Status of ERMC and RMM

Susana Izquierdo Bermudez and Juan Carlos Perez

CERN-TE/MSC/MDT: N. Bourcey, P. Ferracin, J. Ferradas Troitino, L. Lambert, J. Massard, G. Maury, J. Mazet, R. Ortwein, J. Osieleniec, E. Rochepault, D. Tommasini CERN-TE/MSC/SCD: A. Bonasia, J. Fleiter, B. Bordini CERN-TE/MSC/MM: C. Petrone CERN-TE/MSC/TF: H. Bajas CERN-TE/MME: P. Moyret

EuroCirCol Review

The ERMC and RMM program

ERMC

Enhanced Racetrack Model Coil 16 T midplane field

- Demonstrate field on the conductor
- Coil technology development

RMM

Racetrack Model Magnet 16 T in a 50 mm cavity

- Demonstrate field on the aperture
- Mechanics (including inner coil support)

Base for the development of the technology needed for the 16 T dipole program

ERMC & RMM design strategy

Stage 1 priorities:

- 1. Demonstrate the field
 - Design based on the "available" critical current density (~20% lower than FCC target at 18 T, 4.2 K)
 - As field quality is not an objective, profit from the use of an iron pole to decrease the ratio between the field in the aperture and in the coil to ~ 1
- 2. Study the mechanics

Stage 2 priorities:

- 1. Coil size \rightarrow Grading
 - Design based on the target FCC critical current density
 - High Field Nb₃Sn splice development needed
- 2. Field quality (b_n<10 units, including iron saturation)
 - Still, it will need to be accommodated within the same structure, changing only the collar pack assembly

Non graded design

- Design finished
- Components for the magnet structure
 under procurement

Graded design

- 2D magnetic and mechanical design done
- Activity launched on splice development, but further feedback needed before starting the engineering design.

Non-Graded Design

Strand and Cable

- 1 mm diameter wire, cu/sc =1
- RRP 120/127 (62-64 μm) & RRP 150/169 (54-55 μm)
- 40-strand cable
 - Bare width x thickness: 20.9 x 1.82 mm
 - SS core 14 mm wide and 25 µm thick
- 3 cable unit lengths (220 m x 3) available

Assumed growth during HT : 3% (thickness), 1% (width)

Cable insulation

- Baseline: 0.150 +0.00/-0.02 mm Mica-Glass Insulation
- Insulation tests preformed to define the best parameters:
 - S2 glass 636 11 TEX yarn
 - 14 yarns (ply) per bobbin
 - 32 bobbins
 - Speed (angle) set to guarantee full coverage and appropriate thickness

Cable insulation

 50 % open
 7 % open

 6.9 mm
 1.5 mm

 11T
 ERMC

Remark: plots not on scale

Some evidences on 11 T and SMC 11 T that the C-Shape mica can have a negative impact on the uniformity of the pressure distribution.

Contact pressure on outer coil turns, SMC11T under 50 MPa compression

- After some iterations, braiding with wider mica tapes (44 mm) feasible.
- One cable unit length insulated, ready to be wound.
- The other two cable unit lengths will be insulated end of October.

https://indico.cern.ch/event/641884/ https://indico.cern.ch/event/659541/contributions/2689641/attachments/1507432/23493 96/Visite_CGP_ERMC.pdf

Magnetic design

ERMC

- Two double-layers with 45 turns each wounded around a magnetic pole
- $B_p/B_o = 1.097$

RMM (ERMC double layers +)

- Middle double layer with 42 turns each wound around a titanium closed cavity
- Coil aperture radius = 31 mm
- Closed aperture radius = 25 mm
- $B_p/B_o = 1.097$

Magnet parameters

	Units	ERMC	RMM		
Nominal current (I _{nom})	kA	13.1	11.4		
Overall current density	A/mm ²	282	245		
Bore field	Т	15.7	16.0		
Peak field at I _{nom}	Т	16.0	16.2		
Stored energy at Inom	MJ/m	1.5	2.1		
Differential inductance at Inom	mH/m	16.6	31.1		
Assuming Hi-Lumi Jc					
Short sample field at 4.2 K	Т	16.7	17.2		
Short sample field at 1.9 K	Т	18.3	18.8		
(1-B/B _{ss}) at 1.9 K	%	13	14		

