal delay with respect to the reference as a function
of the amplitude of the input signal (-100, -150, -200, -250 mV) and fill up Table 1
with your numbers.

Input signal amplitude (mV) Threshold D (ns) CFD (ns)

100

150

200

250

Table 1: Measured delays on the discriminated signal with respect to reference

Part 2: Constant Fraction Discriminator (CFD)
Now use the Constant Fraction Discriminator to make a trigger from the
generator signal and implement the layout shown in the right diagram of Fig. 2.
Using the Voltmeter and the screwdriver, set these CFD parameters:
threshold (T): 60 mV Measure with Voltmeter (x10 output)
walk (Z): 2 mV Measure with Voltmeter (x10 output)
delay (D): 80 ns Set with delay module + 2x10ns cables

Connect the CFD monitor output (M) to the scope CH2 and reproduce Fig. 4.

4/11

Isotdaq 2017 Exercise 2

Figure 4: Input signal and CFD monitor output.

Figure 5: Input signal and CFD output.

5/11

Isotdaq 2017 Exercise 2

Can you recognize the CFD technique?

Which is the effect of varying the value of the delay D?

Connect now the CFD output to the scope (CH2) and change the amplitude of the
input signal.

What happens to the output of the discriminator?

Measure the discriminated signal delay with respect to the reference as a function
of the amplitude of the input signal (-100, -150, -200, -250 mV). Fill up Table 1
with your numbers. Compare the results with the previous measurements.

Can you see the advantage?

Can you make the CFD behave like a normal threshold discriminator?

Which configuration parameter has to be modified?

Part 3: Making a timing coincidence
We try now to simulate the coincidence of two different trigger signals, in a sim-
plified way. For that, use an additional output of the signal generator, which is
configured to generate a triangular pulse similar to the first one. Use two threshold
discriminator units to discriminate both signals, as described in Fig.6.

6/11

Isotdaq 2017 Exercise 2

Ch2

Ch1

Trigger

scaler scaler

discriminator

discriminator

coincidence

generator: out 1

generator: out 2

Figure 6: Coincidence layout

We have now two independent trigger signals with similar characteristics. Look at
them in the scope.

Which parameters are important when making a coincidence?

Use one unit of the Coincidence Module, which is able to generate the logical
AND of its input signals. The module has two outputs: OUT and LIN-OUT.

Can you guess the timing behaviour of the AND output?

When are you expecting the AND output to rise?

The Scaler Module is a simple and useful tool in a trigger system: it allows you
to simply count the triggers and verify if your system is behaving correctly. Then
use the scaler to measure the counting rate of your coincidence and try to answer
these questions:

Can you count any trigger? How can you recover the coincidence rate?

7/11

Isotdaq 2017 Exercise 2

After your adjustments, which is the width of the coincidence signal?

Can you explain the different behaviour of the OUT and the LIN-OUT signals?

Which is better to use in a real trigger system?

How can you save the trigger efficiency if one of the signals have large jitter?

Which is the drawback?

Ch2

Ch1

Trigger

1
3

2

Pulse generator

Scaler Scaler

Discriminator
Coincidence

Timer unit

1

t

t

2

3

t

Discriminator output

Veto

Coincidence output

Figure 7: Top: busy logic schema with readout processing time simulated via a
dual timer module. Bottom: time diagram of signals at the discriminator output
(1), after the veto (2) and at the coincidence output (3).

8/11

Isotdaq 2017 Exercise 2

Part 4: Trigger veto and dead-time
A busy logic can be implemented using the coincidence module and a Dual-Timer
Module which simulates a readout system with a fixed processing time (readout
dead-time).
Configure one stage of a dual timer module to generate signals with 10 ms width.
Then implement the busy logic in a second stage of the coincidence unit as shown
in Fig. 7:

• one input of the coincidence unit is the trigger signal;

• to simulate the start of the readout, and so the trigger ACCEPT signal sent
to the readout system, use the output of the busy coincidence to drive the
timer module (START);

• use the output of the timer as the VETO of the busy coincidence: this is the
BUSY signal sent back to the trigger system;

• connect the trigger signals before and after the busy logic to the scaler and
check the correct logic.

You can easily make a rate measurement configuring the Scaler to work with a
time gate of 1s with a GT+CLR configuration. Compare the trigger ACCEPT
rate and the readout rate (after the BUSY) on the scalers.

How do they relate with the timer module setting?

Can you reproduce the numbers using the LIN-OUT of the coincidence unit?

Alternatively you can make an AND between the trigger and the output of the
timer (with inverted logic) and not as a veto.

Where is the difference in the logic? Which risk are we taking?

Can you explain the behaviours observed disabling either one or the other input
of the coincidence unit?

9/11

Isotdaq 2017 Exercise 2

Appendix: the Constant Fraction Discriminator

Figure 8: CFD function diagram.

The CFD functional diagram is showed in fig. 8. The input signal is treated in two
different discrimination branches, whose results are then merged by the final AND
gate. The top branch is a standard threshold discriminator, where the input signal
is compared against a (configurable) threshold Thr.
The bottom branch implements instead the constant fraction technique. Techni-
cally, the input signal is split: one copy is delayed, while the other is attenuated
by a factor 5. The two copies are then subtracted and the final result is compared
with a threshold of (close to) zero. In fact, the zero-crossing time of the resulting
signal in nearly independent from the input signal leading edge steepness (i.e. the
source of time jitter in a standard threshold discriminator).

Figure 9: CFD function diagram.

Fig. 9 shows in detail the signals in the bottom branch of the CFD. The input

10/11

Isotdaq 2017 Exercise 2

pulse (dashed curve) is delayed (dotted) and added to an attenuated inverted pulse
(dash-dot) yielding a bipolar pulse (solid curve). The output of the bottom branch
fires when the bipolar pulse changes polarity which is indicated by time tcfd. From
a practical point of view, a small threshold, as close as possible, is actually used
in the final comparator of the bottom branch. This is needed to avoid fake signals
possibly caused by the noise. Such a small threshold is normally called walk (Z).

Figure 10: CFD function diagram.

In order to complete the CFD description, the merging of the top and bottom
branch signals has to be considered, with the help of fig. 10. In the top branch,
the threshold discriminator fires at time thi, that depends on pulse leading edge
characteristics. The bottom branch instead fires at a time tcfd, as discussed above,
which is almost constant. Due to the delay introduce in the bottom branch, nor-
mally tcfd > thi. Therefore, the overall CFD, defined as the signal generated by
the final AND gate, will fires at tcfd, achieving both our requirements:

• only select signal above a given amplitude Thr ;

• provide an output trigger whose timing is independent from input signal
amplitude.

As can be seen in the above figure, the CFD operating principle is not retained
for all the possible combinations of configured delay, threshold and input signal
amplitude. As the top branch timing depends on the signal amplitude, a small
enough signal can make it fire at a time tlo > tcfd. In this case the CFD will
behave like a normal threshold discriminator, as the output AND gate will be
driven by tlo.

11/11

17

Exercise 3

Detector and Trigger: Scintillators, trigger logic,
input to readout modules (ADC & TDC)

Introduction
This exercise consists in building the trigger logic and the input signals to the VMEbus readout
modules for a detector (exercise #4) using the experience with NIM electronics acquired in exercise
#2. The detector comprises two scintillation counters detecting cosmic rays (muons). A schematic
diagram of a scintillation counter is shown in
Figure 1. When a charged particle traverses the scintillator, it excites the atoms of the scintillator
material and causes light (photons) to be emitted.
Through a light guide the photons are transmitted directly or indirectly via multiple reflections to
the surface of a photomultiplier (PM), the photocathode, where the photons are converted to
electrons. The PM multiplies the electrons resulting in a current signal that is used as an input to an
electronics system. The PM is shielded by an iron and mu metal tube against magnetic fields (of the
Earth). The scintillator and light guide are wrapped in black tape to avoid interference with external
light. The scintillation counter setup is shown in Figure 2.
The NIM modules used to build the trigger and the input to the readout system and provide the high
voltage is shown in Figure 3.

Outline:
The aim of the exercise is to get an understanding of the detector and trigger logic used in Exercise
4. The signals from two scintillation counters are analyzed using an oscilloscope and transformed
into logic NIM signals that allow to build a trigger based on a coincidence between the signals. The
coincidence rate i.e. the rate of cosmic muons is counted using a scaler and the charge content of the
scintillator signals is measured on the oscilloscope. In addition the inputs to the readout modules
(QDC and TDC) are set up.
A schematic diagram of the full trigger and readout electronics is shown in Figure 4.

Figure 1. Schematic diagram of a scintillation counter.

Exercise 3: NIM & Scintillator

18

Figure 2. Scintillation counter setup

Figure 3. NIM trigger electronics. From left to right: scaler (counter), discriminator, coincidence
unit, delay modules and high voltage power supply.

Exercise 3: NIM & Scintillator

19

Figure 4. Diagram of the electronics for the detector, trigger and readout of the scintillator counter
setup.

Work plan:

Note: whenever there are two parallel outputs from a (NIM) module one needs to make sure that
they are both cabled, i.e. either terminated with 50 Ohm or connected to another unit. This ensures
that the pulses have the correct NIM voltage levels: 0 and -0.8 Volts.

1. Install the scintillation counters close to each other with maximum overlap between the
scintillator areas.

2. Check that the scintillator photomultiplier bases are connected to the N470 NIM high
voltage supply.

3. Switch ON the NIM crate.
4. Connect an output from scintillator 0 (the upper one) to an oscilloscope (10ns LEMO),

terminate the other output with 50 Ohm.
5. Set the nominal high voltage on scintillator 0 using channel 0 of the N470 HV supply. The

voltage is marked on the label glued onto the base. Refer to Appendix 1 at the end of this
exercise for a short guide to using the N470 HV supply.

6. Look at the signal on the oscilloscope (volts/div ~ 50 mV, time/div ~ 20ns). What is the
maximum voltage of the signal?

7. Connect the cable to the input of the first channel of the discriminator.
8. Connect an output to the oscilloscope (0.5 Volts, 50 ns) and adjust the pulse width to around

100 ns using a small screwdriver (terminate the other output with 50 Ohm), see Figure 3.
9. Connect the output to the first channel of the NIM scaler (N415) using a short LEMO cable

(1ns).
10. Set the discriminator threshold to 50 mV: adjust the voltage on the test point using a DC

voltmeter and a small screwdriver, see Figure 3. The voltage is 10 times the threshold value

Exercise 3: NIM & Scintillator

20

i.e. the voltage should be around 0.5 Volts. This step may require teamwork.
11. What is the scaler rate?
12. Vary the threshold around 50 mV and check the variations in scaler rate.
13. Repeat points 4 to 11 above for scintillator #1 (the lower one), connecting this scintillator in

addition to the one already connected.
14. Given the scaler rates measured above, what is the probability of random (unphysical)

coincidences between pulses from the two scintillators?
15. Connect an output from each of the two discriminator channels to the oscilloscope and

check that they have a timing overlap i.e. are coincident.
16. Connect the cables from the discriminators to the first inputs of the coincidence unit

(LeCroy 465) using short LEMO cables (1ns).
17. Connect an output from the coincidence unit to a scaler input. What is the rate? Given that

the rate of cosmic muons is about 100 per second per square meter, does the rate make
sense?

18. Connect an output of the coincidence unit to channel 1 of the oscilloscope.
19. Connect the (other) analogue output from scintillator 0 to a delay unit (LEMO 10ns) and the

output of the delay unit to channel 2 of the oscilloscope.
20. Using channel 1 as a trigger, observe the analogue signal on channel 2. Channel 2 will then

show the scintillator signals for the cosmic muons. Assuming that the signal is triangular,
what is the charge of the signal? See Figure 5. Note down the charge. You will need it
again in exercise 4

21. Adjust the delay unit such that the analogue signal falls within the NIM pulse from the
coincidence unit: inputs to the charge to digital converter (QDC) in Exercise 4 are now
ready (analogue signal and gate).

22. Repeat point 21 for scintillator 1.
23. Connect a cable from the first discriminator to channel 2 of the oscilloscope and check the

timing with respect to the output from the coincidence (channel 1). The signal from the
discriminator should precede the coincidence. Similarly for the second discriminator. The
inputs to the time to digital converter (TDC) in Exercise 4 are now prepared (trigger and
timing signals).

24. The signals from the discriminators are sometimes about twice as long as expected. What
could the reason be?

Exercise 3: NIM & Scintillator

21

Appendix 1 . Short User’s Guide to the CAEN N470 High Voltage Supply

This is a short list of the most common operations for the N470 High Voltage Supply used in
Exercises 3 and 4. The manual can be found at http://www.caen.it/nuclear/product.php?mod=N470#

 To select a channel: F0*(channel number)* e.g. F0*0*
 To set the High Voltage on the selected channel: F1*(type value)* e.g. F1*2000*
 To read the voltage on the selected channel: F6*
 To read the current on the selected channel: F7*
 To turn the selected channel ON: F10*

Notes:
The maximum voltage on the channels has been set to around 2300 Volts (on the potentiometers).
These can be checked via F13*. The current limits have been set to 2mA (via F2*).

Appendix 2 . Charge of scintillation counter current pulse

Figure 5. Input to the oscilloscope from a scintillatio

Exercise 3: NIM & Scintillator

22

Exercise 4.

A small physics experiment: detector, trigger and data acquisition.

Introduction

This exercise comprises all the components of a typical experiment in high energy physics: beam,
detector, trigger and data acquisition. The “beam” is provided by cosmic rays (muons) and the
detector consists of a pair of scintillation counters, see Error! Reference source not found. in
Exercise #3. The trigger logic, built in NIM electronics, forms a coincidence between the signals
from the scintillation counters which indicates that a muon has traversed the detector, see Error!
Reference source not found. in exercise #3. A data acquisition system based on VMEbus is used to
record the pulse heights from the scintillation counters and measure the time of flight of the muon.
The VMEbus crate is shown in Figure 1 and the VMEbus modules shortly described in 0, 0 and 0.
The overall run control and monitoring is provided via software running on a (Linux) single board
computer (SBC).

Outline
This exercise is a continuation of exercise # 3. First, standalone programs are executed to give an
understanding of the QDC and TDC VMEbus modules. A full DAQ system is then run on a multi-
processor configuration, with the readout, run control, GUI and infrastructure on a VMEbus SBC.
Event rates and dumps are examined. An event monitoring program produces histograms of the
QDC and TDC channel data which allow to compute the charges of the input signals to the QDC
and the speed of the cosmic muons.

Exercise 4: Muon DAQ

23

Figure 1. VMEbus data acquisition system: SBC (Single Board Computer), TDC (Time to Digital
Converter, Trigger Module (CORBO), QDC (Charge to Digital Converter)

Exercise 4: Muon DAQ

24

Work plan

 Verify that the detector is working i.e. the scaler counts for scintillator 0, scintillator 1 and
the coincidence are counting such that the TDC and QDC receive signals (note for the tutor:
if the coincidences are not counting, remove the CORBO busy from the trigger coincidence
by pushing the button).

 Login to the SBC as user daqschool, password g0ldenhorn

 Start a Terminal window from the toolbar

 Go to TDAQ directory: cd ~/TDAQ and run the command source ./setup_RCDTDAQ.sh
to define the environment

 Run the program v1290scope which is a low-level test and debug program for the CAEN
V1290 TDC

1. Run command: v1290scope (Use defaults for the command parameters).

2. VMEbus base address = 0x4000000

3. Dump the registers (option 2). Is data ready? (bit DREADY in the status register). What
are the values of the match window width and the window offset? See 0.

4. Configure the TDC (option 3)

5. Read an event (option 5). The event has a format as shown in the CAEN manual pages:
Output Buffer Register. How many words are read? (Check in the global trailer). What
are the values of the TDC measurements (in ns). Do they make sense? See 0. Exit from
the program by choosing menu entry 0.

 Run the program v792scope which is a low-level test and debug program for the CAEN
V792 QDC

1. v792scope

2. VMEbus base address = 0x0

3. dump the registers (option 2). Is data ready? Check also the LED on the module.

4. read an event (option 5). How many words are read? Which channels have data and
which are pedestal (empty) values?

 We now run the full DAQ system

1. Start the DAQ system: ./setup_RCDTDAQ.sh start. This script will read the
configuration database and start a number of processes on the server: run control, GUI
and a number of infrastructure SW components. This is a somewhat long procedure and
should result in a message 'OK!'.

2. Now start a GUI display: ./start_Igui.sh. The "folders" in the infrastructure panel should
be green! You may need help from the tutor here ...

3. We now go through the run states in order to start a run. But first please obtain a
'Control' access by selecting the 'Control' radio button in the top menu 'Access Control'.

Exercise 4: Muon DAQ

25

The initialize button should become active. Now, click on INITIALIZE and then wait for
the RCDApp (in RCDSegment) to reach the INITIAL state. The readout application is
now loaded on the VMEbus processor.

4. Click the CONFIG button followed by OK on the "Remember to ..." dialog box. This
configures the VMEbus modules, the CORBO, QDC and TDC.

5. If you don't see the DFPanel tab close to the top of the GUI, click LOAD Panels and
load the first panel: DFPanel should now appear in the bar above the Run Control panel.

6. Click START in the control panel (on the left)

7. Data taking should now start. Click on the DFPanel and the L1 button to display the
event rate. Is it what you would expect after exercise # 3? Check also the LEDs on the
VMEbus modules (the event rate is computed by the Information Service (IS) which
periodically sends a command to the Readout Application to obtain the rate which is
then retrieved by the GUI).

 Event Monitoring

This part demonstrates event monitoring. An event monitoring program obtains a sample of
events from the readout application and analyses them, in this example by producing
histograms of the values from the QDC channels as well as the time difference between the
two TDC values. The histograms can then be viewed via the GUI. The code for the
monitoring program can be found in ~/RCDTDAQ/RCDMonitor/

1. Open another terminal window.

2. cd ~/TDAQ

3. source ./setup_RCDTDAQ.sh to define the environment.

4. Run the event monitoring task: ./event_dump.sh -e -1

(-1 means to run forever. I you want only one event, please change it to 1.). Once you have seen the
raw data output of the even_dump you can terminate this application with ctrl+c.

5. The first nine words of the data constitute an Event (ROD) header. The following words
are the data from the QDC and the TDC. Do you recognize the data?

6. On the terminal start the monitoring program by executing monitor. This program
monitors data, like the event_dump program, publishing measurements to the
histogramming service.

7. In the GUI click on the OH button (Online Histogram). Click on Histogram Repository,
part_RCDTDAQ, RCDMonitor. Double click on the histograms to view them.

Alternatively, using a new terminal execute source ./setup_RCDTDAQ.sh followed by
./start_ohp.sh. This is the online histogramming presenter. In the panel Histograms (on the left)
select SCMonitor to view TDC histograms or RCDMonitor to view also the QDC histograms that
we are producing.

8. Record the mean values of the QDC histograms and the mean value of the time
difference histogram. The time histogram is not centered around zero. Why?

Exercise 4: Muon DAQ

26

9. The charge that you find in the histogram is not the charge delivered from the PMT to
the QDC. What is the reason for that and how can we measure the proper charge?

10. The monitoring of the statistics can be reset by stopping and starting the monitoring
program (Ctrl+C to terminate). This restarts the monitoring program described in point
6.

11. Display the histograms of the QDC channels. Record the pedestal values.

12. Using the formula shown in 0, compute the mean charges of the signals from the
scintillators. Do they agree with the results obtained in exercise #3?

 We now want to measure the time of flight of the muons between the two scintillators.

1. In the histogram for the data from the TDC we already get a Δ-t. This value, however, is
not the time of flight of the muon. Why? How can we modify the set-up in such a way
that we can correct the Δ-t for errors and measure the actual time of flight?

2. Restart the monitor program from the IGUI per point 10 above. Record the new mean
value of the Δ-t histogram.

3. What is the difference with respect to the value measured before? Compute the speed of
the cosmic muons.

. TDC CAEN V1290 VMEbus module
The TDC is operated in trigger matching mode. This means that the TDC measures the time of
arrival of the hits on a channel within a match window. The TDC receives a trigger and the channel
signals as shown in the diagram of the complete setup, Error! Reference source not found. of
exercise #3 and seen in the picture of the VMEbus crate, Figure 1. A trigger match window is then
defined by a window offset with respect to the trigger and a match window size as shown in the
figure below. The hits occurring on channel 0 and channel 1 within the match window are recorded
by the TDC and the values in units of 25ps stored in the memory of the module.

The module is shown in the photo of the VMEbus crate and the manual for the module can be found
at http://www.caen.it/csite/CaenProd.jsp?parent=11&idmod=796

Exercise 4: Muon DAQ

27

. QDC CAEN V792 VMEbus module
This page explains briefly how to calculate the charge of the input signal to the QDC from the data
readout from the module over VMEbus. The module is shown in Figure 1.

The manual for the module can be found at
http://www.caen.it/csite/CaenProd.jsp?idmod=41&parent=11

The circuitry of a channel is shown schematically, below.

