ATLAS Live Muon Spectrometer Channel

ATLAS Live Muon Spectrometer Channel

James Stankowicz¹

University of Florida¹ Under the guidance of Dr. Steve Goldfarb - University of Michigan

June 2009 - August 2009

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work	ATLAS TV Summary
Outline					

- 1 ATLAS Live TOC
- 2 Collaborative Tools
 - Why They Are Important
 - Some Examples
- 3 ATLAS Live
 - What It Is
 - Targeting An Audience
 - Muon Spectrometer Channel
- 4 Progress
 - Development
 - Channel Setup
 - Webcasting
- 5 Future Work
 - Future Content
 - Flash Encoding
 - Other Issues
- 6 ATLAS TV Summary

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress	Future Work 000	ATLAS TV Summary
Collaborat	tive Tools				

Overview

- Why Collaborative Tools are Necessary
 - The ATLAS Detector is big
 - 11 m radius containing over 12000 m² of suface area, and over 1,000,000 readout channels

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work 000	ATLAS TV Summary
Collaborat	ive Tools				

Overview

- Why Collaborative Tools are Necessary
 - The ATLAS Detector is big
 - 11 m radius containing over 12000 m² of suface area, and over 1,000,000 readout channels
 - The ATLAS Collaboration is bigger
 - 2500 Physicists from 169 institutes and 37 countries

ATLAS Live TOC	Collaborative Tools ●○	ATLAS Live	Progress 000	Future Work 000	ATLAS TV Summary
Collaborat	tive Tools				

Overview

- Why Collaborative Tools are Necessary
 - The ATLAS Detector is big
 - 11 m radius containing over 12000 m² of suface area, and over 1,000,000 readout channels
 - The ATLAS Collaboration is bigger
 - 2500 Physicists from 169 institutes and 37 countries
- What Collaborative Tools Do:
 - Connect people across vast distances
 - Keep collaborators up-to-date and involved

ATLAS Live TOC		Progress 000	Future Work 000	ATLAS TV Summary

Collaborative Tools

Some Examples

Some Examples:

- Video Conferencing
- Webcasting and Archiving
- Remote Monitoring

ATLAS Live TOC	Collaborative Tools 00	ATLAS Live	Progress 000	Future Work	ATLAS TV Summary
ATLAS Li Overview	ve				

• What Is ATLAS Live • Targeting Audiences • Muon Spectrometer Channel

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work 000	ATLAS TV Summary
ATLAS Li	ive				
What It Is					

- Proposed project
 - All work is preliminary
- Collection of information channels
 - Television Channels
- Screens placed around CERN.
 - CERN Main Auditorium
 - CMS Building 40
 - ATLAS Live Building 40

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work 000	ATLAS TV Summary
ATLAS L	ive				
What It Is					

- Proposed project
 - All work is preliminary
- Collection of information channels
 - Television Channels
- Screens placed around CERN.
 - CERN Main Auditorium
 - CMS Building 40
 - ATLAS Live Building 40

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work 000	ATLAS TV Summary
ATLAS L	ive				
What It Is					

- Proposed project
 - All work is preliminary
- Collection of information channels
 - Television Channels
- Screens placed around CERN.
 - CERN Main Auditorium
 - CMS Building 40
 - ATLAS Live Building 40

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work 000	ATLAS TV Summary
ATLAS L	ive				
What It Is					

- Proposed project
 - All work is preliminary
- Collection of information channels
 - Television Channels
- Screens placed around CERN.
 - CERN Main Auditorium
 - CMS Building 40
 - ATLAS Live Building 40

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work	ATLAS TV Summary
ATLAS Li Targeting An A					

Leading Up To The Question:

- The Scala development software allows for robust channels
- Clearly good for general information and outreach
- Easy to interchange and share content between channels

	mary
ATLAS Live Targeting An Audience	

Leading Up To The Question:

- The Scala development software allows for robust channels
- Clearly good for general information and outreach
- Easy to interchange and share content between channels

The Questions:

- How specific can the channel be?
- Can ATLAS Live assist with remote monitoring?