Evolution of the coil design

- End spacers introduced on the coil ends
 - Larger peak field for the same amount of conductor, but more favourable from the mechanical point of view.
- End-saddles on stainless steel instead of G11.
 - Limit the displacement on the coil ends.
- Design of the instrumentation and quench heaters finalized.

Coil components

• Coil parts for 3 ERMC coils in house.

• Traces under procurement, expected to be delivered mid-November.

Coil fabrication

Expected to be delivered Oct-2017

ERMC10 – Winding

ERMC30 – Splicing

CERN

ERMC20 – Reaction

Mechanical design

Mechanical structure capable to load the magnet up to 18 T, with enough margin to perform an experimental exploration of the different parameters relevant to magnet performance.

- To allow a further exploration of the assembly parameters:
 - Two different sets of shells have been procured:
 - One shell, full length
 - Two shells, central split
 - Aluminum rods and stainless steel rods are under procurement.

Magnet components

Shells delivered to CERN, under metrology control.

- Rest of the magnet components under procurement
 - Yoke and pads expected to be delivered January 2018
 - End plate in the critical path (procurement launched Sep 2017)

Magnet assembly

Under procurement. Expected delivery January 2017

ERMC50 Coil Pack Assembly ERMC60 Ground Insulation

ERMC70 Insertion

ERMC80 Axial loading

ERMC90 Splicing and Connection box

Graded Design

Magnetic Design

- Strong synergy with the EuroCirCol Block design option, slightly more conservative in some aspects:
 - 16 T bore field, with 14 % margin, using "available" critical current density (RMM critical current density, assuming 5 % cabling degradation)
 - 20 % margin in the low field region, as the impact on coil size is relatively small.
 - Inner support thickness of 4 mm. In a later stage, coil with 2 mm inner support can be produced to study the impact of the inner support on the performance.
 - Minimum available copper to superconductor ration 1 instead of 0.8

Parameter	Linit	Non Gradad	Graded	
Falameter	Unit	Non Graueu	HF	LF
strand diameter	mm	1	1	0.7
Cu/SC		1	1	1.15
# of strands/cable		40	28	40
# turns/quadrant		132	30	132
coil width	mm	86	69	
l _{nom}	Α	11546	8695	
Joverall	A/mm ²	248	264	357
Ratio LF/JF		n.a.	1.35	
B_0 at I_{nom}	Т	16.0	16.0	
B_{n} at I_{nom}	Т	16.1	16.6	13.6
$1-B_{p}(I_{nom})/B_{ss}(1.9 \text{ K})$	%	18.5	14	23
F _x /h at I _{nom}	MPa	141	145	
F _v /w at I _{nom}	MPa	-49 -5		5

Mechanical design

- Fulfills EuroCirCol Criteria.
 - Max. Coil stress = 150 MPa at RT
 - Max. Coil stress = 200 MPa at 1.9 K

Summary

- Conductor and cable
 - *Non-graded*: Strand, cable and insulation parameters defined. Three cable unit lengths have been produced.
 - *Graded*: Strand parameters defined; cable and insulation parameters to be defined.
- Non-graded coils
 - Cross section and end design defined for ERMC and RMM.
 - Coil parts for three coils received.
 - ERMC coil fabrication starts in October 2017.
- Graded coils
 - 2D Mechanical and Magnetic design done for the graded design.
 - Activity on High Field Nb₃Sn splice development launched, but further progress is required before launching the detailed graded coil design.
 - Relaying on EPFL program for the high field splice development.
- Structure
 - Baseline design completed.
 - Aluminium shells received, yokes and pads expected to be delivered in January 2018
 - End plate is in the critical path, but hopefully available February 2018.