The switch is closed as long as the gate input signal is present. The input current is the sum of i IN,
the current input to the module via the front panel (from the scintillator), and iPED, a bias (or
pedestal) current which is generated internally. The bias current allows to handle input signals with
small positive voltage components. When the switch is closed during the time of the gate signal, the
input current charges the capacitor C. When the switch is opened again, the voltage across C, v OUT,
is converted by an ADC and stored in the memory of the module. The ADC has the property that
one count = 1 mV.

We now have for the charge of the capacitor:

Q = C * v OUT = 100 (pF) * count (mV) = 0.1 * count (pC)

Match Window: 500 ns

Window Offset: 400 ns

t0

t1

time

Hits Channel 0

Hits Channel 1

Trigger

Input signals to the TDC

iIN + iPED

switch
C = 100 pF

v OUT
ADC

count

iIN

iPED

Exercise 4: Muon DAQ

28

To compute the charge in the signal input to the channel, corresponding to i IN, we have to correct
for the pedestal value:

Q IN = 0.1 * (count – count PED) (pC)
count = channel data with input signal present

count PED = channel data with input signal removed (i IN = 0)

. CES RCB 8047 CORBO VMEbus trigger module
When a NIM signal is sent to a channel on the CORBO, a bit is set in a status register and an
interrupt on VMEbus is generated, optionally.

The DAQ process on the VMEbus processor can then execute the code to readout the data from the
QDC and TDC modules. In addition, the CORBO generates a busy signal which allows to block
further triggers until the readout code is terminated.

The CORBO module is shown in Figure 1.

FPGA programming
(Ver2014_v01)

INTRODUCTION:

In a lot of digital designs (DAQ, Trigger, …) the FPGAs are used. The aim of this exercise is to show you a way to
logic design in a FPGA. You will learn all the steps from the idea to the test of the design.

In this exercise you will:

-discover how we can do parallel applications
-program a FPGA from the design up to the implementation and the test

The boards used are ALTERA development kit (Figure 1) based on a small FPGA (CYCLONE) with multiple
additional interface components like audio CODEC, switches, button, seven-segments display, LEDs, ….
and a home-made board (named detector in the following pages) connected to the development kit with a flat
cable (figure 2)

The initial design is loaded into the board.
You will follow the example to understand the design flow. Four exercises are proposed to modify the original
design functionality.

Figure 1: development kit Figure 2: detector

QUICK START:

1) Programs used are: QUARTUS (FPGA tool), ModelSim (simulator), LabView
2) Ask the tutor if you have question(s) or problem(s)

EXERCISE (example)

When you switch on the kit, the initial design is loaded into the FPGA.
On the LabView window, you can see the progression of the marker on the detector.
At the same time, you can see on the two 7-segments LED (the right ones on ALTERA kit) the column and the line
number over which the maker is positioned.

DESIGN ENTRY

The design file is named “CII_Starter_Default.bdf” (for all exercises you should work with the same design file).
The design is divided in three parts:

Exercise 4: Muon DAQ

29

FPGA programming
(Ver2014_v01)

INTRODUCTION:

In a lot of digital designs (DAQ, Trigger, …) the FPGAs are used. The aim of this exercise is to show you a way to
logic design in a FPGA. You will learn all the steps from the idea to the test of the design.

In this exercise you will:

-discover how we can do parallel applications
-program a FPGA from the design up to the implementation and the test

The boards used are ALTERA development kit (Figure 1) based on a small FPGA (CYCLONE) with multiple
additional interface components like audio CODEC, switches, button, seven-segments display, LEDs, ….
and a home-made board (named detector in the following pages) connected to the development kit with a flat
cable (figure 2)

The initial design is loaded into the board.
You will follow the example to understand the design flow. Four exercises are proposed to modify the original
design functionality.

Figure 1: development kit Figure 2: detector

QUICK START:

1) Programs used are: QUARTUS (FPGA tool), ModelSim (simulator), LabView
2) Ask the tutor if you have question(s) or problem(s)

EXERCISE (example)

When you switch on the kit, the initial design is loaded into the FPGA.
On the LabView window, you can see the progression of the marker on the detector.
At the same time, you can see on the two 7-segments LED (the right ones on ALTERA kit) the column and the line
number over which the maker is positioned.

DESIGN ENTRY

The design file is named “CII_Starter_Default.bdf” (for all exercises you should work with the same design file).
The design is divided in three parts:

Exercise 5: FPGA Basics

30

a) A green rectangle which is used to transmit the information to the computer via the RS232 connection to
display the trace on LabView.

b) A blue rectangle in which the design generates the clock and the logic to control the detector (see
Appendix A for detailed functionality).

c) A red rectangle, which contains the logic to detect the trace. You will change the logic in this rectangle in
the following exercises.

The idea of all exercises is to detect a trace. As soon as the trace is detected one 7-segment LED blinks (the third
for the right side).
Click on key0 (Altera kit) to stop the blinking. Now generate another trace.
Spend some time to understand how this design works.

Do you understand it?

COMPILATION

This design is the entry of your logic, it should be compiled now; go to QUARTUS Processing->Start Compilation.

The design is compiled for the chosen component (Cyclone II).

The compiler executes multiple tasks:

 logic optimization
 generates a binary file used to program the FPGA (memory array),
 extracts the timing between each logic elements used for the timing analyses
 generate an output VHDL file used for the simulation

SIMULATION

When the compilation is finished, you can check the design with a simulator. To do this you will use ModelSim.

Check in the “Project” TAB if there is a file marked with a bleu “?”, if YES, compile it (right-clic on it, Compile->
compile selected)

In the “Transcript” tab, type ‘source sim.tcl’, ENTER. The simulator opens the waveform, loads the signals, and
starts the simulation.

At the end, stimuli and results are displayed in the wave window.
This simulation emulates a trace starting from the top left and finishing at bottom right describing a straight line
on the detector.
(The tutor will give you some explanations on the results and the signals shown in the waveform)
Remember where the signal OK goes to “TRUE”.

 Figure 3: straight line
When you finished with the simulator type ‘quit –sim ‘ ENTER in the “Transcript” tab.

PROGRAM THE KIT

Exercise 5: FPGA Basics

To download the design on the board, (QUARTUS program) go to on Tools->Programmer (Check that the
Hardware is USB-Blaster, if not ask the tutor).
One file is shown in the window: it is your design. Click on Start .The programmer takes few seconds. At the end,
a message appears to inform you that the programming is completed (or not successful: in this case usually the
board is switched OFF, or the cable is not well connected).

TEST

Draw a straight line from top left to bottom right to see if the design works well!

Now, you are ready to do the other exercises by yourself.

Good Luck!

EXERCISE I
The exercise above uses the graphic to describe the design. In this exercise, we want to do the same with a text
design entry (VHDL).

In the QUARTUS design entry (file “CII_Starter_Default.bdf”), delete the line between inst_graph and JKFF
inst_result and connect the output ‘result’ of “track1”box to the JKFF inst_result with a line.
-Compile the design
-Simulate the design

Go to ModelSim:
 Compile the file marked with a ? in the “Project” tab (select the file to be compiled – Menu

Compile-> Compile selected)
 Type “quit –sim“ in the “Transcript” tab.
 Type “source sim.tcl “ in the “Transcript” tab.

 Find out the difference with the previous result (check where the signal OK goes to “TRUE”).

Can you explain the difference? Can you modify the file “track1.vhd” to have the same result as in the
previous exercise?

-Download the design
-Test the design

EXERCISE II
In this exercise we want to detect a curved trace.

Figure 4 Figure 5: example of trace expected.

31

To download the design on the board, (QUARTUS program) go to on Tools->Programmer (Check that the
Hardware is USB-Blaster, if not ask the tutor).
One file is shown in the window: it is your design. Click on Start .The programmer takes few seconds. At the end,
a message appears to inform you that the programming is completed (or not successful: in this case usually the
board is switched OFF, or the cable is not well connected).

TEST

Draw a straight line from top left to bottom right to see if the design works well!

Now, you are ready to do the other exercises by yourself.

Good Luck!

EXERCISE I
The exercise above uses the graphic to describe the design. In this exercise, we want to do the same with a text
design entry (VHDL).

In the QUARTUS design entry (file “CII_Starter_Default.bdf”), delete the line between inst_graph and JKFF
inst_result and connect the output ‘result’ of “track1”box to the JKFF inst_result with a line.
-Compile the design
-Simulate the design

Go to ModelSim:
 Compile the file marked with a ? in the “Project” tab (select the file to be compiled – Menu

Compile-> Compile selected)
 Type “quit –sim“ in the “Transcript” tab.
 Type “source sim.tcl “ in the “Transcript” tab.

 Find out the difference with the previous result (check where the signal OK goes to “TRUE”).

Can you explain the difference? Can you modify the file “track1.vhd” to have the same result as in the
previous exercise?

-Download the design
-Test the design

EXERCISE II
In this exercise we want to detect a curved trace.

Figure 4 Figure 5: example of trace expected.

Exercise 5: FPGA Basics

32

In the QUARTUS design entry (file “CII_Starter_Default.bdf”), delete the line between output ‘result’ of “track1”
box to the JKFF inst_result, and connect the output of the “trck_fnd01” box to JKFF inst_result.
The “trck_fnd01” box logic detects only a straight trace. Compile the design and do a simulation:
-Compile the design (QUARTUS)
-Simulate the design

 Go to ModelSim, compile the file marked with a ? in the “Project” tab (click on the file to compile –
Menu Compile-> Compile selected)
To simulate:

 Type “quit –sim” ENTER in “Transcript” tab to exist any running simulation.
 Type “source sim2.tcl” ENTER in “Transcript” tab to start the simulator.

A signal OK becomes true if the logic detects the expected trace (here a straight trace).

In this exercise, you will examine the implementation of the design in the FPGA and see how we can change the
results (max. frequency …)

1. In QUARTUS open TimeQuest (Tools -> TimeQuest timing Analyser)
 -double click on Report Fmax Summary (“Tasks” window)
 You can see the maximum frequency of each clocks implemented in the design
 (Note the max frequency that “scan_clk” can reach)
2. Go back to QUARTUS,

Open the partition window (Assignments -> Design partitions window)
Right-click on the partition named “trck_fnd01:instzigzag” (Locate-> Locate in Chip Planner)

Now, you will specify the place where your logic will be implemented:

There is a blue rectangle in the Chip planner (named “trck_fnd01:instzigzag”).
Place it where you want (not at the place where the logic is actually implemented) to implement the logic at the
next compilation.
Compile the design (Quartus), and execute the TimeQuest (see point 1). Normally the maximum frequency will
change.

This give you an idea of the importance of the place of you logic or how to reserve a place if you work in a team
(each person will have a reserved place to implement his logic).
NB: For your information, for each clock of the design, the frequency to reach has to be specified in a constraint
file.

EXERCISE III

The exercise consists to modify the “trck_fnd01” box logic to detect any curve trace as in figure 4.
The trace should start at any pixel in the first line and goes to next line going to a pixel adjacent to the pixel of the
first line and so forth (figure 5).
To help you, you have to change code in the “mask_build” entity (beginning of the “trck_fnd01.vhd”).

-Compile the design
-Simulate the design

 Go to ModelSim, compile the file marked with a ? in the “Project” tab (click on the file to compile –
Menu Compile-> Compile selected)
To simulate:

 type “quit –sim’ ENTER in “Transcript” tab to exist any running simulation.

 type ‘source sim2.tcl’ ENTER in “Transcript” tab to simulate in this exercise.
A signal OK becomes true if the logic detects the expected trace.

-Download the design
-Test the design

EXERCISE IV
If you have time, you can modify the previous file to detect only the curve trace on right or left (not in zigzag like
the red trace in figure 4).

APPENDIX A
 The detector is a matrix of 10 lines and 10 columns (100 pixels). Only one line is activated at a time.

When a line is activated the result of each column indicates if the marker is over a pixel. Each line is activated one
after the other (0, 1, 2… 8, 9, 0, 1, …) . Each line is activated during 4 clocks cycles. The detection logic checks the
result (if pixel is masked by the marker) only during the third clock cycle (signal “check” in the design).

Exercise 5: FPGA Basics

33

 type ‘source sim2.tcl’ ENTER in “Transcript” tab to simulate in this exercise.
A signal OK becomes true if the logic detects the expected trace.

-Download the design
-Test the design

EXERCISE IV
If you have time, you can modify the previous file to detect only the curve trace on right or left (not in zigzag like
the red trace in figure 4).

APPENDIX A
 The detector is a matrix of 10 lines and 10 columns (100 pixels). Only one line is activated at a time.

When a line is activated the result of each column indicates if the marker is over a pixel. Each line is activated one
after the other (0, 1, 2… 8, 9, 0, 1, …) . Each line is activated during 4 clocks cycles. The detection logic checks the
result (if pixel is masked by the marker) only during the third clock cycle (signal “check” in the design).

Exercise 5: FPGA Basics

34

Exercise 6: Micro TCA

Overview

In this exercise you will …

- explore the Micro-TCA technology
- learn about the PCI (express) bus
- write data acquisition software to sample music and display the wave

forms

Introduction

In this exercise you will work with modular electronics based on the rather new
Micro-TCA standard. TCA stands for Telecommunications Computing
Architecture, an architecture that is used in Telco industry to provide high-
bandwidth, high-availability solutions. Both Micro-TCA and its bigger brother
Advanced TCA (ATCA) will be used in the upgrades of the LHC experiments. Like
VME or Compact PCI, Micro-TCA defines a rack—called shelf in TCA speak—and
boards, called Advanced Mezzanine Cards or AMCs. Typical shelves have space
for 12 AMCs but we will work with a slightly smaller version. A Micro-TCA
Carrier Hub (MCH) performs management functions, such as monitoring
temperatures and regulating fan speed to provide the necessary cooling. A
Micro-TCA shelf may contain a second MCH for redundancy (but we will work
with only one). The backplane contains high-speed serial links that are suitable
for transferring data at rates of 10 Gb/s or more using various protocols.
Typically the backplanes have a single or dual-star layout with all high speed-
links going from each AMC to the MCH slot(s). The MCH then contains a switch
for the desired protocol—in our case PCI Express (PCIe). Other backplane
layouts exist with high-bandwidth links between neighboring AMC slots.

The test setup

We are using a small ELMA Micro-TCA shelf containing:

- a built-in power module and a built-in fan
- a backplane with star and mesh connections
- an MCH by Samway (IP 137.138.63.22)
- an AMC containing a Processor running Linux (IP 137.138.63.15)
- an I/O AMC (AMC-ADIO24) providing digital and analog IO
- optionally, an AMC that can generate a programmable load on the crate

 Figure 1. The exercise setup

Exercise 6: MicroTCA

35

We will be working directly on the processor AMC. Keyboard, mouse and screen
are directly connected to this card which runs a standard Scientific Linux CERN
(SLC) distribution. We will use the network port of this card to communicate
with management port of the MCH.

Get to know the setup

Log into the processor AMC:

User: student (ask your tutor for the pwd)

Explore the system using the Webserver

- open Firefox
- Connect to the Samway MCH webserver at IP 137.138.63.22

You can use the webserver to browse the different Field Replaceable Units
(FRUs) in the system. You can get information about the units, their voltages and
temperatures as well as the valid operating ranges for all these quantities.

Turn on all load groups of the load AMC as shown in the next section. See how
the MCH reacts.

Connect to the MCH by telnet

You can see details of the processes in the MCH by connecting to it with telnet
(telnet 137.138.63.22). Login: user

Try it. (use command help to display help).

Note that the backspace may not work. In this case you can use ctrl+h.

To see the fan-speed and fan-levels:

sensor cu 1
cu

As an alternative way to looking at the webserver, you can check the operating
ranges and current readings of all sensors via the telnet connection:

 sensor amc <slot>

IPMI

The webserver communicates with the MCH through IPMI (Intelligent Platform
Management Interface) commands. The MCH either answers to the IPMI
commands itself or it forwards the request to a FRU using a dedicated I2C (Inter-
Integrated Circuit, often pronounced I-squared-C) link.

Exercise 6: MicroTCA

36

You can also directly use the IPMI protocol to talk to a card in the sytem. For
example, we can program the load of the load board (produced at CERN) through
IPMI. For this we use the program ipmitool with the following syntax:

ipmitool -I lan -H <ip_address> -U admin -P ADMIN -T 0x82 -t <AMC_address>
 -b 7 -B 0 raw 44 7 0 0 <group_number> <action> 0 15

Where:
<ip_address> is your MCH address
<AMC_address> is the target AMC address (Slot1 = 0x72, Slot2 = 0x74, Slot 3= 0x76)
<group_number> is the LED/Load group number from 4 to 11
<action> if 0xff group ON, if 0x00 group OFF

- Try switching on all the load-groups of the AMC
- See the reaction on the temperature of the AMC by repeatedly running the

sensor command (see above)
- When a non-critical threshold is reached the MCH should increase the

fan-speed of the crate
- Check this by running the cu command
- Now you should turn off the load groups quickly to avoid that the system

overheats (the fan is not powerful enough in this crate)

Explore the Backplane

The telnet prompt has commands that allow to display the links of all FRUs.

- bpppc # backplane connectivity
- pcie # PCIe status

Try them. The backplane connectivity information needs some decoding. There
is some information given at the top of the output. Some further information may
be found in the Samway MCH user manual (ask your tutor for a printed copy or
find it in /ISOTDAQ/doc/).

AMCs usually have 21 ports, MCHs up to 84 ports. An MCH connects to multiple
connectors and is composed of a number of printed circuit boards stacked on top
of each other. The boards are called the tongues of an MCH. Figures 2 and 3 show
the block-diagrammes of the two tongues of the Samway MCH. Figure 4 shows
another block-diagram of a MCH with more functionality compared to the one
used in the test setup.

Ports are grouped into fabrics. MCHs usually provide switches for a certain fabric.

In our test setup, the MCH contains

- a Gigabit Ethernet Switch on Fabric A going to ports 0 and 1 of each AMC.
- a PCI-express Gen3 Switch on fabrics D-G supporting up to 4 lanes, going

to ports 4-7 of each AMC.

Exercise 6: MicroTCA

37

Figure 4 shows the backplane of our test shelf, figure 5 shows a typical backplane
of a larger shelf with 12 AMCs and redundant MCHs.

Take a look at the backplane with the bpppc command, which AMC has which
connectivity? You can also have a look with the pcie.

For some MCH dedicated tools are available to illustrate the backplane
connectivity, figure 6 shows one such example, the NATView Backplane viewer.

Figure 3. Block Diagram of the NAT MCH.

Figure 2. Block diagram of the Samway MCH.

Exercise 6: MicroTCA

38

Figure 4. Backplane of the ELMA blue eco shelf used in the exercise.

Figure 5. Backplane of a typical larger Micro-TCA crate with 12 AMCs.

(not used in the exercise)

Exercise 6: MicroTCA

39

Figure 6. NAT Backplane viewer

PCI Express

The MCH in our test system provides a PCIe switch. Cards in the shelf may use it
to communicate with each other. In our system, the Processor AMC
communicates with the IO AMC via PCIe. Unlike its predecessor, PCI, PCI express
is a serial link. Up to 32 serial links may be combined to form a link. Table 1
shows the speeds in Giga-transfers (GT) per second per lane. Physically, PCIe
links are point-to-point, as opposed to a bus topology used in PCI. Data are
transferred in packets (like in Ethernet) with data integrity checks, re-
transmissions and flow control. PCIe switches are used to connect multiple
devices to a single controller (called root complex in PCIe). Despite all these
differences in the lower link layers, PCI-express is software compatible to PCI.

Exercise 6: MicroTCA

40

Table 1. Speed of PCI-express

 per lane per lane
Gen-1 2.5 GT/s 250 MB/s
Gen-2 5 GT/s 500 MB/s
Gen-3 8 GT/s 985 MB/s
Gen-4 16 GT/s 1970 MB/s

To discover the bus structure and devices, you can use the lspci tool.

For example, try: lspci -tv to display the bus in a tree structure
or try options –v and -vv to display detailed information about the devices.

Try to locate the IO AMC. Find its bus address and its base address.

Hot Plugging (demo by your tutor)

In a Micro-TCA system, AMCs may be hot-plugged (i.e. exchanged without
switching the shelf off). We will try hot-plugging the IO AMC card. Since the IO
AMC is a PCI device connected to the Processor AMC, we have to let the
Processor AMC know.

Together with the tutor, try these steps (you need to be root on the machine):

- show the PCI devices with lspci
- Pull gently on the black lever
- wait till the blue light is on
- pull the card out by its lever
- repeat lspci (did anything change ?)
- push the card back in
- wait till the blue light is on
- push the black lever in
-
- echo 1 > /sys/bus/pci/devices/[address]/remove 
- (address is the address of this device: PCI bridge: PLX Technology, Inc. PEX

8111 PCI Express-to-PCI Bridge)
- repeat lspci (did anything change ?)
- echo 1 > /sys/bus/pci/rescan
- repeat lspci (did anything change ?)

