2nd review of the EuroCirCol WP5, 9-10 Oct. 2017

Dipole circuit layout and protection

M. Prioli and T. Salmi

With contributions from: B. Auchmann, L. Bortot, M. Maciejewski, M. Mentink,

E. Ravaioli, A. Verweij

Motivation and input parameters

Circuit design strategy

Power converters (PC) and energy extractors (EE) close to access points

- Space optimization and easier maintenance
- 1. Subdivide the 16 km long arc in four powering sectors (PS) ...
- 2. ... and each sector in *N* circuits (20*N* circuits in total including mini-arcs)
- 3. Locate PC and EE close to access points
- 4. Power the circuits through a superconducting link
- 5. Equip each circuit with one EE system

PS.

 PS_2

PS₃

PS₄

- 1. Reduce the overall circuits complexity
 - Smaller impact on reliability
- 2. Limit the number of magnets in series in a circuit
 - Reduce the training time
- 3. Limit the energy of a circuit
 - Reduce the consequences of fault scenarios

- 1. Reduce the overall circuits complexity
 - Smaller impact on reliability
- 2. Limit the number of magnets in series in a circuit
 - Reduce the training time
- 3. Limit the energy of a circuit
 - Reduce the consequences of fault scenarios
- 4. Ramp-up and ramp-down time similar to LHC (20 minutes)
 - Limit the turnaround time
- 5. Limit the peak power of converters
 - Lower accelerator power demand

- 1. Reduce the overall circuits complexity
 - Smaller impact on reliability
- 2. Limit the number of magnets in series in a circuit
 - Reduce the training time
- 3. Limit the energy of a circuit
 - Reduce the consequences of fault scenarios
- 4. Ramp-up and ramp-down time similar to LHC (20 minutes)
 - Limit the turnaround time
- 5. Limit the peak power of converters
 - Lower accelerator power demand
- 6. Limit the required Voltage Withstand Level $VWL = f^* (V_{Mag, quench} + 2.5^* V_{Cir, fault})$
 - 1.3 kV as voltage to ground budget for the circuit 1.2 1200 1300
- 7. Discharge time in fast power abort mode similar to LHC (100 s)
 - Limit the number of neighbouring quenching magnets to reduce the cryo-recovery time
- 8. Limit the busbars size
 - Easier layout inside the cryostat

- 1. Reduce the overall circuits complexity
 - Smaller impact on reliability
- 2. Limit the number of magnets in series in a circuit
 - Reduce the training time
- 3. Limit the energy of a circuit
 - Reduce the consequences of fault scenarios
- 4. Ramp-up and ramp-down time similar to LHC (20 minutes)
 - Limit the turnaround time
- 5. Limit the peak power of converters
 - Lower accelerator power demand
- 6. Limit the required Voltage Withstand Level $VWL = f^* (V_{Mag, quench} + 2.5^* V_{Cir, fault})$
 - 1.3 kV as voltage to ground budget for the circuit 1.2 1200 1300
- 7. Discharge time in fast power abort mode similar to LHC (100 s)
 - Limit the number of neighbouring quenching magnets to reduce the cryo-recovery time
- 8. Limit the busbars size
 - Easier layout inside the cryostat
- 9. Avoid spurious triggers of quench detection system (QDS)
 - Maximize availability

- 1. Reduce the overall circuits complexity
 - Smaller impact on reliability
- 2. Limit the number of magnets in series in a circuit
 - Reduce the training time
- 3. Limit the energy of a circuit
 - Reduce the consequences of fault scenarios
- 4. Ramp-up and ramp-down time similar to LHC (20 minutes)
 - Limit the turnaround time
- 5. Limit the peak power of converters
 - Lower accelerator power demand
- 6. Limit the required Voltage Withstand Level $VWL = f^* (V_{Mag, quench} + 2.5^* V_{Cir, fault})$
 - 1.3 kV as voltage to ground budget for the circuit
 1.2 1200
 1300
- 7. Discharge time in fast power abort mode similar to LHC (100 s)
 - Limit the number of neighbouring quenching magnets to reduce the cryo-recovery time
- 8. Limit the busbars size
 - Easier layout inside the cryostat
- 9. Avoid spurious triggers of quench detection system (QDS)
 - Maximize availability