ATLAS Live TOC	Collaborative Tools	0	ATLAS TV Summary

ATLAS Live

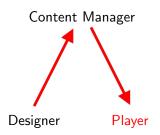
The Muon Spectrometer Channel

https://espace.cern.ch/atlas-collaborative-tools/atlas-live/webcasts/MuonSpectrometer/default.aspx mms://wmsuds01.cern.ch/atlaslive-test

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress ●○○	Future Work 000	ATLAS TV Summary
Progress Development					

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress ●○○	Future Work 000	ATLAS TV Summary
Progress					
Development					

Content Manager


Content Manager - It's all in the name!!

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress ●○○	Future Work 000	ATLAS TV Summary
Progress Development					

Content Manager - It's all in the name!! Designer - Software and computer used to design content


ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress ●○○	Future Work 000	ATLAS TV Summary
Progress Development					

Content Manager - It's all in the name!! Designer - Software and computer used to design content Player - Software and computer used to display content

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress ○●○	Future Work	ATLAS TV Summary
Progress Channel Setup					

• Commissioned development center (Designer and Player)

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress ○●○	Future Work 000	ATLAS TV Summary
Progress Channel Setup					

- Commissioned development center (Designer and Player)
- Created pilot Muon Spectrometer channel

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress ○●○	Future Work 000	ATLAS TV Summary
Progress Channel Setup					

- Commissioned development center (Designer and Player)
- Created pilot Muon Spectrometer channel
- Problem: Each screen requires Scala software \rightarrow \$\$\$

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress	Future Work 000	ATLAS TV Summary
Progress Webcasting					

- **Solution:** Encode and webcast the content displayed on one Player Screen.
- Computers become 'Players' by playing online content
- Automating webcasting required some creativity:
 - Player Computer automatically restarts at periodic intervals
 - Require Player to automatically webcast and start Player software after periodic reboots

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work ●○○	ATLAS TV Summary
Future Wo					

- Disclaimer: Current Channel is first iteration!
 - Input and feedback from experts
 - Give the people what they want
- Scala is VERSATILE!
 - Show non-specific information (from ATLAS/LHC/etc...)
 - Show breaking news (webcasts/Higgs score/etc...)

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work ●○○	ATLAS TV Summary
Future Wo					

- Disclaimer: Current Channel is first iteration!
 - Input and feedback from experts
 - Give the people what they want
- Scala is NOT THAT versatile
 - Pushing the limits (typical physicist thing to do)
 - Capturing non-image data (html/agenda/etc...)

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work ○●○	ATLAS TV Summary
Future Wo					

• Present: WME

• Future: Flash Encoder

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work ○●○	ATLAS TV Summary
Future Wo	ork				
Flash Encoding	g				

- Present: WME
- The Good:
 - Easy screen capture
 - Automated encoding procedure (on startup)
 - CERN AVC has streaming procedure in place

• Future: Flash Encoder

- The Bad:
 - No simple screen capture
 - Possibly complicated automated startup
 - Requires servers to webcast

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work	ATLAS TV Summary
Future W	ork				
Flash Encoding	Σ				

- Present: WME
- The Good:
 - Easy screen capture
 - Automated encoding procedure (on startup)
 - CERN AVC has streaming procedure in place
- The Bad:
 - Some browsers/players won't properly display
 - Potential bandwidth issues

- Future: Flash Encoder
- The Good:
 - Universally playable/portable
 - Optimized for streaming webcasts
- The Bad:
 - No simple screen capture
 - Possibly complicated automated startup
 - Requires servers to webcast

ATLAS Live TOC	Collaborative Tools 00	ATLAS Live	Progress 000	Future Work	ATLAS TV Summary
Future Wo	ork				
Other Issues					

- Audio
 - Scala supports Audio
 - WME and Flash software support audio encoding
 - Should not be difficult, but is audio necessary/desired?
- Bandwidth
 - Encoding at 1000 kbps, online stream at 1119 kbps
 - How much can CERN support?
 - Trade resolution for bandwidth?
 - Will Flash use less bandwidth?

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work 000	ATLAS TV Summary
Summary ATLAS Live M	uon Spectrometer	Channel			

Q: Can ATLAS Live cater to specialized audiences?

- Obviously useful for general audiences and outreach
- Pilot channel for Muon Spectrometer experts

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work 000	ATLAS TV Summary
Summary ATLAS Live M	uon Spectrometer	Channel			

Q: Can ATLAS Live cater to specialized audiences?