Exercise 6: MicroTCA

41

 Build your own digital scope

Now let’s get our hands dirty and do some programming. You will use the
Analog-to-Digital converter on the IO/AMC to repeatedly sample an analog input
channel and to display the waveform of the sampled signal. The A/D converter
continuously samples its input at a programmable frequency. The acquired data
may either be polled or transferred to host memory by Direst Memory Access
(DMA).

- First have a look at the provided example program adio_scope.cpp (in
/home/student/amc_adio/src). See how the program maps the address
space of the IO AMC into the Processor AMC’s memory space and how it
then addresses the IO AMC’s registers by simple read and write
operations to a data structure. Run the program (from
/home/student/amc_adio/bin) and play with it. You can recompile it by
running make in /home/student/amc_adio.

- The scope should sample Analog Input 0 at 44.1 kHz. Have a look at the
documentation (Hardware Manual) of the IO AMC and find out how to set
up the ADC to sample at this frequency.

o First set up the timestamp counter to provide timestamps in
microseconds (register DIVMODE)

o Then find out how fast you can poll a register of the IO AMC. Is
polling fast enough to do a scope working at 44.1 kHz?

o Now set up the IO AMC to sample Analog input 1 at 44.1 kHz You
will need to set up registers FGENAB and ADCMODE.

- After setting up the card, your program should acquire a few hundred
samples from the ADC.

- Your program should produce a file with lines of two columns, containing
a timestamp in microseconds and the voltage in volts (separated by a
space). You can start from the routine acquire_shot() which already
provides parts of the solution.

- A ROOT program to plot you file is available. So you don’t need to worry
about producing the graphics. The program will let you choose the file
name to plot.

root –l
root [0] .x /home/student/gui_cint.cpp

- As an input signal, you can connect the provided head-phone jack to your
smart phone and play some music (you’ll have to turn up the volume). Or
you download a function generator onto your phone – for example

Exercise 6: MicroTCA

42

RADONSOFT Signal Generator. (No smart phone in your group? Ask you
tutor.)

References (.pdf files available in /ISOTDAQ/doc)

- Short intro to uTCA. MicroTCA_ShortOverview.pdf
- http://en.wikipedia.org/wiki/PCI_Express - PCIExpressWikipedia.pdf
- More info about PCIe: http://xillybus.com/tutorials/pci-express-tlp-pcie-

primer-tutorial-guide-1 PCIExpress_Xillybus[1-3].pdf
- Info about the shelf: ELMA_BlueEco_Shelf.pdf
- MCH doc: Samway_MCH_Usermanual_Rev_1.6
- Manual for the IO AMC: HardwareManual_IO_AMC.pdf

Exercise 6: MicroTCA

43

LabView Programming

Exercise 7

Introduction
The following block diagram shows the main components of an electronic measurement system:

Analog world

Sensor Analog signal
conditioning

Digital signal
Conditioning,
preprocessing

ADC DSP

In most cases the function of the components are the same. The sensor converts the physical value
(temperature, pressure, acceleration…) to an electrical signal. After the conditioning of the signal
and converting it to the digital space the system process and store the digital values. The numbers
and the physical types of the measured signals can be different and processing algorithm as well. If
we could handle all types of signals we would be able to solve any measuring problem. Additionally
if it was also true for the actuators, we would be able to handle all controlling problems. This is the
goal of the modular electronic instrumentation.

National Instruments has been developing measurement equipment since the ‘80s. They
provide general, programmable interface modules: for analog/digital inputs/outputs (programmable
ADC/DAC modules with programmable signal conditioning), for standard communication
interfaces (Ethernet, CAN/LIN, PROFIBUS, PCI…). They provide a development environment to
communicate with these modules with a PC. The software environment uses a graphical
programming language.

During this laboratory we are using the following equipment. The modules place in the NI
Compact DAQ chassis (cDAQ-9178). This chassis can communicate with the PC (LAN or USB)
and control the placed-in modules. The analog input module (NI 9211) contains 24 bit delta-sigma
ADCs and 4 differential channels. This module can handle the thermo-couple sensors. We are using
an analog input and a digital output module as well.

The chassis contains the following, programmable component: four 32 bit general purpose
counters, clock generators, FIFO for analog/digital inputs (with 127 depth per slot), FIFO for digital
outputs (2047 samples), clock generators (base clock: 20 MHz, 10 MHz, 100 kHz, divisors: 1 to
16), digital trigger circuit.

Exercise 7: LabView DAQ

44

By the graphical programming environment we can program and control the modules. We

can visualize our acquired data and do calculations. The data processing with this cDAQ chassis
runs on the processor of our desktop PC.
Try to answer the following questions:

 If this chassis contains only some counters and FIFOs why does it cost approx 1000 €?
 What is the advantage of this modularity, developing a measurement system?
 What would be the problem is we would like to use this system as a control system or as a

real-time signal processing application? How would you solve this problem?
 For which application would you choose this configuration? Why?

Exercise 1: Take a Basic Measurement with CompactDAQ
The purpose of this exercise is to use LabVIEW and NI CompactDAQ to quickly set up a program
to acquire temperature data.
Set up the Hardware
1. Make sure that the NI CompactDAQ chassis (cDAQ-9178) is powered on.
2. Connect the chassis to the PC using the USB cable.
3. The NI-DAQmx driver installed on the PC automatically detects the chassis and brings up the
following window.

Exercise 7: LabView DAQ

45

4. Click on Configure and Test This Device Using NI Measurement & Automation Explorer.
Note: NI Measurement & Automation Explorer is a configuration utility for all National
Instruments hardware.
5. The Devices and Interfaces section under My System shows all the National Instruments devices
installed and configured on your PC. The NI-DAQmx Devices folder shows all the NI-DAQmx
compatible devices. By default, the NI CompactDAQ chassis NI cDAQ-9178 shows up with the
name “cDAQ1”.
6. This section of MAX also shows the installed modules as well as empty slots in the
CompactDAQ chassis.
7. Right-click on NI cDAQ-9178 and click on Self-Test.

8. The device passes the self-test, which means it has initialized properly and is ready to be used in
your LabVIEW application.

Program LabVIEW Application
9. Create a new VI from the Project Explorer. Right click on the Exercises folder and select New»
VI. Once opened, Save the VI in the Exercise folder under the name “1-Basic Measurement.vi.”
10. Press <Ctrl +T> to tile front panel and block diagram windows.
11. Pull up the Functions Palette by right-clicking on the white space on the LabVIEW block
diagram window.
12. Move your mouse over the Express» Input palette, and click the DAQ Assistant Express VI.
Left-click on the empty space to place it on the block diagram.

Exercise 7: LabView DAQ

46

13. The Create New Express Task… window then appears:

14. To configure a temperature measurement application with a thermocouple, click on Acquire
Signals» Analog Input» Temperature» Thermocouple. Click the + sign next to the cDAQ1Mod1
(NI 9211), highlight channel ai0, and click Finish. This adds a physical channel to your
measurement task.
15. Change the CJC Source to Built In and Acquisition Mode to Continuous Samples. Click the
Run button. You will see the temperature readings from the thermocouple in test panel window.

Exercise 7: LabView DAQ

47

16. Click Stop and then click OK to close the Express block configuration window to return to the
LabVIEW block diagram.
17. LabVIEW automatically creates the code for this measurement task. Click Yes to automatically
create a While Loop.

18. Right-click the data terminal output on the right side of the DAQ Assistant Express VI and
select Create» Graph Indicator. Rename “Waveform Graph” to Temperature.

19. Notice that a graph indicator is placed on the front panel.

Exercise 7: LabView DAQ

48

20. Your block diagram should now look like the figure below. The while loop automatically adds a
stop button to your front panel that allows you to stop the execution of the loop.

Additional Steps Express VIs make creating basic applications very easy. Their configuration
dialogs allow you to set parameter and customize inputs and outputs based on your application
requirements. However, to optimize your DAQ application’s performance and allow for greater
control you should use standard DAQmx driver VIs. Right Click on block diagram Functions»
Measurement I/O Palette» NI-DAQmx.
20. Before you generate DAQmx code you need to remove all the code that was automatically
created by the Express VI. Right click on the while loop and select “Remove While Loop.” Then
click on the Stop button control, and press the Delete key to remove the Stop button. Repeat actions
for Temperature Graph as well as any additional wires that may remain. You can press <Control +
B> to remove all unconnected wires from a block diagram.
21. Convert Express VI code to standard VIs. While not all Express VIs can be automatically
converted to standard VIs, the DAQ Assistant can. This will allow for greater application control
and customization. Right-click on the DAQ Assistant Express VI you created in this exercise and
select “Generate NI-DAQmx Code.”

Your block diagram should now appear something like this:

The Express VI has been replaced by two VIs. We’ll examine their functionality in the following

Exercise 7: LabView DAQ

49

steps.
22. Open Context Help by clicking on the Context Help icon on the upper right corner of the block
diagram. Hover your cursor over each VI and examine their descriptions and wiring diagram.
23. DAQmx Read.vi reads data based on the parameters it receives from the currently untitled VI
on the far left.
24. Double-click on the untitled VI and open that VI’s block diagram (code shown below).

All the parameters that are wired as inputs to the different DAQmx setup VIs reflect the setting you
originally configured in the DAQ Assistant Express VI.
Note: By moving these parameter and setup VIs onto the block diagram, you can now
programmatically change their values without having to stop your application and open the
Express VI configuration dialog, saving development time and possibly optimizing
performance by eliminating unnecessary settings depending on your application.
Using the LabVIEW Example Finder
The LabVIEW Example Finder provides hundreds of example application to use as reference or as
the starting point for your application.
25. Open the LabVIEW Example Finder to find DAQ examples that use DAQmx standard VIs. Go
to Help» Find Examples… to launch the LabVIEW Example Finder.
26. Browse to the DAQmx Analog Measurements folder from the Browse tab at Hardware Input
and Output» DAQmx» Analog Measurements.

Exercise 7: LabView DAQ

50

27. The following VI will then appear:

28. Set the Physical Channel to match the CompactDAQ chassis channel and run the application.
Expand the physical channel control from the Front Panel and select cDAQ1Mod1/ai0.

Exercise 7: LabView DAQ

51

Press the Run button several times while holding and releasing the thermocouple on the
CompactDAQ chassis and observe the value change on the front panel.
29. Open the block diagram and examine the code. This VI only uses standard VIs instead of
Express VIs, which allows much more customization of inputs and run-time configuration. Acq
Thermocouple Sample.vi has no while loop to allow for continuous execution, and the remaining
steps of this exercise will focus on adding that functionality.
30. Add a while loop and Stop button to Acq Thermocouple Sample.vi. Right-click on the block
diagram to bring up the Functions palette. Find the While Loop on the Programming» Structures
palette and drag a while loop over the DAQmx Read.vi. You may need to spread the VIs across the
block diagram so that there is room. You can create additional space by holding the Control key
and dragging a box on the block diagram or front panel.

Right click on the While Loop’s Conditional terminal and select “Create Control.” This
automatically wires a Stop button to the terminal.

Exercise 7: LabView DAQ

52

Notice that the Stop button has appeared on the front panel.
31. Run the VI. Acq Thermocouple Sample.vi now runs continuously.
32. Save the customized example VI to the Project. Go to File» Save As…, select Copy»
Substitute Copy for Original and name the VI “Thermocouple Customized Example.vi.” Save
this VI. This allows for further development without overwriting the LabVIEW example.
End of Exercise 1

Exercise 2: Add Analysis and Digital Output to the DAQ
Application
Set up Hardware
1. Confirm that the CompactDAQ chassis is powered on and connected to the PC via the USB
cable. If not, or if it is not behaving as expected, repeat steps #1-8 from Exercise #1
LabVIEW Application – Compare signal to user-defined alarm
2. Exercise 2 is functionally the same as the end result of Exercise 1. You can open Exercise 1 to
synchronize with the illustrations in this section. Open 1-Analysis and Output.vi from the Exercises
folder in the Project explorer. The VI will appear like the image below, with additional space on the
block diagram to add functionality:

3. Create an alarm that signals if acquired temperature goes above a user-defined level. On the
front panel, right-click to open the Controls palette Programming» Numeric and place a numeric
control on the front panel.

Exercise 7: LabView DAQ

53

4. Change the numeric control's name to "Alarm Level." Double-click on the control's label and
replace the generic text with "Alarm Level"
6. Use the Comparison Express VI to compare the acquired temperature signal with the Alarm
Level control. Switch to the block diagram, right-click on an empty space and open the Functions
palette. Place the Comparison Express VI on the block diagram from Functions» Express»
Arithmetic & Comparison» Comparison.

7. Once placed on the block diagram, the Comparison Express VI's configuration dialog will
appear.

Exercise 7: LabView DAQ

54

Select "> Greater" in the Compare Condition section and "Second signal input" from the
Comparison Inputs section then click OK.
8. Connect the acquired temperature data and Alarm Level inputs to the Comparison Express VI.
Hover over the output of the DAQ Assistant until the spool icon appears on your cursor, then left-
click and drag you mouse to the Operand 1 input on the Comparison Express VI. Perform the same
hover, drag and connect to wire the Alarm Level control and the Operand 2 input on the
Comparison Express VI. Your block diagram should now look like this:

9. Display the result of the Comparison Express VI on the front panel. On the front panel, right
click, open the Controls palette and add a Square LED indicator. The square LED is found at
Controls» Modern» Boolean. Resize the Square LED so that it is easier to see and rename it
"Alarm." Your front panel should look like this:

Exercise 7: LabView DAQ

55

On the block diagram, wire the output of the Comparison Express VI to the input of the Alarm
indicator's terminal.

10. Run the application. Press the Run button and then change the Alarm Level control to some
level above the current acquired temperature signal. Hold the thermocouple until the temperature
exceeds the Alarm Level value. The Alarm LED turns on when the acquired temperature signal
goes above the level set on the front panel.
Output Alarm to CompactDAQ Chassis
11. Use another DAQ Assistant Express VI to output Alarm's status to the CompactDAQ's 9474
module. Open the Functions palette on the block diagram and find the DAQ Assistant Express VI
at Functions» Express» Output.

Exercise 7: LabView DAQ

56

<picture of palette w/ DA circled>

12. Select Generate Signals» Digital Output» Line Output from the Create New Express Task…
window.

13. Select the physical channel you want to use as output. Expand the + sign next to cDAQ1Mod4
in the following window and select port0/line0.

Exercise 7: LabView DAQ

57

14. Press OK in the DAQ Assistant window that appears, since all of its settings are correct for the
application.
15. Create an additional wire that connects the Comparison Express VI’s Result output to the data
input on the new DAQ Assistant Express VI. A Convert from Dynamic Data function appears
automatically. LabVIEW will always try to coerce unlike data types when two nodes are wired
together. In this case, the output of the Compare Express VI is a Dynamic Data type, and the input
of the DAQ Assistant is Boolean. LabVIEW placed the Convert from Dynamic Data node in
between the two nodes so they could be connected. You can double-click the Convert from
Dynamic Data to view its configuration. Your block diagram should now look like this:

16. Run the VI. Press the Run button. Notice that the LED bank on the CompactDAQ 9474
module turns on and off to match Alarm's value on the front panel.
17. Save and close the VI.
 End of Exercise 2

Exercise 7: LabView DAQ

58

Exercise 3: Writing Data to File with LabVIEW
1. In the Exercise folder in the Project Explorer, open 2-Analysis and Output.vi. We will use the
final program from the last exercise as the beginning of this exercise.
2. Right-click on the block diagram and select Functions» Express» Output» Write to
Measurement File and place it inside the While Loop on the block diagram.

3. A configuration window will appear. Configure the window as shown below and click OK.

4. Wire the output of the DAQ Assistant Express VI to the input of the Write to Measurement File
Express VI.
5. Your block diagram should now resemble the following figure.

Exercise 7: LabView DAQ

59

6. Save the VI by using the File» Save As… menu, select the Copy» Open Additional Copy and
name it 3-Write to File.vi.
7. Run the VI momentarily and press STOP to stop the VI.
8. Your file will be created in the folder specified.
9. Open the file using Microsoft Office Excel or Notepad. Review the header and temperature data
saved in the file.
10. Close the data file and the LabVIEW VI.
End of Exercise

Exercise 4: Generate, Acquire, Analyze and Display
Generate a sine waveform using the analog output module. Try to check the signal with an
oscilloscope. Acquire the sine waveform using the analog input module. Perform the appropriate
analysis on the acquired waveform to figure out the frequency of the acquired waveform. Finally
display the acquired waveform and its frequency. Try to play with the Nyquist-Shannon sampling
theorem.
This is a challenge exercise and step-by-step instructions are not provided, but rather the end goal is
given. It is up to you to figure out how to come up with the program to achieve the given task.

Exercise 7: LabView DAQ

60

ADC basics for TDAQ (Lab 8)

Manoel Barros Marin (manoel.barros.marin@cern.ch, tutor)

Concepts of this lab
Figure 1 below shows the generic signal flow of a Data AcQusition (DAQ) system to perform Analog to
Digital Conversions (ADC).

Figure 1- Basic ADC DAQ chain

The scope of this laboratory experience is to understand and experiment with the following components of a
Data AcQuisition system:

1. Triggers:

1.1. External triggers: accelerator like type of triggers

1.2. Triggering on the signal: astroparticle like type of triggers

2. Analog to Digital Converter (ADC): we will try to understand fundamental parameters that come into play
when measuring with ADC; as for example its resolution, speed, bandwidth, acquisition window, etc.

Lab setup
Figure 2 below depicts the setup for Lab8.

Transducer
Physical
quantity

measured

Signal
Conditioning A/D Converter Processing

 Light
 Voltage
 Eletrical Current
 Electrical Charge
 Force
 Etc...

Real world
Physical units

Analog world
Usually Currents and Volages

Digital world
Bits and Bytes

 Analog filtering
 Gain
 Scaling
 Trigger

 Digital filtering
 Data statistics
 High-level Triggering
 Data storing
 End software applications

Exercise 8: ADC Basics for TDAQ

Figure 2 - Equipment setup

1. Tektronix AFG3252: Arbitrary Function Generator, is the input of our system
2. Tektronix DPO70404C: Oscilloscope, it the monitor of our system (to cross-check that the signals fed to

the system are truly what intended)
3. SPEC+FMC ADC card plus host PC: this is the core ADC DAQ

3.1. FPGA Mezzanine Card (FMC) ADC: http://www.ohwr.org/projects/fmc-adc-100m14b4cha
3.2. Simple PCI Express Carrier (SPEC) card: http://www.ohwr.org/projects/spec/wiki
3.3. Linux based host PC

Introduction to Analog to Digital Conversion (ADC)
An Analog to Digital Converter (also known as “digitizer”) is a device which converts the level of an
analogue signal into an integer number which is closest to the real value of the signal in terms of ratio.
There is a limit for the number of choices of this integer which is determined by the number of bits used for
the digitization.

Example: We have a voltage signal whose range is [0 - 10] Volt, and we have a digitizer which has just 3
bits. We can have 8 different integer numbers with 3 bits. Each of these numbers will correspond to a
voltage. See table below.

Voltage Digitizer bits Integer

0.00 - 1.25 000 0

1.25 – 2.50 001 1

2.50 - 3.75 010 2

3.75 – 5.00 011 3

TRIG ADC
IN

1 2 3 4 ACQ
Fmc-Adc-100M-14b-4cha

BNC Connectors

LEMO Connector LEMO Connector

T-BNC

AFG
Oscilloscope

ADC card

1 2

3

61

ADC basics for TDAQ (Lab 8)

Manoel Barros Marin (manoel.barros.marin@cern.ch, tutor)

Concepts of this lab
Figure 1 below shows the generic signal flow of a Data AcQusition (DAQ) system to perform Analog to
Digital Conversions (ADC).

Figure 1- Basic ADC DAQ chain

The scope of this laboratory experience is to understand and experiment with the following components of a
Data AcQuisition system:

1. Triggers:

1.1. External triggers: accelerator like type of triggers

1.2. Triggering on the signal: astroparticle like type of triggers

2. Analog to Digital Converter (ADC): we will try to understand fundamental parameters that come into play
when measuring with ADC; as for example its resolution, speed, bandwidth, acquisition window, etc.

Lab setup
Figure 2 below depicts the setup for Lab8.

Transducer
Physical
quantity

measured

Signal
Conditioning A/D Converter Processing

 Light
 Voltage
 Eletrical Current
 Electrical Charge
 Force
 Etc...

Real world
Physical units

Analog world
Usually Currents and Volages

Digital world
Bits and Bytes

 Analog filtering
 Gain
 Scaling
 Trigger

 Digital filtering
 Data statistics
 High-level Triggering
 Data storing
 End software applications

Figure 2 - Equipment setup

1. Tektronix AFG3252: Arbitrary Function Generator, is the input of our system
2. Tektronix DPO70404C: Oscilloscope, it the monitor of our system (to cross-check that the signals fed to

the system are truly what intended)
3. SPEC+FMC ADC card plus host PC: this is the core ADC DAQ

3.1. FPGA Mezzanine Card (FMC) ADC: http://www.ohwr.org/projects/fmc-adc-100m14b4cha
3.2. Simple PCI Express Carrier (SPEC) card: http://www.ohwr.org/projects/spec/wiki
3.3. Linux based host PC

Introduction to Analog to Digital Conversion (ADC)
An Analog to Digital Converter (also known as “digitizer”) is a device which converts the level of an
analogue signal into an integer number which is closest to the real value of the signal in terms of ratio.
There is a limit for the number of choices of this integer which is determined by the number of bits used for
the digitization.