Number of circuits per PS (N)	1	2	3	4	5	6	7	8	LHC
Total number of circuits	20	40	60	80	100	120	140	160	8
Number of magnets per circuit	219	110	73	55	44	37	32	28	154
Circuit energy [GJ]	8.1	4.1	2.7	2.0	1.6	1.4	1.2	1.0	1.1

Number of circuits per PS (N)	1	2	3	4	5	6	7	8	LHC
Total number of circuits	20	40	60	80	100	120	140	160	8
Number of magnets per circuit	219	110	73	55	44	37	32	28	154
Circuit energy [GJ]	8.1	4.1	2.7	2.0	1.6	1.4	1.2	1.0	1.1
PC max voltage [V]	1202	604	401	302	241	203	176	154	150
PC peak power [MW]	13.5	6.8	4.5	3.4	2.7	2.3	2.0	1.7	1.8

Number of circuits per PS (N)	1	2	3	4	5	6	7	8	LHC
Total number of circuits	20	40	60	80	100	120	140	160	8
Number of magnets per circuit	219	110	73	55	44	37	32	28	154
Circuit energy [GJ]	8.1	4.1	2.7	2.0	1.6	1.4	1.2	1.0	1.1
PC max voltage [V]	1202	604	401	302	241	203	176	154	150
PC peak power [MW]	13.5	6.8	4.5	3.4	2.7	2.3	2.0	1.7	1.8
Time to 37% of nominal current [s]	555	279	185	139	111	94	81	71	100
MIITs [MA^2*s]	35E+3	18E+3	12E+3	9E+3	7E+3	6E+3	5E+3	5E+3	7E+3
Busbar cross-section $(\Delta T=300 \text{K}) \text{ [mm^2]}$	490	350	280	240	220	200	180	170	200

Number of circuits per PS (N)	1	2	3	4	5	6	7	8	LHC
Total number of circuits	20	40	60	80	100	120	140	160	8
Number of magnets per circuit	219	110	73	55	44	37	32	28	154
Circuit energy [GJ]	8.1	4.1	2.7	2.0	1.6	1.4	1.2	1.0	1.1
PC max voltage [V]	1202	604	401	302	241	203	176	154	150
PC peak power [MW]	13.5	6.8	4.5	3.4	2.7	2.3	2.0	1.7	1.8
Time to 37% of nominal current [s]	555	279	185	139	111	94	81	71	100
MIITs [MA^2*s]	35E+3	18E+3	12E+3	9E+3	7E+3	6E+3	5E+3	5E+3	7E+3
Busbar cross-section $(\Delta T=300 \text{K}) \text{ [mm^2]}$	490	350	280	240	220	200	180	170	200

Different ramp-up and EE strategies

Ramp-up with constant voltage

EE with resistor

Different ramp-up and EE strategies

*V. Karaventzas, TE-MPE-EE 7

Number of circuits per PS (N)	1	2	3	4	5	6	7	8
Total number of circuits	20	40	60	80	100	120	140	160
Number of magnets per circuit	219	110	73	55	44	37	32	28
Circuit energy [GJ]	8.1	4.1	2.7	2.0	1.6	1.4	1.2	1.0
PC max voltage [V]	2403	1207	801	603	483	406	351	307
PC peak power [MW]	7.2	3.6	2.4	1.8	1.5	1.2	1.1	0.93
Time to 37% of nominal current [s]	351	176	117	88	70	59	51	45
MIITs [MA^2*s]	23.4E+3	11.7E+3	7.8E+3	5.9E+3	4.7E+3	3.9E+3	3.4E+3	3.0E+3
Busbar cross-section $(\Delta T=300 \text{K}) \text{ [mm^2]}$	390	270	220	190	170	160	140	130

Number of circuits per PS (N)	1	2	3	4	5	6	7	8
Total number of circuits	20	40	60	80	100	120	140	160
Number of magnets per circuit	219	110	73	55	44	37	32	28
Circuit energy [GJ]	8.1	4.1	2.7	2.0	1.6	1.4	1.2	1.0