- Obviously useful for general audiences and outreach
- Pilot channel for Muon Spectrometer experts

A: Yes!

- Scala is powerful and versatile enough
- Condenses up-to-date information into one place
- One component in remote shift-taking

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work 000	ATLAS TV Summary
Summary ATLAS Live M	uon Spectrometer	Channel			

Q: Can ATLAS Live cater to specialized audiences?

- Obviously useful for general audiences and outreach
- Pilot channel for Muon Spectrometer experts

A: Yes!

- Scala is powerful and versatile enough
- Condenses up-to-date information into one place
- One component in remote shift-taking

Other Points

- Framework for specialized channel in place
- Some work still to be done

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work 000	ATLAS TV Summary
Summary					

ATLAS Live Muon Spectrometer Channel

ATLAS Live TOC	Collaborative Tools	ATLAS Live	Progress 000	Future Work 000	ATLAS TV Summary
Summary					

ATLAS Live Muon Spectrometer Channel

Now let's go find the Higgs!

High and Low

High Mass Higgs Summary

High Mass Higgs

High Mass Higgs Boson

James Stankowicz¹

University of Florida¹ Under the guidance of Dr. Jonas Strandberg - University of Michigan

June 2009 - August 2009

High Mass Higgs TOC	Meet The Higgs 00	Finding The Higgs	High and Low	
Outline				
8 Meet The Existe	nce			
9 Finding	the Detector Root	gs		
	lass Cuts Mass Cuts			
🕕 High Ma	iss Higgs Sum	mary		

	Meet The Higgs ●○	Finding The Higgs 000	High and Low 000	
Meet The H Existence	iggs			

What is the Higgs?

	Meet The Higgs ●○		
Meet The H Existence	iggs		

What is the Higgs?

- A particle!
- A boson! (Spin = 0)
- Undiscovered!

	Meet The Higgs ●○	Finding The Higgs 000	High and Low 000	
Meet The H Existence	liggs			

What is the Higgs?

- A particle!
- A boson! (Spin = 0)
- Undiscovered!

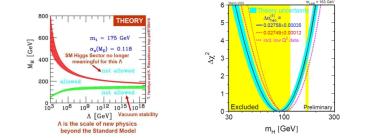
Why should the Higgs exist?

	Meet The Higgs		
Meet The H Existence	iggs		

What is the Higgs?

- A particle!
- A boson! (*Spin* = 0)
- Undiscovered!

Why should the Higgs exist?


The standard model requires it:

- Final quantum of Higgs field
 - $\bullet\,$ The other quanta (W^{\pm}, Z^0) already observed
 - Results in massive particles in quantum field theory
- Electroweak symmetry breaking
 - $\bullet~$ Used to renormalize W^{\pm} cross section calculations

Since 1960s:

- Sought at every collider (LEP/Tevatron/LHC(?)...)
- Observed lower mass limit: 114.4 $GeV < M_H$
- Tevatron-studied energies: $M_H \notin [160, 170] \text{ GeV}$
- Most sensitive experimental region: $M_H \approx 170~GeV$
- Theory favors: 200 GeV > $M_H \approx 90$ GeV

Since 1960s:

- Sought at every collider (LEP/Tevatron/LHC(?)...)
- Observed lower mass limit: 114.4 $GeV < M_H$
- Tevatron-studied energies: $M_H \notin [160, 170] \text{ GeV}$
- Most sensitive experimental region: $M_H pprox 170~GeV$
- Theory favors: 200 GeV $> M_H \approx 90$ GeV

Presently:

- Most preparation for $M_H \approx 170~GeV$
- Amount of Monte Carlo generated events:

High Mass Higgs TOC Meet The Higgs Finding The Higgs High and Low High Mass Higgs Summary OOO Finding The Higgs

Inside The Detector

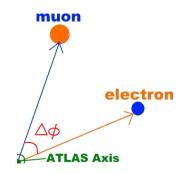
When the LHC starts

It's like throwing two TVs at each other really fast and looking at what comes out to see how a TV works - Jiri Stehlik

High and Low

Finding The Higgs

One collision:

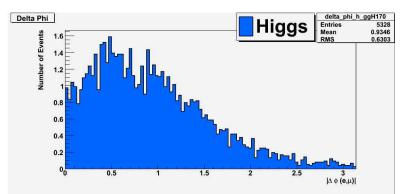

- Protons collide with anti-protons
- Mess of particles come out
- Outcome is statistical
- ATLAS tries to measure various properties
- i.e.: Particle identity, charge, $p^{\mu} = (E, \vec{p}), \ \Delta \phi, \ \Delta R, \text{ etc...}$

High and Low

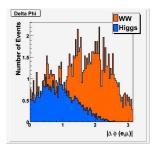
Finding The Higgs

One collision:

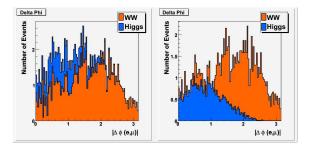
- Protons collide with anti-protons
- Mess of particles come out
- Outcome is statistical
- ATLAS tries to measure various properties
- i.e.: Particle identity, charge, $p^{\mu} = (E, \vec{p}), \Delta \phi, \Delta R,$ etc...


Many millions of collisions every second:

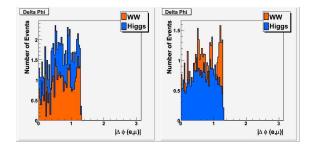
- Measure number of times each quantity takes a specific value
- i.e.: $\Delta \phi(e,\mu) = \pi$ happened 300 times, etc...


Many millions of collisions every second:

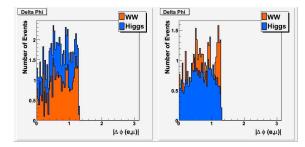
- Measure number of times each quantity takes a specific value
- i.e.: $\Delta \phi(e,\mu) = \pi$ happened 300 times, etc...
- Use histograms and statistics to do physics!



- Pretend there is not a Higgs (only background = BG)
- Pretend there is a Higgs (only signal = SIG)



- Pretend there is not a Higgs (only background = BG)
- Pretend there is a Higgs (only signal = SIG)
- Is SIG + BG significantly different from BG?



- Pretend there is not a Higgs (only background = BG)
- Pretend there is a Higgs (only signal = SIG)
- Is SIG + BG significantly different from BG?
- Hint: Try to increase difference by making cuts on data

- Pretend there is not a Higgs (only background = BG)
- Pretend there is a Higgs (only signal = SIG)
- Is SIG + BG significantly different from BG?
- Hint: Try to increase difference by making cuts on data
- Quantify significant difference with standard deviation (σ)

$$\sigma \approx \frac{\int (SIG) d\xi}{\left(\int (BG) d\xi\right)^{1/2}}$$

Discovery: $\sigma \geq 5$

 $M_H pprox 170~GeV$ - most studied

$$H
ightarrow W + W
ightarrow e + \mu +
u_e +
u_\mu = e + \mu + E_T$$

Preselection cuts:

- Pass triggers
- $\Delta R(e,\mu) \geq 0.3$
- μ , *e* properties
- $M_{e,\mu} \ge 15 \text{ GeV}$
- *E*/_{*T*} ≥ 30 *GeV*
- $M_T \ge 30 \ GeV$

- Number of jets = 0
- $p_{T;e,\mu} \geq 30 \ GeV$
- $\Delta \phi(e,\mu) \geq 1.3$

 $M_H pprox 170~GeV$ - most studied

$$H
ightarrow W + W
ightarrow e + \mu +
u_e +
u_\mu = e + \mu + E_T$$

Preselection cuts:

- Pass triggers
- $\Delta R(e,\mu) \geq 0.3$
- μ , *e* properties
- $M_{e,\mu} \geq 15~GeV$
- *E*/_{*T*} ≥ 30 *GeV*
- $M_T \ge 30 \ GeV$

- Number of jets = 0
- $p_{T;e,\mu} \geq 30 \ GeV$
- $\Delta \phi(e,\mu) \geq 1.3$

 $M_H \ge 220 \ GeV$ - here studied

$$H
ightarrow W + W
ightarrow e + \mu +
u_e +
u_\mu = e + \mu + E_T$$

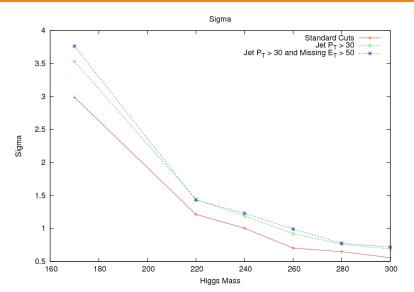
Preselection cuts:

- Pass triggers
- $\Delta R(e,\mu) \geq 0.3$
- μ , *e* properties
- $M_{e,\mu} \geq 15 \ GeV$
- $E_T \ge 30 \ GeV$
- $M_T \ge 30 \ GeV$

- Number of jets = 0
- $p_{T;e,\mu} \geq 30 ~GeV$
- $\Delta \phi(e,\mu) \geq 1.3$

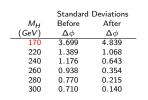
 $M_H \ge 220 \ GeV$ - here studied

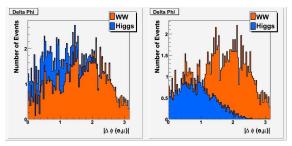
$$H
ightarrow W + W
ightarrow e + \mu +
u_e +
u_\mu = e + \mu + E_T$$


Preselection cuts:

- Pass triggers
- $\Delta R(e,\mu) \geq 0.3$
- μ , *e* properties $\uparrow \vec{p}_{e,\mu}$
- $M_{e,\mu} \geq 15 \ GeV$
- *E*/_{*T*} ≥ 50 *GeV*
- $M_T \ge 30 \ GeV$

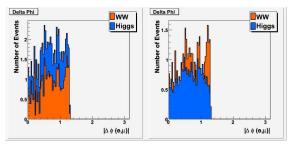
- Number of jets = 0 $\uparrow \vec{p}_{jet}$
- $p_{T;e,\mu} \geq 30 ~GeV$
- $\Delta \phi(e,\mu) \geq 1.3$

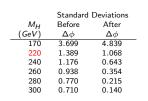

High Mass Cuts

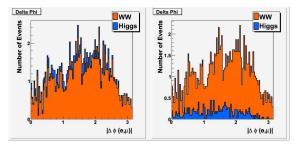


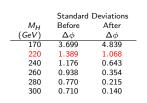
- Higgs is a spin 0 boson
- For $M_{H}pprox$ 170 GeV, $|\Delta\phi(e,\mu)|$ should be small
- For $W+W
 ightarrow e+\mu, |\Delta\phi(e,\mu)|$ need not be small

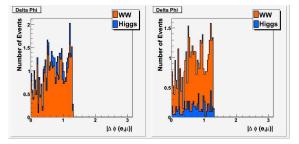
• Cut on $|\Delta \phi(e,\mu)| < 1.5$



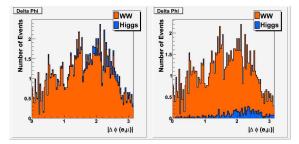

- Higgs is a spin 0 boson
- For $M_{H}pprox$ 170 GeV, $|\Delta\phi(e,\mu)|$ should be small
- For $W+W
 ightarrow e+\mu, |\Delta\phi(e,\mu)|$ need not be small
- Cut on $|\Delta \phi(e,\mu)| < 1.5$


Standard	Deviations
Before	After
$\Delta \phi$	$\Delta \phi$
3.699	4.839
1.389	1.068
1.176	0.643
0.938	0.354
0.770	0.215
0.710	0.140
	$\begin{array}{c} \text{Before} \\ \Delta \phi \\ \hline 3.699 \\ 1.389 \\ 1.176 \\ 0.938 \\ 0.770 \end{array}$

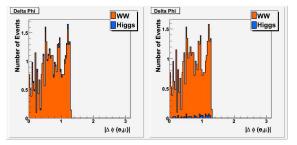

- Higgs is a spin 0 boson
- For $M_H > 170~GeV$, $|\Delta \phi(e,\mu)|$ has no trend
- For $W+W
 ightarrow e+\mu, |\Delta\phi(e,\mu)|$ need not be small
- Cut on $|\Delta \phi(e,\mu)| < 1.5$ no longer effective