Example: We have a voltage signal whose range is [0 - 10] Volt, and we have a digitizer which has just 3
bits. We can have 8 different integer numbers with 3 bits. Each of these numbers will correspond to a
voltage. See table below.

Voltage Digitizer bits Integer

0.00 - 1.25 000 0

1.25 – 2.50 001 1

2.50 - 3.75 010 2

3.75 – 5.00 011 3

TRIG ADC
IN

1 2 3 4 ACQ
Fmc-Adc-100M-14b-4cha

BNC Connectors

LEMO Connector LEMO Connector

T-BNC

AFG
Oscilloscope

ADC card

1 2

3

Exercise 8: ADC Basics for TDAQ

62

This kind of conversion is performed at regular intervals (samples), and the repetition (frequency, Hz) is
called sampling frequency (normally expressed in samples per seconds). Thus, digitization is not only
performed in the signal domain, but also in the time domain.
Also note that to improve the precision of the measurement one should:

 Increase the number of bits, so each corresponding range is small with respect to the signal to be
sampled

 Sampling should be done at the proper frequency (see Nyquist frequency); and even more
importantly, a precise sampling clock should be used, such that the deviation between consecutive
samples is kept as constant as possible.

If you are interested in more details about ADC parameters, please check:
http://www.analog.com/en/analog-to-digital-converters/products/index.html

If are interested in understanding more in detail the importance of clock stability (jitter), please check:
http://anlage.umd.edu/Microwave%20Measurements%20for%20Personal%20Web%20Site/Tek%20Intro%2
0to%20Jitter%2061W_18897_1.pdf

The ADC card we will be using has 14 bit voltage resolution and a typical conversion time of 10 ns
(100 MS/s). In this exercise, we will operate the ADC in order to understand and push its limits.

The Measurement

Qualify in the best possible way a set of signals mimicking real experimental equipment. The tutors
will provide some pre-cooked ones (sine waves, positive pulses, scintillator like pulses) but you can try to
think of your real world input.

5.00 - 6.25 100 4

6.25 – 7.50 101 5

7.50 – 8.75 110 6

8.75 – 10.00 111 7

In general terms, a digitization process is characterized by the following:

 Signal range: how much the signal can vary to be correctly interpreted by the device (voltage)

 Sampling frequency: the rate at which it can convert an analogue value to a discrete signal (bits)

 Latency: How long does the device takes to finalize the acquisition process in the chain (time)

 Noises: physical quantities responsible for the signal deterioration (e.g. added noise, intrinsic noise,
quantization errors, etc.)

The best measurement is achieved by understanding and controlling those parameters. The designers (so
YOU) have to decide how to setup your TDAQ: choose a trigger type, define the acquisition windows, find
the signal in the window, maximize the scaling for increasing the accuracy of the measurement, etc.

Exercise 8: ADC Basics for TDAQ

63

This kind of conversion is performed at regular intervals (samples), and the repetition (frequency, Hz) is
called sampling frequency (normally expressed in samples per seconds). Thus, digitization is not only
performed in the signal domain, but also in the time domain.
Also note that to improve the precision of the measurement one should:

 Increase the number of bits, so each corresponding range is small with respect to the signal to be
sampled

 Sampling should be done at the proper frequency (see Nyquist frequency); and even more
importantly, a precise sampling clock should be used, such that the deviation between consecutive
samples is kept as constant as possible.

If you are interested in more details about ADC parameters, please check:
http://www.analog.com/en/analog-to-digital-converters/products/index.html

If are interested in understanding more in detail the importance of clock stability (jitter), please check:
http://anlage.umd.edu/Microwave%20Measurements%20for%20Personal%20Web%20Site/Tek%20Intro%2
0to%20Jitter%2061W_18897_1.pdf

The ADC card we will be using has 14 bit voltage resolution and a typical conversion time of 10 ns
(100 MS/s). In this exercise, we will operate the ADC in order to understand and push its limits.

The Measurement

Qualify in the best possible way a set of signals mimicking real experimental equipment. The tutors
will provide some pre-cooked ones (sine waves, positive pulses, scintillator like pulses) but you can try to
think of your real world input.

5.00 - 6.25 100 4

6.25 – 7.50 101 5

7.50 – 8.75 110 6

8.75 – 10.00 111 7

In general terms, a digitization process is characterized by the following:

 Signal range: how much the signal can vary to be correctly interpreted by the device (voltage)

 Sampling frequency: the rate at which it can convert an analogue value to a discrete signal (bits)

 Latency: How long does the device takes to finalize the acquisition process in the chain (time)

 Noises: physical quantities responsible for the signal deterioration (e.g. added noise, intrinsic noise,
quantization errors, etc.)

The best measurement is achieved by understanding and controlling those parameters. The designers (so
YOU) have to decide how to setup your TDAQ: choose a trigger type, define the acquisition windows, find
the signal in the window, maximize the scaling for increasing the accuracy of the measurement, etc.

Exercise 8: ADC Basics for TDAQ

64

Architecture of a Linux Device Driver for the PCIe Card
Before running the DAQ system, an overview on the communication between the software and the

hardware layers and an introduction to the role of device drivers, is fundamental to understand. Figure 3
shows a simplified diagram of the Layers of a Linux Operating System (OS).

Figure 3- Layers of a Linux OS

The basic control is on the hardware peripheral itself. The lowest level software for this system resides in
the kernel of the OS as a “device driver.” There are certain control/status registers on the ADC card. These
registers can be accessed just like a regular memory access in a C program.

As seen earlier in this document, in our context, the ADC DAQ hardware used is composed of two electronic
boards: the SPEC carrier board and the FMC ADC module. The first board is attached directly to a PCIe slot
connector on the PC, and is the host for the ADC module. The SPEC card acts as a bridge for the electrical
signals of the ADC FMC to be interfaced and converted to PCIe. For the scope of this lab, the “bridging” is
done by some “black box” electronics. Thus from a software perspective, one kernel module is instantiated
to use the SPEC card, another one for the FMC ADC module.

For simple sensors and devices vendors provide information about their operation and use; which can be
seen as a map of internal registers and/or procedures required to perform operations or change their current
states (more about in Exercise 12 "DAQ Online Software”). For the sake of simplicity and reusability of
software code, software engineers created the concept of frameworks. Among others, this concept was
used at CERN for creating a flexible interface for the development of input and output drivers. The target is
for very-high-bandwidth devices, with high-definition time stamps, and a uniform metadata representation.
Such framework is named the ZIO (with Z standing for “The Ultimate I/O” Framework).

User applications and libraries

System Call Interface

Kernel subsystems

Devices

Kernel modules (Device Drivers)

User space

Kernel space

Hardware

In short, the way ZIO provides to talk to our hardware is through two different channels, one for control and
one for data. Figure 4 shows the two data flows.

Figure 4 - ZIO data pipeline

When designing a piece of low-level software to communicate to an acquisition device, it is important

to choose the way data streams should be passed back and forth the hardware device. To illustrate this they
can be qualified in three types: Polling mode, Interrupt based, and DMA (Direct Memory Access)
transfers.

 Polling mode: the CPU checks the state of the device’s registers every time it can, this has the

advantage of providing a fast and low latency communication and data transfer between them, but at the
cost of high CPU load.

 Interrupt based: this type of transfers eases the CPU load time as it only have to care about the
hardware when it tells the CPU to do so; it has the advantage of a lower impact on CPU loads and fast
transfer, but with variable latency.

 DMA transfers: relies on a shared memory area the CPU provides to the DMA controller to work on
the transfer with the hardware device, this frees completely the CPU from controlling the hardware transfer
representing a true concurrent system. Highest of all transfer rates allied to an acceptable latency.

Exercise 8: ADC Basics for TDAQ

65

Architecture of a Linux Device Driver for the PCIe Card
Before running the DAQ system, an overview on the communication between the software and the

hardware layers and an introduction to the role of device drivers, is fundamental to understand. Figure 3
shows a simplified diagram of the Layers of a Linux Operating System (OS).

Figure 3- Layers of a Linux OS

The basic control is on the hardware peripheral itself. The lowest level software for this system resides in
the kernel of the OS as a “device driver.” There are certain control/status registers on the ADC card. These
registers can be accessed just like a regular memory access in a C program.

As seen earlier in this document, in our context, the ADC DAQ hardware used is composed of two electronic
boards: the SPEC carrier board and the FMC ADC module. The first board is attached directly to a PCIe slot
connector on the PC, and is the host for the ADC module. The SPEC card acts as a bridge for the electrical
signals of the ADC FMC to be interfaced and converted to PCIe. For the scope of this lab, the “bridging” is
done by some “black box” electronics. Thus from a software perspective, one kernel module is instantiated
to use the SPEC card, another one for the FMC ADC module.

For simple sensors and devices vendors provide information about their operation and use; which can be
seen as a map of internal registers and/or procedures required to perform operations or change their current
states (more about in Exercise 12 "DAQ Online Software”). For the sake of simplicity and reusability of
software code, software engineers created the concept of frameworks. Among others, this concept was
used at CERN for creating a flexible interface for the development of input and output drivers. The target is
for very-high-bandwidth devices, with high-definition time stamps, and a uniform metadata representation.
Such framework is named the ZIO (with Z standing for “The Ultimate I/O” Framework).

User applications and libraries

System Call Interface

Kernel subsystems

Devices

Kernel modules (Device Drivers)

User space

Kernel space

Hardware

In short, the way ZIO provides to talk to our hardware is through two different channels, one for control and
one for data. Figure 4 shows the two data flows.

Figure 4 - ZIO data pipeline

When designing a piece of low-level software to communicate to an acquisition device, it is important

to choose the way data streams should be passed back and forth the hardware device. To illustrate this they
can be qualified in three types: Polling mode, Interrupt based, and DMA (Direct Memory Access)
transfers.

 Polling mode: the CPU checks the state of the device’s registers every time it can, this has the

advantage of providing a fast and low latency communication and data transfer between them, but at the
cost of high CPU load.

 Interrupt based: this type of transfers eases the CPU load time as it only have to care about the
hardware when it tells the CPU to do so; it has the advantage of a lower impact on CPU loads and fast
transfer, but with variable latency.

 DMA transfers: relies on a shared memory area the CPU provides to the DMA controller to work on
the transfer with the hardware device, this frees completely the CPU from controlling the hardware transfer
representing a true concurrent system. Highest of all transfer rates allied to an acceptable latency.

Exercise 8: ADC Basics for TDAQ

66

Operating the setup
1) Construct/confirm the experimental setup according to the sketch you find at the beginning of this

document. Check that both outputs of the AFG are switched OFF.

The signal generated by the Channel-1 (source input) of the AFG unit is supplied to the oscilloscope,
and to the Channel-1 input of the ADC card. Use a T-BNC to split the signal at the AFG output. Also
check if the Channel-2 output (trigger input) of the AFG is connected to the Trigger input of the ADC
card. Again you can monitor the trigger on the scope by spitting with a T-BNC on the AFG output.

2) Using the AFG, set Channel-1 to generate a sine waveform with a frequency of 1 MHz and amplitude of
1 Vpp. Completed this operation, set Channel-2 to generate a pulse waveform with a frequency of 1 KHz
and amplitude of 4 V. Don’t turn them ON yet, and check if they have not an amplitude
above 5 Vpp.

3) Login to the PC and reset the lab8 directories, so all the work/changes done by the previous group are
removed and a fresh copy of the files are installed

4) In order to load the drivers, open the ~/adc directory and execute the script for loading the drivers:

$ cd ~/adc
$./load_drivers.sh

You need the root password in order to execute the command above. Ask your tutor for it.
Spying the content of our script shows the correct order for loading the different kernel modules and set
the user permission to talk with the ADC board. It is also possible to check the current kernel modules
loaded by issuing the command lsmod.

5) Now it is time to test our ADC, turn ON only Channel-1 of the AFG and check if the signal is correctly
displayed by the oscilloscope. Run the acquisition program which will subsequently show an acquisition
plot:

$ cd Trigger_ext
$./fald-acq -a 1000 -b 0 -n 1 -l 1 -g 1 –r 10 -e -X 0100

Where acq-program has the following parameters:

--before|-b <num> number of pre samples
--after|-a <num> n. of post samples (default: 16)
--nshots|-n <num> number of trigger shots
--delay|-d <num> delay sample after trigger
--under-sample|-u|-D <num> pick 1 sample every <num>
--external|-e use external trigger
--threshold|-t <num> internal trigger threshold
--channel|-c <num> channel used as trigger (1..4)
--range|-r <num> channel input range: 100(100mv) 1(1v) 10(10v)
--negative-edge internal trigger is falling edge
--loop|-l <num> number of loop before exiting
--graph|-g <chnum> plot the desired channel
--X11|-X Gnuplot will use X connection

Did the program made the acquisition?

6) Turn ON Channel-2 of the AFG. Does it run now?

7) Now that we know that the ADC is working properly we can go to some real time data analysis. Bearing

this in mind, there is a small program called V_t_continous.C which uses the ROOT framework
functionalities and runs on top of fald-acq. To run V_t_continous.C issue the command:

$ root V_t_continous.C

8) Try now to modify Channel-1 frequency in steps of Hz while checking if the acquired waveform remains

true to it. Check also if the measured amplitude is the same as set on the AFG or, say, twice its value.
Make sure you are changing the frequency NOT the amplitude.

9) One issue you may get while changing the frequency is the ‘non-stopping’ graph, meaning it is

continuously sweeping horizontally. What causes this?

Since we are using Channel-2 of the AFG as an external trigger, its triggering frequency dictates how, or
at which point in time, the acquisition of Channel-1 signal starts. In practice: if the frequency of our sine
wave is not a harmonic of Channel-2 pulse, i.e. not an integer multiple, the ADC doesn’t capture the
signal at the same phase.

Figure 5- Signal frequency non multiple of Trigger frequency

Acquisition window

Trigger event

Trigger
Waveform

Signal
Waveform

Exercise 8: ADC Basics for TDAQ

67

Operating the setup
1) Construct/confirm the experimental setup according to the sketch you find at the beginning of this

document. Check that both outputs of the AFG are switched OFF.

The signal generated by the Channel-1 (source input) of the AFG unit is supplied to the oscilloscope,
and to the Channel-1 input of the ADC card. Use a T-BNC to split the signal at the AFG output. Also
check if the Channel-2 output (trigger input) of the AFG is connected to the Trigger input of the ADC
card. Again you can monitor the trigger on the scope by spitting with a T-BNC on the AFG output.

2) Using the AFG, set Channel-1 to generate a sine waveform with a frequency of 1 MHz and amplitude of
1 Vpp. Completed this operation, set Channel-2 to generate a pulse waveform with a frequency of 1 KHz
and amplitude of 4 V. Don’t turn them ON yet, and check if they have not an amplitude
above 5 Vpp.

3) Login to the PC and reset the lab8 directories, so all the work/changes done by the previous group are
removed and a fresh copy of the files are installed

4) In order to load the drivers, open the ~/adc directory and execute the script for loading the drivers:

$ cd ~/adc
$./load_drivers.sh

You need the root password in order to execute the command above. Ask your tutor for it.
Spying the content of our script shows the correct order for loading the different kernel modules and set
the user permission to talk with the ADC board. It is also possible to check the current kernel modules
loaded by issuing the command lsmod.

5) Now it is time to test our ADC, turn ON only Channel-1 of the AFG and check if the signal is correctly
displayed by the oscilloscope. Run the acquisition program which will subsequently show an acquisition
plot:

$ cd Trigger_ext
$./fald-acq -a 1000 -b 0 -n 1 -l 1 -g 1 –r 10 -e -X 0100

Where acq-program has the following parameters:

--before|-b <num> number of pre samples
--after|-a <num> n. of post samples (default: 16)
--nshots|-n <num> number of trigger shots
--delay|-d <num> delay sample after trigger
--under-sample|-u|-D <num> pick 1 sample every <num>
--external|-e use external trigger
--threshold|-t <num> internal trigger threshold
--channel|-c <num> channel used as trigger (1..4)
--range|-r <num> channel input range: 100(100mv) 1(1v) 10(10v)
--negative-edge internal trigger is falling edge
--loop|-l <num> number of loop before exiting
--graph|-g <chnum> plot the desired channel
--X11|-X Gnuplot will use X connection

Did the program made the acquisition?

6) Turn ON Channel-2 of the AFG. Does it run now?

7) Now that we know that the ADC is working properly we can go to some real time data analysis. Bearing

this in mind, there is a small program called V_t_continous.C which uses the ROOT framework
functionalities and runs on top of fald-acq. To run V_t_continous.C issue the command:

$ root V_t_continous.C

8) Try now to modify Channel-1 frequency in steps of Hz while checking if the acquired waveform remains

true to it. Check also if the measured amplitude is the same as set on the AFG or, say, twice its value.
Make sure you are changing the frequency NOT the amplitude.

9) One issue you may get while changing the frequency is the ‘non-stopping’ graph, meaning it is

continuously sweeping horizontally. What causes this?

Since we are using Channel-2 of the AFG as an external trigger, its triggering frequency dictates how, or
at which point in time, the acquisition of Channel-1 signal starts. In practice: if the frequency of our sine
wave is not a harmonic of Channel-2 pulse, i.e. not an integer multiple, the ADC doesn’t capture the
signal at the same phase.

Figure 5- Signal frequency non multiple of Trigger frequency

Acquisition window

Trigger event

Trigger
Waveform

Signal
Waveform

Exercise 8: ADC Basics for TDAQ

68

Figure 6 - Signal frequency multiple of Trigger frequency

10) Going further, let’s push the frequency of our signal to the limits of the ADC capabilities. Recalling that
our ADC specifications say that the default sampling rate is 100 Million Samples/s try to increase the
signal frequency in steps of MHz. Please note: it is recommended to decrease the number of samples in
our acquisition window; otherwise it would become hard to analyze the signal in a cloud of points.

For this, open the V_t_continous.C file with your favourite editor and change the number of post
samples (-a parameter) to 100 or less, it is located on the line which calls fald-acq.

Run root V_t_continous.C again.

Can you see the relation between the acquisition window and the signal speed?

11) You can see that the closer you get to 100 MHz the worst the acquisition signal looks like. Can you
define the maximum AFG signal frequency where our sine wave keeps its shape in a single acquisition
shot (i.e. you can still see a sine wave with the same frequency as the original signal)?

This value is called the Nyquist frequency. The Nyquist theorem states that: the minimum sampling
rate of an acquisition device must be at least two times the maximum frequency of the original signal,
otherwise information would be lost in the process. See Figure 7 below: the original signal is in blue, the
sampling points are pointed by the black arrows and the acquired data is represented in orange. When
this criteria is not respected an effect called aliasing appears.

Figure 7 - Aliasing effect

Acquisition window

Trigger event

Trigger
Waveform

Signal
Waveform

12) The maximum Nyquist frequency is computed on a signal ideally composed of a single sinusoid. In fact
any real function of a complex signal is mathematically described as the sum of a series of trigonometric
functions in the frequency domain (called signal spectrum) instead of time. Fourier series and
transforms base their analyses on this concept. The spectral representation of a sine wave is rather
simple: it is only a single line centred around the frequency it coverts from the time domain. The spectral
content is more complex for different waveforms signals such as square, saw-tooth and other more
complex signals.

 In order to check how our acquisition systems behaves with complex signals go back to the frequency of
1 MHz but change the type from sine-wave to square signal. Increase the frequency to values below
Nyquist criteria.

13) Ask the tutor to present a real time Fast Fourier Transform (FFT) and ask further questions!

Acknowledges
Andrea Borga (andrea.borga@nikhef.nl, initiator and tutor of this lab in ISOTDAQ2016)
Cairo Caplan (cairo.caplan@cern.ch, initiatior and lab assistance in ISOTDAQ2016)
Diogenes Gimenez (diogenes.gimenez@usp.br, initiator and lab assistance in ISOTDAQ2016)

Exercise 8: ADC Basics for TDAQ

69

Figure 6 - Signal frequency multiple of Trigger frequency

10) Going further, let’s push the frequency of our signal to the limits of the ADC capabilities. Recalling that
our ADC specifications say that the default sampling rate is 100 Million Samples/s try to increase the
signal frequency in steps of MHz. Please note: it is recommended to decrease the number of samples in
our acquisition window; otherwise it would become hard to analyze the signal in a cloud of points.

For this, open the V_t_continous.C file with your favourite editor and change the number of post
samples (-a parameter) to 100 or less, it is located on the line which calls fald-acq.

Run root V_t_continous.C again.

Can you see the relation between the acquisition window and the signal speed?