$t_{\rm ramp} = 20 \rm min$	PC max voltage [V] PC peak power [MW]	+100% -46%
1.3 kV	Time to 37% of nominal current [s] MIITs [MA^2*s]	-37%
V _{gnd} =	Busbar cross-section $(\Delta T=300K)$ [mm ²]	-21%

Number of circuits per PS (N)	1	2	3	4	5	6	7	8	
Total number of circuits	20	40	60	80	100	120	140	160	
Number of magnets per circuit	219	110	73	55	44	37	32	28	
Circuit energy [GJ]	8.1	4.1	2.7	2.0	1.6	1.4	1.2	1.0	
PC max voltage [V]				+10	0%				
PC peak power [MW]	-46%								
Time to 37% of nominal current [s]	-37%								
MIITs [MA^2*s]	-33%								
Busbar cross-section $(\Delta T=300K)$ [mm ²]				-2′	1%				

9. Avoid spurious triggers of QDS

CLIQ protection

QH protection: delays from CoHDA (T. Salmi)

CERN

Magnet + circuit co-simulation

Circuit model 2800 components

9. Avoid spurious triggers of QDS

CLIQ protection

QH protection: delays from CoHDA (T. Salmi)

9. Avoid spurious triggers of QDS

QH protection: delays from CoHDA

CLIQ protection

Conclusion

- The subdivision of a 4km sector in multiple circuits is required from the protection point of view
 - 5 to 6 circuits per sector are needed
 - 100 to 120 circuits, power converters, energy extractors, ..., for full accelerator
- Different strategies are possible to optimize ramp-up and EE
 - Less circuits per sector (3 to 4)
 - No impact on the circuit design strategy
- CLIQ and QH protection systems have the same effect on QDS signals
 - CLIQ can be operated in a long chain of magnets
- Transient effects are significant for the FCC circuits due to high voltages
 - Further studies are needed to reduce the impact on QDS

- 1. Simulation conventions: SPICE solvers, netlist format, modular libraries
- 2. Extended modelling capabilities to fit actual needs

- 1. Simulation conventions: SPICE solvers, netlist format, modular libraries
- 2. Extended modelling capabilities to fit actual needs

- 1. Simulation conventions: SPICE solvers, netlist format, modular libraries
- 2. Extended modelling capabilities to fit actual needs

- 1. Simulation conventions: SPICE solvers, netlist format, modular libraries
- 2. Extended modelling capabilities to fit actual needs

- 1. Simulation conventions: SPICE solvers, netlist format, modular libraries
- 2. Extended modelling capabilities to fit actual needs

- 1. Simulation conventions: SPICE solvers, netlist format, modular libraries
- 2. Extended modelling capabilities to fit actual needs

- 1. Simulation conventions: SPICE solvers, netlist format, modular libraries
- 2. Extended modelling capabilities to fit actual needs

- Advantages
 - Multiple solvers with individual adaptive time stepping
 - No assumptions about current decay
 - No assumptions about field and inductance evolution
 - Convergence error under control

- Advantages
 - Multiple solvers with individual adaptive time stepping
 - No assumptions about current decay
 - No assumptions about field and inductance evolution
 - Convergence error under control

- Advantages
 - Multiple solvers with individual adaptive time stepping
 - No assumptions about current decay
 - No assumptions about field and inductance evolution
 - Convergence error under control

- Advantages
 - Multiple solvers with individual adaptive time stepping
 - No assumptions about current decay
 - No assumptions about field and inductance evolution
 - Convergence error under control

- Advantages
 - Multiple solvers with individual adaptive time stepping
 - No assumptions about current decay
 - No assumptions about field and inductance evolution
 - Convergence error under control

- Advantages
 - Multiple solvers with individual adaptive time stepping
 - No assumptions about current decay
 - No assumptions about field and inductance evolution
 - Convergence error under control

STEAM architecture

Motivation for simulation coupling:

Multi-physics

Multiple coupled physical domains

Multi-rate

• Time constants ranging from µs to minutes

Multi-scale

 Geometrical dimensions differ by several orders of magnitude µm to km

Lossy inductance model