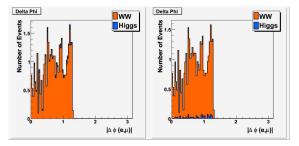
- Higgs is a spin 0 boson
- For $M_H > 170~GeV$, $|\Delta \phi(e,\mu)|$ has no trend
- For $W+W
 ightarrow e+\mu, |\Delta\phi(e,\mu)|$ need not be small
- $\bullet~$ Cut on $|\Delta \phi(e,\mu)| < 1.5$ no longer effective



- Higgs is a spin 0 boson
- For $M_H>170~GeV$, $|\Delta\phi(e,\mu)|$ has no trend
- For $W+W
 ightarrow e+\mu, |\Delta\phi(e,\mu)|$ need not be small
- Cut on $|\Delta \phi(e,\mu)| < 1.5$ no longer effective


Standard	Deviations
Before	After
$\Delta \phi$	$\Delta \phi$
3.699	4.839
1.389	1.068
1.176	0.643
0.938	0.354
0.770	0.215
0.710	0.140
	$\begin{array}{c} \text{Before} \\ \Delta \phi \\ \hline 3.699 \\ 1.389 \\ 1.176 \\ 0.938 \\ 0.770 \end{array}$

- Higgs is a spin 0 boson
- For $M_H > 170~GeV$, $|\Delta \phi(e,\mu)|$ has no trend
- For $W+W
 ightarrow e+\mu, |\Delta\phi(e,\mu)|$ need not be small
- $\bullet~$ Cut on $|\Delta \phi(e,\mu)| < 1.5$ no longer effective


	Standard	Deviations
M _H	Before	After
(GeV)	$\Delta \phi$	$\Delta \phi$
170	3.699	4.839
220	1.389	1.068
240	1.176	0.643
260	0.938	0.354
280	0.770	0.215
300	0.710	0.140

- Higgs is a spin 0 boson
- For $M_H > 170~GeV$, $|\Delta \phi(e,\mu)|$ has no trend
- For $W+W
 ightarrow e+\mu, |\Delta \phi(e,\mu)|$ need not be small
- Cut on $|\Delta \phi(e,\mu)| < 1.5$ no longer effective

	Standard	Deviations
M _H	Before	After
(GeV)	$\Delta \phi$	$\Delta \phi$
170	3.699	4.839
220	1.389	1.068
240	1.176	0.643
260	0.938	0.354
280	0.770	0.215
300	0.710	0.140

		High Mass Higgs Summary
Summary High Mass Higgs		

- Q: How will the current search criteria do if $M_H > 170 \text{ GeV}$?
 - Theoretically most favored $M_H \approx 90~GeV$ experimentally invalidated
 - Most efforts focused around 170 GeV
 - Murphy's Law Anything that can go wrong will

		High Mass Higgs Summary
Summary High Mass Higgs		

- Q: How will the current search criteria do if $M_H > 170$ GeV?
 - Theoretically most favored $M_H \approx 90~GeV$ experimentally invalidated
 - Most efforts focused around 170 GeV
 - Murphy's Law Anything that can go wrong will

A: Not that well!

- Not much Monte Carlo data
- Most powerful cut $(\Delta \phi(e,\mu))$ counterproductive for $M_H \geq 220~GeV$

		High Mass Higgs Summary
Summary High Mass Higgs		

- Q: How will the current search criteria do if $M_H > 170 \text{ GeV}$?
 - Theoretically most favored $M_H \approx 90~GeV$ experimentally invalidated
 - Most efforts focused around 170 GeV
 - Murphy's Law Anything that can go wrong will

A: Not that well!

- Not much Monte Carlo data
- Most powerful cut $(\Delta \phi(e,\mu))$ counterproductive for $M_H \geq 220~GeV$

Other Points:

- $\bullet\,$ Changed some cuts to increase $\sigma\,$
- Made but did not analyze other parameters

	Meet The Higgs 00	Finding The Higgs	High and Low 000	High Mass Higgs Summary
Summary High Mass Higgs				

		High Mass Higgs Summary
Summary High Mass Higgs		

FIN!

Acknowledgments

Thanks to pretty much everyone:

- All the Univeristy of Michigan people:
 - Dr. Steve Goldfarb
 - Dr. Jonas Strandberg
 - Dr. Jean Krisch
 - Dr. Homer Neal
 - Jeremy Herr
 - The others not on here
- The other REU students it was fun!