11) You can see that the closer you get to 100 MHz the worst the acquisition signal looks like. Can you
define the maximum AFG signal frequency where our sine wave keeps its shape in a single acquisition
shot (i.e. you can still see a sine wave with the same frequency as the original signal)?

This value is called the Nyquist frequency. The Nyquist theorem states that: the minimum sampling
rate of an acquisition device must be at least two times the maximum frequency of the original signal,
otherwise information would be lost in the process. See Figure 7 below: the original signal is in blue, the
sampling points are pointed by the black arrows and the acquired data is represented in orange. When
this criteria is not respected an effect called aliasing appears.

Figure 7 - Aliasing effect

Acquisition window

Trigger event

Trigger
Waveform

Signal
Waveform

12) The maximum Nyquist frequency is computed on a signal ideally composed of a single sinusoid. In fact
any real function of a complex signal is mathematically described as the sum of a series of trigonometric
functions in the frequency domain (called signal spectrum) instead of time. Fourier series and
transforms base their analyses on this concept. The spectral representation of a sine wave is rather
simple: it is only a single line centred around the frequency it coverts from the time domain. The spectral
content is more complex for different waveforms signals such as square, saw-tooth and other more
complex signals.

 In order to check how our acquisition systems behaves with complex signals go back to the frequency of
1 MHz but change the type from sine-wave to square signal. Increase the frequency to values below
Nyquist criteria.

13) Ask the tutor to present a real time Fast Fourier Transform (FFT) and ask further questions!

Acknowledges
Andrea Borga (andrea.borga@nikhef.nl, initiator and tutor of this lab in ISOTDAQ2016)
Cairo Caplan (cairo.caplan@cern.ch, initiatior and lab assistance in ISOTDAQ2016)
Diogenes Gimenez (diogenes.gimenez@usp.br, initiator and lab assistance in ISOTDAQ2016)

Exercise 8: ADC Basics for TDAQ

70

ISOTDAQ Lab 9
Networking for Data Acquisition Systems

I. Introduction
Through the use of a simplified network setup this lab aims at getting you familiar with the following steps and
notions involved in networking:

 configuration: MAC and IP addresses, switch management, VLAN
 monitoring: SNMP, RRD, traffic analysis
 testing: peformance benchmarking, TCP/IP
 optimization: QoS, DSCP

The lab setup consists of:
 2 headless desktop computers mimicking readout system (ROS) servers that read data out of the detector,

process them, and transfer them: they will be the data sources.
 1 desktop computer mimicking a collector (COL) server receiving and formatting data from different ROSs:

it will be the data destination.

Exercise 9: Network Programming

 1 enterprise-grade network switch mimicking a data collection network.
 1 control network used to connect to the different computers and allowing us to configure and use the data

collection network without interfering with it.
In DAQ systems, it is a common pattern to isolate the control network used for configuration and monitoring from the
data collection network used to transfer data from the detector. These two types of network support different types of
communication: low latency is usually expected from a control network whereas the data collection network has to
provide high bandwidth and efficiency. Nevertheless, more and more, recent technologies allow the different network
types to use the same physical devices and to be isolated from each other at a logical level only: we then talk about
Software-Defined Network, or SDN.

II. Exercises

1. Switch Configuration
1. The switch has just been powered on and has default factory configuration. Following the green and red network

cables write down which computer is connected to which port: you will need this information later.
2. Login to the COL computer.
3. Connect the switch to the COL computer via the serial cable.
4. Use “screen” to connect to the serial console of the switch. Hit [enter] two times to activate the connection: you are

in the “manager” mode; these terminals usually have 4 modes: operator (read access), manager, global
configuration, context configuration. Display and analyze its default configuration:

[student@col]$ sudo screen /dev/ttyS0
HP-3500yl-48G# show running-config

5. Configure an IP address on the switch via the “configure” shell.
HP-3500yl-48G# config
HP-3500yl-48G(config)# vlan 1
HP-3500yl-48G(config)# ip address 10.0.1.1 255.255.255.0

6. Check the configuration.
7. Now the switch can be managed remotely via telnet or SSH. Try to ping and then telnet the switch from the COL

computer. The switch also runs a web server and you can try to connect to its address with a web browser.
[student@col] $ ping 10.0.1.1
[student@col] $ telnet 10.0.1.1

8. Configure a second VLAN on the switch to match the setup described above. The last command assigns ports 25 to
48 to vlan 2; untagged refers to a specific Ethernet header field which can be used to discriminate different types of
traffic coming through the same port. In our case, packets are not tagged.

HP-3500yl-48G(config)# vlan 2
HP-3500yl-48G(vlan-2)# untagged 25-48

9. Adjust cabling if needed. Using the “ping” command check that COL and ROS1 can communicate together. Do the
same for COL and ROS2.

10. Pinging 10.0.2.11 (ROS2) from ROS1 does not work. Can you explain why?
11. Move the ROS2 cable to port 5. Test the communication between COL and ROS2 using “ping”. Can you explain

why? At the end, move the ROS2 cable back to the original port.

2. Network Monitoring and Traffic Analysis
1. Request some simple information from the switch via SNMP using “snmpget”: switch description and input traffic

for port 1.

71

ISOTDAQ Lab 9
Networking for Data Acquisition Systems

I. Introduction
Through the use of a simplified network setup this lab aims at getting you familiar with the following steps and
notions involved in networking:

 configuration: MAC and IP addresses, switch management, VLAN
 monitoring: SNMP, RRD, traffic analysis
 testing: peformance benchmarking, TCP/IP
 optimization: QoS, DSCP

The lab setup consists of:
 2 headless desktop computers mimicking readout system (ROS) servers that read data out of the detector,

process them, and transfer them: they will be the data sources.
 1 desktop computer mimicking a collector (COL) server receiving and formatting data from different ROSs:

it will be the data destination.

 1 enterprise-grade network switch mimicking a data collection network.
 1 control network used to connect to the different computers and allowing us to configure and use the data

collection network without interfering with it.
In DAQ systems, it is a common pattern to isolate the control network used for configuration and monitoring from the
data collection network used to transfer data from the detector. These two types of network support different types of
communication: low latency is usually expected from a control network whereas the data collection network has to
provide high bandwidth and efficiency. Nevertheless, more and more, recent technologies allow the different network
types to use the same physical devices and to be isolated from each other at a logical level only: we then talk about
Software-Defined Network, or SDN.

II. Exercises

1. Switch Configuration
1. The switch has just been powered on and has default factory configuration. Following the green and red network

cables write down which computer is connected to which port: you will need this information later.
2. Login to the COL computer.
3. Connect the switch to the COL computer via the serial cable.
4. Use “screen” to connect to the serial console of the switch. Hit [enter] two times to activate the connection: you are

in the “manager” mode; these terminals usually have 4 modes: operator (read access), manager, global
configuration, context configuration. Display and analyze its default configuration:

[student@col]$ sudo screen /dev/ttyS0
HP-3500yl-48G# show running-config

5. Configure an IP address on the switch via the “configure” shell.
HP-3500yl-48G# config
HP-3500yl-48G(config)# vlan 1
HP-3500yl-48G(config)# ip address 10.0.1.1 255.255.255.0

6. Check the configuration.
7. Now the switch can be managed remotely via telnet or SSH. Try to ping and then telnet the switch from the COL

computer. The switch also runs a web server and you can try to connect to its address with a web browser.
[student@col] $ ping 10.0.1.1
[student@col] $ telnet 10.0.1.1

8. Configure a second VLAN on the switch to match the setup described above. The last command assigns ports 25 to
48 to vlan 2; untagged refers to a specific Ethernet header field which can be used to discriminate different types of
traffic coming through the same port. In our case, packets are not tagged.

HP-3500yl-48G(config)# vlan 2
HP-3500yl-48G(vlan-2)# untagged 25-48

9. Adjust cabling if needed. Using the “ping” command check that COL and ROS1 can communicate together. Do the
same for COL and ROS2.

10. Pinging 10.0.2.11 (ROS2) from ROS1 does not work. Can you explain why?
11. Move the ROS2 cable to port 5. Test the communication between COL and ROS2 using “ping”. Can you explain

why? At the end, move the ROS2 cable back to the original port.

2. Network Monitoring and Traffic Analysis
1. Request some simple information from the switch via SNMP using “snmpget”: switch description and input traffic

for port 1.

Exercise 9: Network Programming

72

[student@col] $ snmpget -v 2c -c public 10.0.1.1 sysDescr.0
[student@col] $ snmpget -v 2c -c public 10.0.1.1 ifInOctets.1

2. SNMP uses two representations for object identifier (OID): numerical and human-readable. You can use
“snmptranslate” to translate one into the other:

[student@col]$ snmptranslate -On IF-MIB::ifInOctets.1
.1.3.6.1.2.1.2.2.1.10.1
[student@col ~]$ snmptranslate .1.3.6.1.2.1.2.2.1.16.3
IF-MIB::ifOutOctets.3 #output traffic for port 3

3. The directory “swmon” contains basic scripts that uses SNMP and RRD tools to fetch monitoring information.
Have a look at the scripts and adapt them if necessary.
 create_stats_db.sh: create a round-robin database to put the monitoring data into
 monitor.sh: regularly request traffic information for the 4 connected ports, write them to the database, generate

the associated plots
4. In a dedicated terminal run “create_stats_db.sh”, then run “monitor.sh” script. Then open “index.html” in a web

browser. Have a look at the plots to understand them. You might want to generate traffic (using “ping”) on known
path to match generated traffic with observed rates on plots.

[student@col swmon]$./create_stats_db.sh
[student@col swmon]$./monitor.sh

5. Use “wireshark”, a traffic analyzer, to have a detailed look at the network traffic. Identify the types of traffic that
are currently flowing through the network. Open some packets, analyze their structure and try to identify important
fields such as source/destination MAC address, source/destination IP address, Layer 4 protocols, etc.

[student@col]$ export XAUTHORITY=~/.Xauthority # enables display for sudo
[student@col]$ sudo wireshark

3. Performance Testing and Tuning
1. On the COL computer, start an iperf3 server, binding it to one of its IP addresses:

[student@col]$ iperf3 -s -B 10.0.1.12
2. On the ROS1 node, start an iperf3 client which connects to the previous server. This will generate a TCP network flow

between the two hosts running close to link speed (1Gb/s). Analyze the command output: why is the reported
bandwidth lower than the link speed?

[student@ros1]$ iperf3 -c 10.0.1.12
3. On the ROS1 node, start an iperf3 client but this time using UDP. Analyze the command output: what differences can

you observe in comparison to TCP?
[student@ros1]$ iperf3 -c 10.0.1.12 -u -b 1G

4. On the ROS 1 node, start an iperf3 client using TCP traffic but lowering the maximum segment size (MSS). Analyze
the command output: what differences can you observe in comparison to default TCP?

[student@ros1]$ iperf3 -c 10.0.1.12 -M 750
5. On the ROS1 node, start an iperf3 client using TCP traffic but lowering the TCP window size. Analyze the command

output: what differences can you observe in comparison to default TCP?
[student@ros1]$ iperf3 -c 10.0.1.12 -w 16k

4. Traffic prioritization (Quality of Service)
1. Change the network setup so that all three computers are part of the 10.0.1.0/24 network associated to VLAN1. For

this, you first need to connect to the ROS2 node using the management network and modify the IP address of the data
collection interface.

[student@col]$ ssh ROS2
[student@ros2]$ ip addr
Identify the name of the interface
[student@ros2]$ sudo -i
[root@ros2]# vim /etc/sysconfig/network-scripts/ifcfg-INTERFACENAME
Modify the configuration so that the interface belongs to 10.0.1.0/24 network
[root@ros2]# ifdown INTERFACENAME ; ifup INTERFACENAME

Then the port on the switch to which the modified interface is connected needs to be reassigned to vlan1.
[student@col]$ telnet 10.0.1.1
HP-3500yl-48G# config
HP-3500yl-48G(config)# vlan 1
HP-3500yl-48G(vlan-1)# untagged PORTNUMBER
HP-3500yl-48G(vlan-1)# sh ru # check configuration
HP-3500yl-48G(vlan-1)# exit # 4 times

Check that ROS1 can be reached from ROS2.
[student@ros2]$ ping 10.0.1.11

2. Start two iperf3 servers on COL in two different terminals, each with a different TCP port.
[student@col]$ iperf3 -s -B 10.0.1.12 -p 5001
[student@col]$ iperf3 -s -B 10.0.1.12 -p 5002

3. Start clients to generate traffic from ROS1 and ROS2. Observe and try to explain what is happening to reported data
rates.

[student@ros1]$ iperf3 -c 10.0.1.12 -t 30 -p 5001
[student@ros2]$ iperf3 -c 10.0.1.12 -t 10 -p 5002

4. You will now use a QoS control mechanism to better control the sharing of common resources. The packets will be
marked by clients with a specific DSCP value classifying them in different “services”. And the switch will be
configured to process packets according to the value of this field.
Configure the switch to map DSCP value to different priority queues.

HP-3500yl-48G# config
HP-3500yl-48G(config)# qos dscp-map 000000 priority 1
HP-3500yl-48G(config)# qos dscp-map 000001 priority 7
HP-3500yl-48G(config)# qos type-of-service diff-services

5. Start the clients again setting the DSCP field to desired values.
(This version of iperf3 does not know DSCP but knows ToS which is a deprecated mechanism that uses the same IP
header field but interpreted differently; DSCP occupies the 6 most significant bits of the ToS field: DSCP(000001) =
ToS(00000100))

[student@ros1]$ iperf3 -c 10.0.1.12 -t 30 -p 5001 -S 0
[student@ros2]$ iperf3 -c 10.0.1.12 -t 10 -p 5002 -S 4 # DSCP(000001)

6. On the switch side, you can also observe discarded packets on the specific output queues of the destination port (the
port where COL is connected):

Exercise 9: Network Programming

73

[student@col] $ snmpget -v 2c -c public 10.0.1.1 sysDescr.0
[student@col] $ snmpget -v 2c -c public 10.0.1.1 ifInOctets.1

2. SNMP uses two representations for object identifier (OID): numerical and human-readable. You can use
“snmptranslate” to translate one into the other:

[student@col]$ snmptranslate -On IF-MIB::ifInOctets.1
.1.3.6.1.2.1.2.2.1.10.1
[student@col ~]$ snmptranslate .1.3.6.1.2.1.2.2.1.16.3
IF-MIB::ifOutOctets.3 #output traffic for port 3

3. The directory “swmon” contains basic scripts that uses SNMP and RRD tools to fetch monitoring information.
Have a look at the scripts and adapt them if necessary.
 create_stats_db.sh: create a round-robin database to put the monitoring data into
 monitor.sh: regularly request traffic information for the 4 connected ports, write them to the database, generate

the associated plots
4. In a dedicated terminal run “create_stats_db.sh”, then run “monitor.sh” script. Then open “index.html” in a web

browser. Have a look at the plots to understand them. You might want to generate traffic (using “ping”) on known
path to match generated traffic with observed rates on plots.

[student@col swmon]$./create_stats_db.sh
[student@col swmon]$./monitor.sh

5. Use “wireshark”, a traffic analyzer, to have a detailed look at the network traffic. Identify the types of traffic that
are currently flowing through the network. Open some packets, analyze their structure and try to identify important
fields such as source/destination MAC address, source/destination IP address, Layer 4 protocols, etc.

[student@col]$ export XAUTHORITY=~/.Xauthority # enables display for sudo
[student@col]$ sudo wireshark

3. Performance Testing and Tuning
1. On the COL computer, start an iperf3 server, binding it to one of its IP addresses:

[student@col]$ iperf3 -s -B 10.0.1.12
2. On the ROS1 node, start an iperf3 client which connects to the previous server. This will generate a TCP network flow

between the two hosts running close to link speed (1Gb/s). Analyze the command output: why is the reported
bandwidth lower than the link speed?

[student@ros1]$ iperf3 -c 10.0.1.12
3. On the ROS1 node, start an iperf3 client but this time using UDP. Analyze the command output: what differences can

you observe in comparison to TCP?
[student@ros1]$ iperf3 -c 10.0.1.12 -u -b 1G

4. On the ROS 1 node, start an iperf3 client using TCP traffic but lowering the maximum segment size (MSS). Analyze
the command output: what differences can you observe in comparison to default TCP?

[student@ros1]$ iperf3 -c 10.0.1.12 -M 750
5. On the ROS1 node, start an iperf3 client using TCP traffic but lowering the TCP window size. Analyze the command

output: what differences can you observe in comparison to default TCP?
[student@ros1]$ iperf3 -c 10.0.1.12 -w 16k

4. Traffic prioritization (Quality of Service)
1. Change the network setup so that all three computers are part of the 10.0.1.0/24 network associated to VLAN1. For

this, you first need to connect to the ROS2 node using the management network and modify the IP address of the data
collection interface.

[student@col]$ ssh ROS2
[student@ros2]$ ip addr
Identify the name of the interface
[student@ros2]$ sudo -i
[root@ros2]# vim /etc/sysconfig/network-scripts/ifcfg-INTERFACENAME
Modify the configuration so that the interface belongs to 10.0.1.0/24 network
[root@ros2]# ifdown INTERFACENAME ; ifup INTERFACENAME

Then the port on the switch to which the modified interface is connected needs to be reassigned to vlan1.
[student@col]$ telnet 10.0.1.1
HP-3500yl-48G# config
HP-3500yl-48G(config)# vlan 1
HP-3500yl-48G(vlan-1)# untagged PORTNUMBER
HP-3500yl-48G(vlan-1)# sh ru # check configuration
HP-3500yl-48G(vlan-1)# exit # 4 times

Check that ROS1 can be reached from ROS2.
[student@ros2]$ ping 10.0.1.11

2. Start two iperf3 servers on COL in two different terminals, each with a different TCP port.
[student@col]$ iperf3 -s -B 10.0.1.12 -p 5001
[student@col]$ iperf3 -s -B 10.0.1.12 -p 5002

3. Start clients to generate traffic from ROS1 and ROS2. Observe and try to explain what is happening to reported data
rates.

[student@ros1]$ iperf3 -c 10.0.1.12 -t 30 -p 5001
[student@ros2]$ iperf3 -c 10.0.1.12 -t 10 -p 5002

4. You will now use a QoS control mechanism to better control the sharing of common resources. The packets will be
marked by clients with a specific DSCP value classifying them in different “services”. And the switch will be
configured to process packets according to the value of this field.
Configure the switch to map DSCP value to different priority queues.

HP-3500yl-48G# config
HP-3500yl-48G(config)# qos dscp-map 000000 priority 1
HP-3500yl-48G(config)# qos dscp-map 000001 priority 7
HP-3500yl-48G(config)# qos type-of-service diff-services

5. Start the clients again setting the DSCP field to desired values.
(This version of iperf3 does not know DSCP but knows ToS which is a deprecated mechanism that uses the same IP
header field but interpreted differently; DSCP occupies the 6 most significant bits of the ToS field: DSCP(000001) =
ToS(00000100))

[student@ros1]$ iperf3 -c 10.0.1.12 -t 30 -p 5001 -S 0
[student@ros2]$ iperf3 -c 10.0.1.12 -t 10 -p 5002 -S 4 # DSCP(000001)

6. On the switch side, you can also observe discarded packets on the specific output queues of the destination port (the
port where COL is connected):

Exercise 9: Network Programming

74

HP-3500yl-48G# config
HP-3500yl-48G(config)# qos watch queue DESTINATIONPORT out
HP-3500yl-48G(config)# exit
HP-3500yl-48G# show interface queues DESTINATIONPORT

III. Bonus Questions
 What is an IP address?
 What is a MAC address?
 What is the difference between a Layer2 Switch and a Router?
 What is the purpose of the ARP protocol?
 What happens if you have a static entry in the ARP cache and the NIC for that target computer is changed?
 If IP determines that the packet that it is currently processing is destined for a remote subnet, where does IP send

the packet?
 How could you find the physical address of the Ethernet card installed on your computer?
 What is the purpose of the TTL field in the IP frame?
 You are the network administrator of a Class C network. Your network consists of 100 computers. Your ISP assigns

the address 137.138.111.0/24 to your network. Your network requires 10 subnets with at least 10 hosts per subnet.

Which subnet mask should you configure to meet this requirement?
 What is the dotted decimal notation of subnet masks for the following IP addresses?

o 192.168.10.1/23
o 5.5.5.5/16
o 203.40.21.58/27
o 9.2.3.1/9

 What is the prefix notation of the following subnet masks?
o 255.255.0.0
o 255.248.0.0
o 255.255.255.255

 IP Fragmentation. Using Wireshark to start a new capture. Ping another host using packet size=2900. Stop the

capture and view the captured frames. What do you notice?

Exercise 9: Network Programming

75

HP-3500yl-48G# config
HP-3500yl-48G(config)# qos watch queue DESTINATIONPORT out
HP-3500yl-48G(config)# exit
HP-3500yl-48G# show interface queues DESTINATIONPORT

III. Bonus Questions
 What is an IP address?
 What is a MAC address?
 What is the difference between a Layer2 Switch and a Router?
 What is the purpose of the ARP protocol?
 What happens if you have a static entry in the ARP cache and the NIC for that target computer is changed?
 If IP determines that the packet that it is currently processing is destined for a remote subnet, where does IP send

the packet?
 How could you find the physical address of the Ethernet card installed on your computer?
 What is the purpose of the TTL field in the IP frame?
 You are the network administrator of a Class C network. Your network consists of 100 computers. Your ISP assigns

the address 137.138.111.0/24 to your network. Your network requires 10 subnets with at least 10 hosts per subnet.

Which subnet mask should you configure to meet this requirement?
 What is the dotted decimal notation of subnet masks for the following IP addresses?

o 192.168.10.1/23
o 5.5.5.5/16
o 203.40.21.58/27
o 9.2.3.1/9

 What is the prefix notation of the following subnet masks?
o 255.255.0.0
o 255.248.0.0
o 255.255.255.255

 IP Fragmentation. Using Wireshark to start a new capture. Ping another host using packet size=2900. Stop the

capture and view the captured frames. What do you notice?

Exercise 9: Network Programming

76

IV. Useful definitions and glossary
MAC address: (Media Access Control) unique identifier associated with a physical network interface. Also named
hardware address or Ethernet address in the case of an Ethernet device.
IP address: (Internet Protocol) numerical identifier associated with a device connected to an IP network.
Most of the time the MAC address is provided by the device manufacturer and never changes, and the IP address is
the logical identifier associated to this device by the network manager according to the purpose and location of the
device.
Switch: network device that interconnects devices using frame-based switching at the data-link layer (layer 2). For
Ethernet, the frame header contains the destination MAC address which allows the switch to determine the
physical port to send frames to.
Router: network device that interconnects LANs using network-layer (layer 3) mechanisms. IP makes use of IP
addresses and routing tables to implement such mechanisms.
LAN: (Local Area Network) limited-area computer network. It usually consists of devices interconnected via a
network switch. Any device belonging to a specific LAN can communicate with any other within this LAN without
the need for routing mechanism. A LAN is equivalent to a broadcast domain: broadcast messages reach every
device in the LAN.
VLAN: (Virtual Local Area Network) broadcast domain logically created at the data-link layer from a larger
physical broadcast domain. For Ethernet, VLANs are implemented with a specific Tag field in the frame header
(802.1Q).
SNMP: (Simple Network Management Protocol) protocol to monitor and control network devices. SNMP defines
a structured organization of network-related information and the ways to request it from a device. Typically
network switches and routers implement SNMP to enable access to monitoring information (traffic metrics, errors,
etc.).
RRDtool: (Round-Robin Database Tool) time series database implementing a circular buffer strategy to enforce
constant footprint. Widely used to store monitoring information, especially for networks.
QoS: (Quality of Service) the whole set of mechanisms used to monitor and control the performance of networks.
Metrics usually include throughput, latency, packet loss, etc.
DSCP: (Differential Service Code Point, or DiffServ) feature of the IP protocol to classify and manage network
traffic. DSCP uses 6 bits in the 8-bit DS field of the IP header to indicate the class of a packet, and network devices
may use this information to handle different classes of packets with different policies. Examples: low latency,
bandwidth constraint.

Microcontrollers (Lab 10)

Maurício Féo Rivello (m.feo@cern.ch)

Introduction:

Microcontrollers are small computers with all its components (CPU, memories, peripherals)
integrated on the same chip. Apart from their capability of processing data, they are low power,
usually inexpensive devices that easily interfaces with sensors and actuators, making them perfect to
use in embedded systems.

On this lab we are going to learn the basics about microcontrollers, how to use and program
it, as well as common applications and explore the most relevant peripherals through the hands-on
exercises and a challenge.

Arduino:

Arduino is an open-source electronic prototyping platform based on easy-to-use software
and hardware. In short, it is the most popular microcontroller development board, with a lot of
"shields" (extension boards that you pile up on top of the Arduino) to add functionalities and
libraries to use the most common sensors and devices used with microcontrollers.

Exercise 9: Network Programming

77

IV. Useful definitions and glossary
MAC address: (Media Access Control) unique identifier associated with a physical network interface. Also named
hardware address or Ethernet address in the case of an Ethernet device.
IP address: (Internet Protocol) numerical identifier associated with a device connected to an IP network.
Most of the time the MAC address is provided by the device manufacturer and never changes, and the IP address is
the logical identifier associated to this device by the network manager according to the purpose and location of the
device.
Switch: network device that interconnects devices using frame-based switching at the data-link layer (layer 2). For
Ethernet, the frame header contains the destination MAC address which allows the switch to determine the
physical port to send frames to.
Router: network device that interconnects LANs using network-layer (layer 3) mechanisms. IP makes use of IP
addresses and routing tables to implement such mechanisms.
LAN: (Local Area Network) limited-area computer network. It usually consists of devices interconnected via a
network switch. Any device belonging to a specific LAN can communicate with any other within this LAN without
the need for routing mechanism. A LAN is equivalent to a broadcast domain: broadcast messages reach every
device in the LAN.
VLAN: (Virtual Local Area Network) broadcast domain logically created at the data-link layer from a larger
physical broadcast domain. For Ethernet, VLANs are implemented with a specific Tag field in the frame header
(802.1Q).
SNMP: (Simple Network Management Protocol) protocol to monitor and control network devices. SNMP defines
a structured organization of network-related information and the ways to request it from a device. Typically
network switches and routers implement SNMP to enable access to monitoring information (traffic metrics, errors,
etc.).
RRDtool: (Round-Robin Database Tool) time series database implementing a circular buffer strategy to enforce
constant footprint. Widely used to store monitoring information, especially for networks.
QoS: (Quality of Service) the whole set of mechanisms used to monitor and control the performance of networks.
Metrics usually include throughput, latency, packet loss, etc.
DSCP: (Differential Service Code Point, or DiffServ) feature of the IP protocol to classify and manage network
traffic. DSCP uses 6 bits in the 8-bit DS field of the IP header to indicate the class of a packet, and network devices
may use this information to handle different classes of packets with different policies. Examples: low latency,
bandwidth constraint.

Microcontrollers (Lab 10)

Maurício Féo Rivello (m.feo@cern.ch)

Introduction:

Microcontrollers are small computers with all its components (CPU, memories, peripherals)
integrated on the same chip. Apart from their capability of processing data, they are low power,
usually inexpensive devices that easily interfaces with sensors and actuators, making them perfect to
use in embedded systems.

On this lab we are going to learn the basics about microcontrollers, how to use and program
it, as well as common applications and explore the most relevant peripherals through the hands-on
exercises and a challenge.

Arduino:

Arduino is an open-source electronic prototyping platform based on easy-to-use software
and hardware. In short, it is the most popular microcontroller development board, with a lot of
"shields" (extension boards that you pile up on top of the Arduino) to add functionalities and
libraries to use the most common sensors and devices used with microcontrollers.

Exercise 10: Microcontrollers

78

Grove Starter Kit:

Together with the Arduino, we are going to use the Grove Starter Kit, which provides a few
gadgets (sensors, actuators and a LCD display) together with a shield and cables that provides a nice
plug-and-play interface to ease and speed up the process of wiring the gadgets together.

Setting up the Arduino.

In case you want to set up the Arduino on your own laptop, the Arduino official webpage
provides a very simple quick start guide. Basically you just have to download the software, plug the
board on the USB port and install it. For further details, visit: http://arduino.cc/en/Guide/HomePage

Before you start:

The Arduino software and drivers will be already configured on the lab PC. Plug the Arduino
board on the USB port of the PC and start the Arduino IDE (desktop shortcut). Select the Board you
are using (Uno) under the IDE Menu “Tools”. Then select the Port under the same menu. The Port
number depends on which USB the Arduino is connected to and it is listed after you plug it in.

Exercise 10: Microcontrollers

Hands On Exercise

We are going to do a few exercises to learn the basic functions of Arduino and then, using
the hardware provided, we are going to implement a simple project so solve a challenge with what
we have learned so far. As you do the exercises, save your code because you might reuse it in the
project ;-)

Visit the site rivello.me/isotdaq for a summary of the functions that you will mostly use
during the exercises. For detailed information about the main functions from the Arduino libraries,
please refer to: www.arduino.cc/en/Reference

HANDS ON

Exercise 1: Blinking a LED.

Blinking a LED is the microcontroller equivalent of printing “Hello World”. The basic structure of an
Arduino program is very simple: It must contain a setup() and a loop() function. Open the Arduino
software, start a new program and write the following structure:

void setup() {
 ...
}

void loop() {
 ...
}

The setup() function is executed once every time the Arduino is powered on. As the name suggests,
it should be used for setting up your application, like initializing classes and variables, declaring pin
modes, etc.

The loop() function keeps being executed in loop ad eternum. This is where the main logic of your
program should be.

To get started, let’s build a program to blink a LED. There is already a LED attached to pin 13 on
every Arduino. You should first of all declare the mode (output or input) of the pin to be used with
the following function:

pinMode([pin_number] , [OUTPUT/INPUT]);

In our case, the pin_number is 13 and the mode is OUTPUT. So to blink the LED we can write a HIGH
and then a LOW signal to the pin 13, adding a delay between each command.

digitalWrite([pin_number], [HIGH/LOW]);
delay([milisseconds]);

Now try to make yourself a program to blink the LED on pin 13 once every second.

79

Grove Starter Kit:

Together with the Arduino, we are going to use the Grove Starter Kit, which provides a few
gadgets (sensors, actuators and a LCD display) together with a shield and cables that provides a nice
plug-and-play interface to ease and speed up the process of wiring the gadgets together.

Setting up the Arduino.

In case you want to set up the Arduino on your own laptop, the Arduino official webpage
provides a very simple quick start guide. Basically you just have to download the software, plug the
board on the USB port and install it. For further details, visit: http://arduino.cc/en/Guide/HomePage

Before you start:

The Arduino software and drivers will be already configured on the lab PC. Plug the Arduino
board on the USB port of the PC and start the Arduino IDE (desktop shortcut). Select the Board you
are using (Uno) under the IDE Menu “Tools”. Then select the Port under the same menu. The Port
number depends on which USB the Arduino is connected to and it is listed after you plug it in.

Hands On Exercise

We are going to do a few exercises to learn the basic functions of Arduino and then, using
the hardware provided, we are going to implement a simple project so solve a challenge with what
we have learned so far. As you do the exercises, save your code because you might reuse it in the
project ;-)

Visit the site rivello.me/isotdaq for a summary of the functions that you will mostly use
during the exercises. For detailed information about the main functions from the Arduino libraries,
please refer to: www.arduino.cc/en/Reference

HANDS ON

Exercise 1: Blinking a LED.

Blinking a LED is the microcontroller equivalent of printing “Hello World”. The basic structure of an
Arduino program is very simple: It must contain a setup() and a loop() function. Open the Arduino
software, start a new program and write the following structure:

void setup() {
 ...
}

void loop() {
 ...
}

The setup() function is executed once every time the Arduino is powered on. As the name suggests,
it should be used for setting up your application, like initializing classes and variables, declaring pin
modes, etc.

The loop() function keeps being executed in loop ad eternum. This is where the main logic of your
program should be.

To get started, let’s build a program to blink a LED. There is already a LED attached to pin 13 on
every Arduino. You should first of all declare the mode (output or input) of the pin to be used with
the following function:

pinMode([pin_number] , [OUTPUT/INPUT]);

In our case, the pin_number is 13 and the mode is OUTPUT. So to blink the LED we can write a HIGH
and then a LOW signal to the pin 13, adding a delay between each command.

digitalWrite([pin_number], [HIGH/LOW]);
delay([milisseconds]);

Now try to make yourself a program to blink the LED on pin 13 once every second.

Exercise 10: Microcontrollers

80

Exercise 2: Reading the state of a Push-Button.

The same way we can declare a pin as output and write a state (HIGH or LOW) to it, we can also
declare one as INPUT and read its state with the following function:

boolean_variable = digitalRead(pinNumber);

It returns TRUE or FALSE (HIGH or LOW). Let's use it to read the status of the Push-Button from the
Grove kit, which can be connected to any of the digital pins of the Arduino. In the Grove shield,
these are the connectors marked with the letter D.

Use the code from exercise 1 and the LED to identify the pressing of the button.

Exercise 3: Serial communication.

In this exercise, we're going to use the Arduino Serial library to send and receive characters from the
PC using the Serial Monitor tool of the Arduino IDE. First thing to do in your code is to initialize the
Serial with the following command:

Serial.begin(9600); // (9600 is the baudrate).

As it only needs to be executed once, it should be on the setup() function. Now there are 3 more
important functions to learn. The available() returns whether there is a character available to be
read:

boolean_variable = Serial.available();

The read() reads into a variable a single character from the serial buffer, and the println() works like
in C, printing on the serial port a string. It also converts numbers into characters. The Serial library is
very handy and there are more functions. For reference visit: http://arduino.cc/en/Reference/Serial

byte inByte = Serial.read(); // reads into inByte a character from the buffer.
Serial.println("Hello World"); // Writes a string to the serial port.

Now let’s write a code that does the following:

1) Toggles the LED whenever the button is PRESSED DOWN. (Not when released)
2) Prints to the Serial port for how long the LED has been ON whenever it is turned OFF.

You can make use of one of the time functions, like micros(), which returns the amount of
microsseconds since the microcontroller started:

unsigned long var = micros();

Once you succeed, what about controlling the LED from the Serial Monitor as well? Use the
described functions to try to control the LED from bytes sent to the Arduino from the Serial Monitor.

Exercise 4: Reading an analog input.

The Arduino UNO has 6 analog inputs. Reading one of them is as easy as reading a digital pin. It
returns an integer value ranging from 0 to 1023. The scale varies from 0V to a reference voltage,
which is by default 5V (but can be changed). In short: 0 -> 0V; 512 -> 2.5V; 1023 -> 5V.

To read an analog pin, use the following function:

int integer_variable = analogRead(pin_number);

The Grove Starter Kit has four analog sensors: a sound sensor, a light sensor, a temperature sensor
and a rotary switch. Plug any of them into one of the connectors labeled with the letter ‘A’ and try
the following code (don’t remove the code from the previous exercises as it will be used again):

int analog_value;
void setup() {
 Serial.begin(9600);
}
void loop() {
 analog_value = analogRead(plug_number);
 Serial.println(analog_value);
 delay(200);
}

Open the Serial monitor and see the results and how they change when you interact with the sensor
used. Try the Serial Plotter as well.

Exercise 5: Interrupts.

Note what happens when you try checking the time between presses of the button from exercise 3
while running the code from exercise 4. Did you note that the code on the loop cannot identify
properly when the button is pressed when the processor is “stuck” on the delay(200) function?

It happens because you are reading the button by polling it’s state at every loop. For critical
applications where you need a precise timed response, interrupts should be used instead.

I/O interrupts are implemented in a very simple way by Arduino. You can set up an interruption in a
pin using the following function (Arduino UNO only supports interrupts on the pins 2 and 3):

attachInterrupt(digitalPinToInterrupt(pin), function_To_Be_Called,
RISING/FALLING/CHANGE);

Now whenever the value of the pin rises or falls or changes (depending on your choice) the function
passed will be called. The name of the function is arbitrary and you should define it in your code:

Exercise 10: Microcontrollers

81

Exercise 2: Reading the state of a Push-Button.

The same way we can declare a pin as output and write a state (HIGH or LOW) to it, we can also
declare one as INPUT and read its state with the following function:

boolean_variable = digitalRead(pinNumber);

It returns TRUE or FALSE (HIGH or LOW). Let's use it to read the status of the Push-Button from the
Grove kit, which can be connected to any of the digital pins of the Arduino. In the Grove shield,
these are the connectors marked with the letter D.

Use the code from exercise 1 and the LED to identify the pressing of the button.

Exercise 3: Serial communication.

In this exercise, we're going to use the Arduino Serial library to send and receive characters from the
PC using the Serial Monitor tool of the Arduino IDE. First thing to do in your code is to initialize the
Serial with the following command:

Serial.begin(9600); // (9600 is the baudrate).

As it only needs to be executed once, it should be on the setup() function. Now there are 3 more
important functions to learn. The available() returns whether there is a character available to be
read:

boolean_variable = Serial.available();

The read() reads into a variable a single character from the serial buffer, and the println() works like
in C, printing on the serial port a string. It also converts numbers into characters. The Serial library is
very handy and there are more functions. For reference visit: http://arduino.cc/en/Reference/Serial

byte inByte = Serial.read(); // reads into inByte a character from the buffer.
Serial.println("Hello World"); // Writes a string to the serial port.

Now let’s write a code that does the following:

1) Toggles the LED whenever the button is PRESSED DOWN. (Not when released)
2) Prints to the Serial port for how long the LED has been ON whenever it is turned OFF.

You can make use of one of the time functions, like micros(), which returns the amount of
microsseconds since the microcontroller started:

unsigned long var = micros();

Once you succeed, what about controlling the LED from the Serial Monitor as well? Use the
described functions to try to control the LED from bytes sent to the Arduino from the Serial Monitor.

Exercise 4: Reading an analog input.

The Arduino UNO has 6 analog inputs. Reading one of them is as easy as reading a digital pin. It
returns an integer value ranging from 0 to 1023. The scale varies from 0V to a reference voltage,
which is by default 5V (but can be changed). In short: 0 -> 0V; 512 -> 2.5V; 1023 -> 5V.

To read an analog pin, use the following function:

int integer_variable = analogRead(pin_number);

The Grove Starter Kit has four analog sensors: a sound sensor, a light sensor, a temperature sensor
and a rotary switch. Plug any of them into one of the connectors labeled with the letter ‘A’ and try
the following code (don’t remove the code from the previous exercises as it will be used again):

int analog_value;
void setup() {
 Serial.begin(9600);
}
void loop() {
 analog_value = analogRead(plug_number);
 Serial.println(analog_value);
 delay(200);
}

Open the Serial monitor and see the results and how they change when you interact with the sensor
used. Try the Serial Plotter as well.

Exercise 5: Interrupts.

Note what happens when you try checking the time between presses of the button from exercise 3
while running the code from exercise 4. Did you note that the code on the loop cannot identify
properly when the button is pressed when the processor is “stuck” on the delay(200) function?

It happens because you are reading the button by polling it’s state at every loop. For critical
applications where you need a precise timed response, interrupts should be used instead.

I/O interrupts are implemented in a very simple way by Arduino. You can set up an interruption in a
pin using the following function (Arduino UNO only supports interrupts on the pins 2 and 3):

attachInterrupt(digitalPinToInterrupt(pin), function_To_Be_Called,
RISING/FALLING/CHANGE);

Now whenever the value of the pin rises or falls or changes (depending on your choice) the function
passed will be called. The name of the function is arbitrary and you should define it in your code:

Exercise 10: Microcontrollers

82

void function_To_Be_Called(){
// code to be executed on the interrupt
}

Reimplement the printing of the time in between presses of the button but now using interrupts
instead of polling.

Challenge: Measuring the acceleration of gravity.

In this challenge we are going to use all what we learned above to measure the acceleration of
gravity using a drilled bar that falls through an infrared beam. The space in between the first edge of
each hole is 7.2mm on average. The precise measurements can be found on rivello.me/isotdaq
We have an infrared LED and an infrared phototransistor that works like a digital input for the
Arduino (just like the push button). For a smooth drop of the bar, we can use an electromagnet
controlled from the relay board of the Grove Starter Kit.

Given all that we learned and the apparatus available, how could one calculate the acceleration of
gravity? For any help setting up the equipment, ask the tutor. And good luck!

Overview

The aim of this lab is to provide an overview about how to configure and evaluate a storage setup.

Objectives

• partition storage units
• setup raid systems
• performance measurements
• evaluate different raid strategies

Tools
dd:

The linux dd tool allows you to make copies of files at a block level. Its basic syntax is :
dd if=/path/to/input/file of=/path/to/output/file bs=X count=Y
Where X is the block size of the individual transfers, and Y the amount of blocks you want to copy. We
recommend 32M as X value.
The seek option allows you to skip a certain amount of blocks at the start of the output.
The skip option allows you to skip a certain amount of blocks at the start of the input.
The oflag is used to set particular flags that are used on the output stream. In our case the ‘direct’
option is useful. It forces the operating system to not use the write behind cache on the stream.

fdisk and sfdisk

Be very very careful. These tools can very easily wipe out the entire operating system if used on the
wrong disk. Make sure you are only working on /dev/isotdaq/XXX

The fdisk tool is used to manipulate the partition table of a disk. The tool has an interactive shell and
the important commands for the following exercises are:
n: create a new partition
d: erase a partition
w: write the new partition table to disk
p: show the current partition layout
h: help

The sfdisk tool allows you to dump the partition table of a disk into a file using the -d option, and then
to apply the same schema to another disk using the redirect operator (<).
For example: sfdisk -d /dev/isotdaq/disk1 > file //to dump the partition table into file

sfdisk /dev/isotdaq/disk2 < file //to read a partition table from a file

Exercise 10: Microcontrollers

83

void function_To_Be_Called(){
// code to be executed on the interrupt
}

Reimplement the printing of the time in between presses of the button but now using interrupts
instead of polling.

Challenge: Measuring the acceleration of gravity.

In this challenge we are going to use all what we learned above to measure the acceleration of
gravity using a drilled bar that falls through an infrared beam. The space in between the first edge of
each hole is 7.2mm on average. The precise measurements can be found on rivello.me/isotdaq
We have an infrared LED and an infrared phototransistor that works like a digital input for the
Arduino (just like the push button). For a smooth drop of the bar, we can use an electromagnet
controlled from the relay board of the Grove Starter Kit.

Given all that we learned and the apparatus available, how could one calculate the acceleration of
gravity? For any help setting up the equipment, ask the tutor. And good luck!

Overview

The aim of this lab is to provide an overview about how to configure and evaluate a storage setup.

Objectives

• partition storage units
• setup raid systems
• performance measurements
• evaluate different raid strategies

Tools
dd:

The linux dd tool allows you to make copies of files at a block level. Its basic syntax is :
dd if=/path/to/input/file of=/path/to/output/file bs=X count=Y
Where X is the block size of the individual transfers, and Y the amount of blocks you want to copy. We
recommend 32M as X value.
The seek option allows you to skip a certain amount of blocks at the start of the output.
The skip option allows you to skip a certain amount of blocks at the start of the input.
The oflag is used to set particular flags that are used on the output stream. In our case the ‘direct’
option is useful. It forces the operating system to not use the write behind cache on the stream.

fdisk and sfdisk

Be very very careful. These tools can very easily wipe out the entire operating system if used on the
wrong disk. Make sure you are only working on /dev/isotdaq/XXX

The fdisk tool is used to manipulate the partition table of a disk. The tool has an interactive shell and
the important commands for the following exercises are:
n: create a new partition
d: erase a partition
w: write the new partition table to disk
p: show the current partition layout
h: help

The sfdisk tool allows you to dump the partition table of a disk into a file using the -d option, and then
to apply the same schema to another disk using the redirect operator (<).
For example: sfdisk -d /dev/isotdaq/disk1 > file //to dump the partition table into file

sfdisk /dev/isotdaq/disk2 < file //to read a partition table from a file

Exercise 11: Storage Systems

84

mdadm

The mdadm tool is used to manipulate the Linux software raid devices.
Its main running modes are 'Create' and 'Manage'. In order to create a new raid, the 'Create' mode is
obviously to be used. You need to provide it with information about the raid level you want to create,
and on which device it will reside.

Create a raid array:
mdadm --create=md<x> --level=<x> --raid-devices=<N> <device1> <device2> … <deviceN>

Stop a raid array:
mdadm --misc --stop /dev/md/md<x>

fio

Fio is an advanced tool for characterising IO devices. It can be used to simulate different IO loads and
profiles and evaluate disk performances. In our case we will use it to measure iops at a fixed block
size. The following syntax will be enough for all of the exercises:

fio --rw=<opt1> --bs=<opt2> --runtime=<opt3> --filename=<opt4> --direct=1 --ioengine=libaio --
name=isotdaq

opt1: randread or randwrite
opt2: 4096
opt3: 60
opt4: /dev/isotdaq/disk<X> or /dev/md/md<Y>

Exercises
Exercise 1: Determine the raw throughput of a single disk
For this exercise use dd to measure the throughput of one of the hard disks in the machine for read
and write performance.
For write performance use /dev/zero as input file and /dev/isotdaq/disk<N> as output.
For read performance use /dev/isotdaq/disk<N> as input file and /dev/null as output.

Use the seek and skip options of dd to measure the performance at the end of the disk too.
Use the count option to write/read only 1GB of data.
Use oflag=direct during writing.
Hint: If you use an I/O block size of 32M the end of the disk should be around 7000

Questions:

• What is the read/write throughput of the disk in MB/s?
• The oflag=direct option circumvents the operating system cache for the disk. Why is this

important for this measurement?
• Which disk corresponds to which physical disk inside the enclosure?
• Optional: Usually, for disk based storage, the write throughput is the same as the read

throughput. Do you have any idea why it is different in this case?

Exercise 11: Storage Systems

Exercise 2: Determine the IOPS of a single disk
For this exercise use the fio tool to measure the random read and write Input Outputs Per Second
(IOPS) of a single disk.
Good values for the parameters are a run time of 60s and IO size of 4096. For reading use --
rw=randread. For writing use --rw=randwrite.

Questions:

• What are the values for random reading and random writing for these disks?
• Why are these important values?
• Why are the reading and writing values different?
• Using the result from Ex.1: Calculate the IOPS of the throughput measurement. Why are the

values for random IO so much smaller?

Exercise 3: Partitioning the disks
For the purpose of this exercise, we will create 4 partitions on each disk. They will later be used to
host different raid types.

Create 4 partitions on /dev/isotdaq/disk1 using fdisk. The partitions should be of type ‘primary’, and 2
Gb each.

After this you can either use fdisk to create the same partitions on the other 3 disks or use sfdisk to
dump the layout of the first disk and import it to the other three disks.

Questions:

• Make sure that /dev/isotdaq/disk<0-3>part<1-4> exist

Exercise 4: Creating the raid arrays
You will now create 4 different kinds of raid sets to measure their different properties. Use mdadm to
create the following raids:
Raid0 on disk1part1, disk2part1, disk3part1, disk4part1
Raid1 on disk1part2, disk2part2
Raid5 on disk1part3, disk2part3, disk3part3, disk4part3
Raid6 on disk1part4, disk2part4, disk3part4, disk4part4

Hint: To create a raid set of a particular kind use
mdadm --create md<x> --level=<x> --raid-devices=<N> <device1> <device2> … <deviceN>

Raid levels are 0, 1, 5 and 6. For easier recognition you can use the same number <x> for the raid
level and the device name.

You can create and initialize multiple arrays in parallel.

Questions:

• Use ‘cat /proc/mdstat’ to follow the initialisation of the raid arrays.
• Why do raid1, raid5 and raid6 need initialisation and raid0 does not?
• Explain the different sizes of the finished raid sets.

85

mdadm

The mdadm tool is used to manipulate the Linux software raid devices.
Its main running modes are 'Create' and 'Manage'. In order to create a new raid, the 'Create' mode is
obviously to be used. You need to provide it with information about the raid level you want to create,
and on which device it will reside.

Create a raid array:
mdadm --create=md<x> --level=<x> --raid-devices=<N> <device1> <device2> … <deviceN>

Stop a raid array:
mdadm --misc --stop /dev/md/md<x>

fio

Fio is an advanced tool for characterising IO devices. It can be used to simulate different IO loads and
profiles and evaluate disk performances. In our case we will use it to measure iops at a fixed block
size. The following syntax will be enough for all of the exercises:

fio --rw=<opt1> --bs=<opt2> --runtime=<opt3> --filename=<opt4> --direct=1 --ioengine=libaio --
name=isotdaq

opt1: randread or randwrite
opt2: 4096
opt3: 60
opt4: /dev/isotdaq/disk<X> or /dev/md/md<Y>

Exercises
Exercise 1: Determine the raw throughput of a single disk
For this exercise use dd to measure the throughput of one of the hard disks in the machine for read
and write performance.
For write performance use /dev/zero as input file and /dev/isotdaq/disk<N> as output.
For read performance use /dev/isotdaq/disk<N> as input file and /dev/null as output.

Use the seek and skip options of dd to measure the performance at the end of the disk too.
Use the count option to write/read only 1GB of data.
Use oflag=direct during writing.
Hint: If you use an I/O block size of 32M the end of the disk should be around 7000

Questions:

• What is the read/write throughput of the disk in MB/s?
• The oflag=direct option circumvents the operating system cache for the disk. Why is this

important for this measurement?
• Which disk corresponds to which physical disk inside the enclosure?
• Optional: Usually, for disk based storage, the write throughput is the same as the read

throughput. Do you have any idea why it is different in this case?

Exercise 2: Determine the IOPS of a single disk
For this exercise use the fio tool to measure the random read and write Input Outputs Per Second
(IOPS) of a single disk.
Good values for the parameters are a run time of 60s and IO size of 4096. For reading use --
rw=randread. For writing use --rw=randwrite.

Questions:

• What are the values for random reading and random writing for these disks?
• Why are these important values?
• Why are the reading and writing values different?
• Using the result from Ex.1: Calculate the IOPS of the throughput measurement. Why are the

values for random IO so much smaller?

Exercise 3: Partitioning the disks
For the purpose of this exercise, we will create 4 partitions on each disk. They will later be used to
host different raid types.

Create 4 partitions on /dev/isotdaq/disk1 using fdisk. The partitions should be of type ‘primary’, and 2
Gb each.

After this you can either use fdisk to create the same partitions on the other 3 disks or use sfdisk to
dump the layout of the first disk and import it to the other three disks.

Questions:

• Make sure that /dev/isotdaq/disk<0-3>part<1-4> exist

Exercise 4: Creating the raid arrays
You will now create 4 different kinds of raid sets to measure their different properties. Use mdadm to
create the following raids:
Raid0 on disk1part1, disk2part1, disk3part1, disk4part1
Raid1 on disk1part2, disk2part2
Raid5 on disk1part3, disk2part3, disk3part3, disk4part3
Raid6 on disk1part4, disk2part4, disk3part4, disk4part4

Hint: To create a raid set of a particular kind use
mdadm --create md<x> --level=<x> --raid-devices=<N> <device1> <device2> … <deviceN>

Raid levels are 0, 1, 5 and 6. For easier recognition you can use the same number <x> for the raid
level and the device name.

You can create and initialize multiple arrays in parallel.

Questions:

• Use ‘cat /proc/mdstat’ to follow the initialisation of the raid arrays.
• Why do raid1, raid5 and raid6 need initialisation and raid0 does not?
• Explain the different sizes of the finished raid sets.

Exercise 11: Storage Systems

86

Exercise 5: Performance Measurements
In this exercise you are going to explore the different performance values of the different raid types.
Use dd and fio like in exercise 1 and 2 to determine the throughput and IOPS of the four raid sets you
created earlier. For the throughput you can skip the measurement for the end of the device (Why?).
Remember to use /dev/md/md<x> for your measurements and not /dev/isotdaq/...
Questions:

• What values did you expect for the different raid sets?
• Is what you got coherent with what you expected?
• Which raid would you use for a data acquisition system?
• What would you use for a normal file system/database?

Exercise 6: Failures
Remove disk1 and check if you can still access all your raid sets. Repeat the performance
measurements for the raid sets that still work.

• Explain why the performance of all raid sets has deteriorated.
• Would you still choose the same raid type for your data as in exercise 5?
• Why does raid 6 exist?

Exercise 11: Storage Systems

87

Exercise 5: Performance Measurements
In this exercise you are going to explore the different performance values of the different raid types.
Use dd and fio like in exercise 1 and 2 to determine the throughput and IOPS of the four raid sets you
created earlier. For the throughput you can skip the measurement for the end of the device (Why?).
Remember to use /dev/md/md<x> for your measurements and not /dev/isotdaq/...
Questions:

• What values did you expect for the different raid sets?
• Is what you got coherent with what you expected?
• Which raid would you use for a data acquisition system?
• What would you use for a normal file system/database?

Exercise 6: Failures
Remove disk1 and check if you can still access all your raid sets. Repeat the performance
measurements for the raid sets that still work.

• Explain why the performance of all raid sets has deteriorated.
• Would you still choose the same raid type for your data as in exercise 5?
• Why does raid 6 exist?

Exercise 12 | DAQ Online Software

1. Outline

The aim of this exercise is to develop a control system for a DAQ system, which acquires
health monitoring data (CPU, Memory usage, etc.) from a set of hosts. The system is
composed of different independent sensors that simulate our data acquisition applications.
The control system steers the behavior of those applications, individually and, in the final
configuration, through a central controller.

Students will develop the system relying on the control and configuration capabilities
provided by a simplified version of a real DAQ system.

Students will learn about the most common situations in controlling DAQ applications in a
distributed environment and how they can be addressed. They will also learn about the
main capabilities provided by the online software framework in a DAQ system.

Sensors

The Sensors are the data acquisition applications of our simple DAQ system. The main goal
of a Sensor is to read and publish machine health metrics (CPU, Memory usage, etc.).
Sensors can differ in what metrics they read and how they are implemented.
Since we want a uniform way to control potentially different sensors, we define a simple
Finite State Machine (FSM):

INITIAL CONFIGURED RUNNING

configure start

unconfigure stop

Exercise 12: Control of DAQ Systems

88

All the applications in the system must behave according to this FSM!
The FSM defines two main concepts:

1. Transition commands
configure, unconfigure, start, stop

2. States
INITIAL, CONFIGURED, RUNNING

Sensors are publishing the following data:

1. hostname: Indicates the name of the machine the sensor is running on.
Published in every state.

2. runtime: Increasing counter measuring the time (in seconds) since last start.
Published when the application is in the RUNNING state, this value is updated
every second.

3. type: indicates the type of the published information (e.g. “CPUUsage” or
“MemoryUsage”).

Published when the application is in the CONFIGURED or RUNNING states.

4. value: application-provided data (e.g. idle CPU percentage or free memory).
Published when the application is in the RUNNING state.

All applications publish their FSM state (i.e. INITIAL, CONFIGURED, RUNNING). Additionally,
there is an ERROR state if the application raises an Exception, which signals that the
application has a problem that prevents it from accepting FSM commands.

Exercise 12: Control of DAQ Systems

89

2. DAQ Python framework

For this exercise a simplified version of the DAQ system was developed in the Python
programming language. This system consists of a master server and applications publishing
information to it. The applications need to implement a common interface to expose a REST
API to the master server.

A web interface running on the master server is also provided, showing an overview of all
applications, information published and allows sending commands to each application. The
master server also exposes a REST API, allowing each of the application to retrieve data
from and send commands to other applications.

2.1 HTTP REST API

All communication between the applications and master server is done over HTTP. Both, the
master server and the application run a web server and expose GET/POST endpoints that
can be called. For applications, the communication is hidden behind the DAQInterface and is
not exposed to users. They only need to implement this interface.

When an application is started the following HTTP requests happen in the background:

1. The application subscribes itself to the master server calling
http://master.server/subscribe and submits the parameters hostname, port and
name. Now the master server knows how to make requests to this application.

2. Before the website http://master.server/ is visited a request is sent to all subscribed
applications on http://hostname:port/hostname, http://hostname:port/value,
http://hostname:port/state, …
The HTTP response of each of this calls is a string and is displayed on the website.

3. A state transition on the application can be triggered by calling
http://hostname:port/<configure>|<start>|<stop>|<unconfigure>

A controller contains names of all sub-applications and can make calls to the master server
specifying the sub-application and state transition like
http://master.server:port/name/<configure>|<start>|<stop>|<unconfigure>
and the master server will execute a state transition on the application with this name.

All this HTTP requests are hidden behind method calls on Python classes implementing the
DAQInterface.

Exercise 12: Control of DAQ Systems

90

hello_monitor.py application

The hello_monitor.py application is the simplest possible monitoring application. It always
publishes the value “Hello World” of type “Greeting”.

All applications can be run as a regular python application, e.g.:

$ python hello_monitor.py <name>
Application started with ID: 25818
Visit http://localhost:36500 for an overview of all applications.

To uniquely identify each application a <name> needs to be assigned to the application (e.g.
python hello_monitor.py hello_monitor).

The state and data published can be viewed by visit the mentioned URL (Figure 1).

Figure 1: Web view

It is possible to trigger state changes from the web interface.

The HelloMonitor class inside hello_world.py implements the DAQInterface. Having all
applications implement the same interface unifies the way we control them.

The DAQInterface expects you to provide the following methods:

1. __init__(): Is called on startup and allows for parsing of passed arguments.

2. configure(), unconfigure(), start(), stop(): This code is run if a state change is
triggered on the application. If it does not raise an Exception the state change is
executed.

3. value(): Returns the data to be published.

Exercise 12.0: Change the value returned by the hello_monitor.py application

Change the code in hello_monitor.py to return “Hello ISOTDAQ!”.

Note: If there are no syntax errors the application will be automatically restarted after saving
the file inside the editor.

Exercise 12: Control of DAQ Systems

91

Exercise 12.1: Fix the CPU sensor according to the sensor rules

Compare the behavior of the CPU sensor with the Memory sensor, and make sure that it
complies with the finite state machine rules defined in the Outline.

Start both sensors in different terminals and send commands to them to spot the different
behavior in the web interface.

$ python cpu_monitor.py <name>
$ python memory_monitor.py <name>

Find the bugs and happy fixing!

3. Controller

The second part of this exercise focuses on the role of the Controller application.
The distributed monitoring system has to manage and gather information from a set of
sensors running on different machines. All these sensors have to be properly configured and
running at the same time to provide meaningful data, and this introduces the need for an
entity to manage the control flow. This is the role of the Controller, an application that
receives FSM commands and forwards them to a set of children applications. The Controller
application must also check the proper execution of the FSM transitions, deal with common
problems, etc.

The Controller implements the same interface as every other application and is able to
receive commands.

Controller

CPU Sensor
Memory
Sensor

…

Command propagation

State propagation

Exercise 12: Control of DAQ Systems

92

Exercise 12.2: Start a Controller application

Start the CPU monitor:
$ python cpu_monitor.py cpu_monitor

Start the memory monitor:
$ python memory_monitor.py memory_monitor

Start the controller by passing the names of the applications you want to attach to:
$ python controller.py <name> cpu_monitor memory_monitor

Now use the web interface to send commands to the controller and observe the
propagation of commands and state changes.

Exercise 12.3: Improve controller to handle a faulty application

The faulty sensor is an application simulating a failure in the processing of a command. This
can happen for many different reasons in the real world. Students have to improve the
Controller code in order to handle this type of failure.

Start the faulty application:
$ python faulty_memory_monitor.py faulty_memory_monitor

Attach it to a controller:
$ python controller.py <name> faulty_memory_monitor

When attempting a configure state change the faulty_memory_monitor may sometimes
return “ERROR”.

Improve the controller to manage the faulty application. Think about multiple ways to
handle errors.

Exercise 12.4: Enhance the Controller’s flexibility

The controller implements a strict FSM logic. If one controlled application changes state, the
controller goes into the error state and will not clear the error even if all children
applications go back into the same, consistent state.

Change the controller logic to clear the error state if all child applications are in a coherent
state, corresponding to the state of the controller. To do this, the best way is to add a FSM
(states ERROR, OK) in addition to the standard FSM (INITIAL, CONFIGURED, RUNNING).

Exercise 12: Control of DAQ Systems

93

Exercise 12.5: Add a root Controller and send commands to all sensors

A controller can be attached to another one, they implement the same interface as
applications.

Run a root controller controlling all other controllers. Both groups work together on this
exercise.

Exercise 12: Control of DAQ Systems

The International School of Trigger and Data Acquisition (ISOTDAQ)

System on Chip (SoC) Field-Programmable Gate Array (FPGA)

Laboratory
(Version: 1.0)

Tutor: Patryk Oleniuk (EPFL) (patryk.oleniuk@epfl.ch)

1

Contents

1 Introduction 3
1.1 SoC FPGA . 3
1.2 SoC FPGA workflow . 4

2 Lab Setup 5
2.1 Specifications . 5
2.2 Hardware . 5

2.2.1 ALS-GEVB . 5
2.2.2 MYIR Z-turn Board . 6
2.2.3 Laptop . 6
2.2.4 Miscellaneous . 7

2.3 GateWare . 8
2.3.1 SoC . 8
2.3.2 FPGA fabric . 8
2.3.3 SoC/FPGA fabric interface . 8

2.4 Software . 9
2.4.1 Stand-alone . 9
2.4.2 Embedded Operating System . 9

3 Lab exercises 10
3.1 Hardware assembly . 10
3.2 GateWare development . 10

3.2.1 Project setup . 10
3.2.2 Block design for SOC . 11
3.2.3 Block design for FPGA Fabric . 12
3.2.4 Synthesis, implementation & static timing analysis . 15
3.2.5 Export the hardware . 16

3.3 Software development . 16
3.3.1 Stand-alone . 16
3.3.2 Embedded Operating System . 17

Appendices 18

A Pulse Width Modulation (PWM) slave peripheral for LED control 18

B Acknowledges 19

2

1 INTRODUCTION

The aim of the SoC FPGA laboratory at the International School Of Trigger Data AcQuisition (ISOTDAQ) is to
provide to the students a brief overview of the different stages in the SoC FPGA design workflow and the knowledge to
determine when a SoC FPGA is the most appropriate hardworking core for their project. After the completion of the
lab, the students should be able to understand the interaction between the two main building blocks of a SoC FPGA
(FPGA fabric and Hard Processor (HCPU)) and assess the challenges of implementing such a system.

1.1 SoC FPGA

Processors (CPU) and Field Programmable Gate Arrays (FPGAs) are the hardworking cores of most Trigger DAQ
systems. Integrating the high-level management functionality of processors and the stringent, real-time operations,
extreme data processing, or interface functions of an FPGA into a single device forms a more powerful embedded
computing platform. System on Chip (SoC) FPGA devices integrate both processor and FPGA architectures into a
single device. Consequently, they provide higher integration, lower power, smaller board size and higher bandwidth
communication between the processor and FPGA. They also include a rich set of peripherals, on-chip memory, an
FPGA-style logic array and high speed transceivers. As a result of the previously mentioned qualities, coupled with a
wide range in terms of cost and performance, the SoC FPGA devices are becoming more and more popular among
digital electronics and software designers.

Figure 1: Model of SoC FPGA

3

1.2 SoC FPGA workflow

A typical SoC FPGA workflow is illustrated in Figure 2.

Figure 2: SoC FPGA workflow

4

2 LAB SETUP

2.1 Specifications

With the help of your team, you are going to implement an emulator of a typical TDAQ system in High-Energy
Physics (HEP) experiments. For simplicity reasons, this TDAQ system may be divided in two groups. On one side,
the front-end (FE) electronics, placed “close to the experiment”. On the other side, the back-end (BE) electronics,
placed “close to the control room”. In this case, the communication between the FE and the BE is performed through a
bidirectional serial link over copper cable. In a typical HEP experiment, the analogue signal from the sensor is filtered
and shaped by the analogue FE electronics. This conditioned signal is digitised by an Analogue to Digital Converter
(ADC). Once in the digital domain, the raw data from the ADC is evaluated by the digital FE electronics (please note
that this evaluation may be done in the analogue domain instead). When an event of interest occurs (e.g. particle
crosses the sensor), the value of the raw data surpasses a preset threshold, triggering its transmission to the BE through
the serial link. In the BE, the serial data is deserialised, processed, stored in memory and sent to the farm of computers
though Ethernet by a CPU. Once in the farm of computers, this data may be post-processed, analysed and plotted by
the users.
In this lab, a devkit featuring an ambient light sensor (ALS-GEV) plays the role of the HEP experiment sensor and its
related analogue and digital FE electronics. The communication between the FE and the BE is performed through a
bidirectional Inter-Integrated Circuit (I2C) link over copper cable. A SoC FPGA devkit (MYIR Z-turn) is used as BE
electronics. This SoC FPGA devkit communicates through Ethernet with a laptop running python scripts over Linux,
which emulates the farm of computers and the user's computer. The block diagram of the emulated HEP experiment is
depicted in Figure 3.

Figure 3: HEP experiment emulation block diagram

2.2 Hardware

2.2.1 ALS-GEVB

The Front-End electronics of our emulated HEP experiment is based on the Ambient Light Sensor (ALS) Shield
Evaluation Board (ALS-GEVB), ilustrated in Figure 4). This board is the devkit of the NOA1305, an ambient light
sensor (ALS) designed for handheld applications. The NOA1305 integrates a 16-bit ADC, a 2-wire I2C digital interface,
internal clock oscillator and a power down mode. The built in dynamic dark current compensation and precision
calibration capability coupled with InfraRed (IR) and 50-60 Hz flicker rejection enables highly accurate measurements
from very low light levels to full sunlight. The device can support simple count equals lux readings in interrupt-driven
or polling modes. The NOA1305 employs proprietary CMOS image sensing technology from ON Semiconductor to
provide large signal to noise ratio (SNR) and wide dynamic range (DR) over the entire operating temperature range.
The optical filter used with this chip provides a light response similar to that of the human eye.

Figure 4: Front-End board (ALS-GEVB)

5

2.2.2 MYIR Z-turn Board

The Back-End electronics of our emulated HEP experiment is based on the MYIR Z-turn Board, which is a low-cost
and high-performance System On Chip FPGA devkit. This board is based on the Xilinx Zynq-7000 family, featuring
integrated dual-core ARM Cortex-A9 processor with Xilinx 7-series Field Programmable Gate Array (FPGA) logic.

The MYIR Z-turn Board takes full features of the Zynq-7010 (or Zynq-7010) SoC FPGA, it has 1GB DDR3 SDRAM and
16MB QSPI Flash on board and a set of rich peripherals including USB-to-UART, Mini USB OTG, 10/100/1000Mbps
Ethernet, CAN, HDMI, TF, JTAG, Buzzer, G-sensor and Temperature sensor. On the rear of the board, there are two
1.27mm pitch 80-pin SMT female connectors to allow the availability of 96 / 106 user I/O and configurable as up to 39
LVDS pairs I/O.

The Z-turn Board is capable of running Linux operating system. MYIR has provided Linux 3.15.0 SDK, the kernel and
many drivers are in source code. An image of the MYIR Z-turn Board, highlighting its main components is illustrated in
Figure 5).

Figure 5: Z-Turn board capabilities

2.2.3 Laptop

The farm of computers and user’s laptop of our emulated HEP experiment is based on a laptop running Linux
(Ubuntu in this case). Here the different Electronic Design Automation (EDA) tools for implementing the SoC FPGA
project and software scripts for data analysis and plotting are executed. An example of laptop running Linux is
illustrated in Figure 6.

Figure 6: Laptop running Linux

6

2.2.4 Miscellaneous

The rest of the hardware components required for this lab are the following:

• Custom cable (ALS-GEVB power & ALS-GEVB/MYIR Z-turn I2C communication) (see Figure 7)

Figure 7: Custom cable

• Mini-USB to USB cable (MYIR Z-turn power & MYIR Z-turn/Laptop UART communication) (see Figure 8)

Figure 8: Mini-USB to USB cable

• RJ45 CAT5e cable (MYIR Z-turn/Laptop Ethernet communication) (see Figure 9)

Figure 9: RJ45 CAT5e cable (Ethernet cable)

• Xilinx Platform Cable USB II (MYIR Z-turn Zynq JTAG programming) (see Figure 10)

Figure 10: Xilinx Platform Cable USB II

7

2.3 GateWare

A typical SoC FPGA GateWare (GW) is composed by two main parts. On one hand, the SoC, with the HCPU and
its peripherals (e.g. I2C, timers). On the other hand, FPGA fabric and its hard blocks (e.g. BRAMs, Multi-Gigabit
Transceivers (MGT)).
For this lab, you have to implement the GW for MYIR Z-turn. As previously mentioned, the MYIR Z-turn features a
Xilinx Zynq SoC FPGA (please note that there are other vendors in the market such as Altera, Microsemi, etc.). For that
reason, the Xilinx EDA tool for FPGA and SoC FPGA (Vivado) is used throughout this lab.

2.3.1 SoC

The typical approach for implementing the SoC part is through schematics and wizards. This facilitates the configura-
tion of such a complex, but well defined, architecture. An example of SoC FPGA schematic and wizard are illustrated in
Figure 11.

Figure 11: SoC FPGA wizard (left) & schematic (right) example

The SoC part of the GW for our emulated HEP experiment requires a HCPU with an I2C master for communicating
with the ALS-GEVB and a UART for communicating with the Laptops (an Ethernet interface for communicating with
the laptop will be added at the end of the lab).

2.3.2 FPGA fabric

The modules on the FPGA fabric are usually implemented through Hardware Description Language (HDL), such as
SystemVerilog or VHDL. This allows to exploit the versatility of the FPGA fabric. In some specific cases, it may bee
interesting to implement these modules using other techniques (e.g. schematics, high-level synthesis), but HDL is the
most common by far. An example of HDL code (SystemVerilog in this case) is illustrated in Figure 12.

Figure 12: HDL code example

The FPGA fabric side of the GW for our emulated HEP experiment will feature a Pulse Width Modulation (PWM)
block for controlling an on-board RGB LED. For the details of the PWM module, please refer to Appendix A.

2.3.3 SoC/FPGA fabric interface

The most common approach for interfacing the modules of the FPGA fabric with the SoC part is to generate a schematic
wrapper for the HDL module and connect it to the HCPU as any other SoC peripheral (this is the approach used in this
lab). Please note that the other way around would be possible too, using a HDL wrapper for the SoC part and add it to
the rest of the HDL code.

8

2.4 Software

The HCPU of the SoC FPGA requires software to execute for performing the tasks assigned to it. There are two main
approaches when implementing software for a SoC. This software can be either stand-alone or executed over an
Embedded Operating System (EOS), such as embedded Linux. It is important to mention that either approach you
chose for your project, it is necessary to export the SoC FPGA GW to the Software Development Kit (SDK) in order to
generate the required software drivers. As previously mentioned, the SoC FPGA of our emulated HEP experiment is
base on Xilinx Zynq. For that reason, a dedicated SDK from this vendor (Xilinx SDK), based on Eclipse, is used for
throughout the lab.

2.4.1 Stand-alone

In the stand-alone approach, user software scripts are directly executed on the HCPU, just having the software drivers
between the hardware and the software scripts. This approach is very useful when dealing with single-threaded and
real time systems because simplifies the implementation and facilitates time determinism. The different tiers of the
stand-alone software approach are illustrated in Figure 13

Figure 13: Different tiers of the stand-alone software approach

Before start writing the operational software, it is very important to verify the integrity of the the different hardware
components. The stand-alone software approach comes in very handy for that. As first step in the software development
you will write a code in python for reading the data from the FE board. When an event of interest is detected (the
value o the raw data crosses the predefined threshold), the software will change the colour of an on-board RGB LED.

2.4.2 Embedded Operating System

The use of an embedded operating system (EOS) is required (or highly recommended) when implementing systems
running several software processes in parallel. In these cases, the integrated arbitration capabilities of the EOS will
handle the execution of these processes without requiring interaction from the developer, although at the cost of a
more complex software implementation. Moreover, the Real-Time Operating Systems (RTOS), a specific type of EOS,
are also capable of executing the processes with a deterministic latency. The different tiers of the EOS approach are
illustrated in Figure 14.

Figure 14: Different tiers of the EOS approach

Once the hardware components of our emulated HEP experiment have been tested, it is time to implement the
operational software. In this case, we need a way to read the data from the Front-End while board transferring data
through Ethernet to the computers farm (just one laptop in this case ;b). For that reason you need to add an operating
system and dedicated software scripts to accomplish this tasks. Besides it is also necessary the software scripts for
analysing and plotting the data on the user’s laptop. Most likely you are thinking how are you going to implement all
that in such a limited amount of time... do not worry. You will get some help from the tutor.

9

3 LAB EXERCISES

3.1 Hardware assembly

The hardware connection of the SoC FPGA lab is illustrated in Figure 15.

Figure 15: SoC FPGA lab hardware

• Ensure that your board is powered on by connecting the Mini-USB to USB cable from computer to the USB_UART
mini-USB socket. This connectivity will also allow us transmit and receive data through serial communication
(See Figure 16).

Figure 16: USB_UART Mini-USB cable

• Connect the programmer on the JTAG port. Make sure the connector matches the pinout from Figure 17.

3.2 GateWare development

The GateWare for this lab is developed using Vivado, the vendor specific EDA software from Xilinx.

3.2.1 Project setup

1. Open an Ubuntu terminal(CTRL-T) and type the following to launch Vivado Design Suite.

10

Figure 17: JTAG pinout

vivado &

2. Create a new project and call it isotdaq_soc_fpga_lab.

Click Next and tick RTL Project. Next, you will be asked to add sources to your design. For the moment, we will
keep the project empty. However, we need to specify VERILOG for both Target Language and Simulator Language.
Press Next, and you will be asked about Existing IP and Constrains files. Keep them both empty.

3. Choose the hardware platform where we will run the applications.

The development board is entitled MYS-7Z010-C-S Z-turn (see Figure 18). Press Next and then Finish.

Figure 18: Hardware Selection

The starting page of the project should be like in Figure 19.

3.2.2 Block design for SOC

1. Create the Block Design

On the left of the window, in the Flow Navigator, choose Create Block Design and call it detector.

2. Define SoC with the wizard

Press Add IP and choose Zynq7 Processing System. Click Run Block Automation to auto-configure it.
Double click on it to open the wizard.

3. Discuss with your tutor the structure of the System on Chip. We will leave most of the settings as default, apart
from several.

• Click on PS-PL Configuration -> HP Slave AXI Interface and De-select S AXI HPO INTERFACE (see Figure 20
(left))

11

Figure 19: Initial Project Structure

• Click on Peripherals I/O Pins and leave ticked only the peripherals which we are using (see Figure 20
(centre)):

– UART1 - for communication with the laptop

– I2C1 - for interface with the Light Sensor

• Clock Configuration. Select only FCLK_CLK0 and change its value to 50 MHz. (see Figure 20 (right))

Figure 20: Zynq Wizard (left) PS-PL Configuration (centre) Peripherals Timing (right)

3.2.3 Block design for FPGA Fabric

1. Add the PWM IP module to the project

Please see the details of the PWM module in Appendix A

The PWM IP was already implemented for you, but you need to add it to the library. Click on the IP settings

icon . Choose Repository Manager from the upper tabs. Click on + symbol and add the content found at the
following path relative to your main folder:

/ip/pwm_verilog_1.0

Now the PWM folder is added to your project so you can choose it from the IP Library. Press Add IP and type
"pwm".

2. Let’s dig into how the PWM Peripheral was designed

Right click on the pwm_verilog_v1 IP and select Edit in IP Packager. Another project (see Figure 21)
that contains the files written by the tutors for this IP will open. In the Source part, you will see an hier-
archical design in Verilog. The top level is called pwm_verilog_v1_0.v and contains an instantiation of the

12

pwm_verilog_v1_0_S00_AXI.vhd where the logic is implemented. If you open pwm_verilog_v1_0_S00_AXI.v, you
will see the implementation of PWM code outlined by the following comments:

-- User to add parameters/ports/logic here
...
-- User parameters/ports/logic ends

Discuss the code with the tutor.

Figure 21: PWM IP Project Structure

3. Connect the PWM controller HDL module to the SoC

We need to create PWM outputs, in order to connect them to our SoC. Click on each PWM output and press
CTRL-K or Create Port from the Menu (see Figure 22). Do so for all the 3 ports.

Figure 22: Port Creation for each PWM output

Right now, both systems should look like in Figure 23.

Last step is to choose Run Connection Automation, let the settings as default, press OK and let the Designer
Assistance to do this work on your behalf. The window should now look similar to Figure 24. However, the

13

Figure 23: Both IPs

Design Assistant is placing the blocks in a non-very-organised way. For a better view, we advise you to click on

the Regenerate Design button in the right Menu. Looks better, right?

Discuss the block diagram with your tutor.

Figure 24: Block Diagram of our System

14

4. Create Wrapper

From the block design, we need to create the Verilog code. Therefore, in the Project Sources - Design Sources,
you will right click on the detector.bd and select Create HDL Wrapper. Let the default option and press OK. Now
the VHDL Wrapper should have been created. Verify that the signals PWM_RED, PWM_BLUE and PWM_GREEN
appear instantiated (see Figure 25).

Figure 25: Wrapper with the PWM outputs instantiated

3.2.4 Synthesis, implementation & static timing analysis

Discuss with your tutor the differences between Synthesis, Implementation and Bitstream
generation for an FPGA.

1. Create Constraint File

The Constraint File is used in the implementation phase. After the synthesis will be run, and the available top-level
nets are "known", they will be matched to the "real" pins.

Right click on the Constraints directory and click Add Source (Add or Create Constraints). The constraints file
are present in /constraints/ directory. Open it and check it together with the tutor

2. Generate the bitstream

The last step in FPGA design is the generation of the bitstream. To generate the bitstream, look into the Flow
Manager on the left of the screen and press Generate Bitstream (Figure 27). You will need to wait a bit longer
until the bitstream is created. Check for errors in the process and solve them.

3. Static timing analysis

Please do not forget to check the Static Timing Analysis report and verify that all constraints have been met (see
Figure 26)

Figure 26: Static Timing Analysis report

15

3.2.5 Export the hardware

Now, that the bitstream was successfully created, we need to export the hardware such as we can use it together with
the ARM dual-core microcontroller.

To export the hardware, press File > Edit > Export > Export Hardware. Tick Include bitstream like in Figure 27
(left).

Figure 27: Export Hardware Window (left) Generate Bitstream in Flow Manager (rigth)

3.3 Software development

The Software for this lab is developed using Xilinx SDK, the vendor specific EDA software from Xilinx.

3.3.1 Stand-alone

1. Create the BSP

In Vivado, press File > Launch SDK. Now, the hardware shall be automatically imported in Xilinx SDK and you
can create a software application.

From now on, we will create the link between the FPGA and the dual-core ARM microcontroller. In our case, the
ARM microcontroller is used to read the detector sensor and send signals to the FPGA fabric that further controls
an RGB LED.

2. Create a New Application Project

Select File -> New -> Application Project. Select Empty Application and call it detector_controller.

3. Add the Cpp file

Some files were already written to make your life easier, such as the driver to read the light detector through I2C.

In the Project Explorer, go to folder detector_controller/src and add the source files available in sw folder.

4. Modify the Cpp file

Open the main.c. Read the instructions and solve the simple state machine.

/*
* i2c_getDataDetector(IIC_DEVICE_ID) returns the value
* read by the sensor as an integer
*
* Xil_Out32(COLOR, brightness) sets the colour of the LED
* from 0 to MAX_BRIGHTNESS
*
* xil_printf("%d", value) prints an integer using UART
*/

/* Write your code here
* Implement a state machine that turns on the RED LED

16

* when the value exceeded certain threshold
*
* Otherwise, make the BLUE LED's brightness follow the sensor
* readout (e.g. brightness = x*sensor_value
*
* Print the sensor_value
*/

5. Execute the code on the SoC FPGA

Ask your tutor for help in running the application and programming both the FPGA and the micro-controller.

6. Verify the results

3.3.2 Embedded Operating System

The implementation of an EOS is a complex task. For that reason, SoC FPGA vendors provide pre-implemented EOS
(typically Embedded Linux) which just need to be loaded on the SoC FPGA. In this lab, you are going to use the
Embedded Ubuntu Linux provided by MYIR for their devkit.

1. Insert the SD card with the file system on the slot of the Z-turn

2. Find Jumper 1 and Jumper 2 (JP1 and JP2) and make sure they are in the following order for loading the
embedded Linux from the SD card:

JP1 OFF
JP2 ON

3. Execute the program

To run the web server, you need to type in the emulator the following:

bokeh serve --host 192.168.2.2:5006 read_event.py

Then, in your host computer, open a web browser and type the IP, as seen in Figure 28.

Figure 28: Host address

4. Check the web server and verify the results

Then, the plot will be displayed interactively (see Figure 29). Have fun!!
Now you can play with the setup and discuss about it with the tutor.

17

Figure 29: Interactive plot

Appendices

A PULSE WIDTH MODULATION (PWM) SLAVE PERIPHERAL FOR LED CONTROL

The FPGA runs at a clock frequency (for this application, we will choose 50 MHz). We can create a PWM waveform
from this clock frequency, by counting a number of clock cycles. There are two important parameters that characterise
the PWM waveform: the duty cycle and the PWM period. The PWM period is set by "waiting/counting" a number of
clock cycles, while the duty cycle tells us, in one period, how many clock cycles the PWM signal is low. In Figure 30,
you can see a basic PWM waveform.

Figure 30: PWM waveform (Source: Application Note 333, Altera)

Now let’s see how we are going to use these two simple parameters to make an RGB LED change its colour.
RGB LED
In the case of RGB LED, we need 3 PWMs signals (one per each colour), such that the brightness of each of the three

LEDs can be controlled independently.
How do we choose the PWM period? The driving frequency of the PWM should be fast enough to avoid the flicker

effect. A normal human being sees this effect until up to 100 to 150 Hz, so a higher frequency should be better to avoid
this effect. For this exercise, we will use a frequency of 1.5 kHz. Let’s make some calculations.

The main clock frequency of the FPGA is 50 MHz. We want to use a 1.5 kHz frequency. How much do we need to
count?

counter =
50000000

15000
= 30000 (1)

How do we choose the PWM duty cycle? The brightness of the LEDs is controlled by the duty cycle. This is up to
you to do experiments. You can choose basically any duty cycle in the range of 0% to 100%.

18

B ACKNOWLEDGES

• Markus Joos (CERN) & other organisers of ISOTDAQ
• Ton Damen (NIKHEF)
• Peter Jansweijer (NIKHEF)
• The other members of the ISOTDAQ SoC FPGA Lab Team:

– Elena-Sorina Lupu (EPFL/Caltech)
– Andrea Borga (NIKHEF)
– Manoel Barros Marin (CERN)

19

113Notes

114 Notes

	lab13_2018_final.pdf
	Introduction
	SoC FPGA
	SoC FPGA workflow

	Lab Setup
	Specifications
	Hardware
	ALS-GEVB
	MYIR Z-turn Board
	Laptop
	Miscellaneous

	GateWare
	SoC
	FPGA fabric
	SoC/FPGA fabric interface

	Software
	Stand-alone
	Embedded Operating System

	Lab exercises
	Hardware assembly
	GateWare development
	Project setup
	Block design for SOC
	Block design for FPGA Fabric
	Synthesis, implementation & static timing analysis
	Export the hardware

	Software development
	Stand-alone
	Embedded Operating System

	Appendices
	Pulse Width Modulation (PWM) slave peripheral for LED control
	Acknowledges

